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Highlights 
• We found the numerical solutions of the distributed order Pharmacokinetic models. 

• Nonstandard finite difference method is applied for the solution of this system. 

• The numerical results show that the use of distributed order equations is beneficial.  
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Abstract 

Estimating the effects of drugs at different stages is directly proportional to the duration of 

recovery and the duration of pulling through with the disease. It is very important to estimate 

the effects of drugs at different stages. For this reason, solving Pharmacokinetic models which 

investigate these effects are very important. In this study, numerical solutions of one, two, and 

three-compartment nonlinear Pharmacokinetic models have been studied. Distributed order 

differential equations have been used for the solution. Numerical solutions have been found 

with the density function contained in distributed order differential equations and different 

values of this function. A nonstandard finite difference scheme has been used for numerical 

solutions. Finally, stability analyses of equilibrium points of the obtained discretized system 

have also been researched with the help of the Matignon criterion. 
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1. INTRODUCTION 

 

Pharmacokinetics is a field of science that studies the effects and behavior of drugs on the human body. 

Therefore, mathematical modeling of this effect is very important. Thanks to this modeling, effects of 

drugs at different stages can be predicted in advance. Pharmacokinetic models can be categorized into 

three different types. These types are compartment, non-compartment, and physiological 

Pharmacokinetic models [1]. The compartment model is more useful and beneficial in determining the 

effects of drugs. Because of that, solutions of one, two, and three-compartment Pharmacokinetic models 

are examined in this study. 

 

The first study that constituted the basics in this field was developed by Michaelis and Menten [2]. In 

this study, the Michealis-Menten equation was defined and information about the effects of drugs was 

obtained with the help of such equations.  In completion of these studies and developments, Widmark 

and Tandberg defined a one-compartment Bolus Infusion and Injection model [3]. Holford and Sheiner 

defined Pharmacokinetics as an area, where the effects of drugs can be measured using mathematical 

models, and they conducted studies in this direction [4]. After such studies, Pharmacokinetic stood out 

as an important area and became the subject of different fields of study. One of these fields of study is 

the numerical solutions of distributed order differential equations, which will be mentioned in this 

article. For further detailed information about numerical solutions, source numbers [5-9] can be 

examined. 
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But as can be seen from these studies, solutions are usually limited to differential equations modeling 

from ordinary or fractional orders. This is the reason why the idea of using differential equations from 

distributed order derivatives stood out in this article. It is the main intended idea to obtain solutions and 

data regarding effects of drugs determined by using solutions not only by ordinary or fractional 

differential equations but also in different cases. For these reasons, by using distributed order derivatives 

in this type of modeling, it is possible to comment on more than one type of equation by considering a 

single equation as a ground because distributed order differential equations are the general form of 

ordinary and fractional order differential equations due to their density functions. For this reason, thanks 

to the use of distributed order differential equations and choice of the density function, solutions of 

Pharmacokinetic models in different situations can be easily obtained. In addition, it is possible to show 

the suitability of using such equations on nonlinear differential equation models in similar forms. 

 

In other words, the main purpose of this article is to predict the effects of drugs under different situations 

as soon as possible and proceed with the treatment accordingly. For this process, distributed order 

differential equations will be used, as they can easily explain different situations. 

 

The definition of distributed order derivatives was first given by Caputo [10]. Caputo used the concept 

of distributed order derivatives in different areas, such as induction and diffusion equations, and caused 

them to gain significance [11-13]. Studies related to the existence and solutions of distributed order 

differential equations, which gained importance with Caputo's definition and studies, were published by 

Bagley and Torvik [14,15].  Diethelm and Ford, and Katsikadelis conducted studies on obtaining 

numerical solutions of distributed order differential equations [16,17]. In both of these studies, authors 

turned distributed order differential equations into multi-term equations; and, then they obtained 

numerical solutions. Li and Wu obtained numerical solutions of distributed order diffusion equations by 

using reproducing kernel methods [18]. Studies regarding stability analysis of distributed order 

differential equations were conducted by Najafi et al., and Aminikhah et al. [19,20]. For further detailed 

information and studies in this area please refer to studies numbered [21-24]. 

 

We will use finite difference approaches for the discretization of Pharmacokinetic systems, which we 

will generalize as distributed order. Numerical methods such as Runge-Kutta, Adams methods, and 

Theta methods based on these approaches are frequently used to study the dynamics of interacting and 

communicating populations. However, the disadvantages of such finite difference approaches are that 

their stability and accuracy depend on the time step. The Nonstandard Finite Difference (NSFD) method 

guarantees a positive discrete solution due to positive initial conditions. The disadvantage of the method 

is that a slight delay may occur in the traveling wave for very large step sizes. 

 

So far, there are quite a number of studies on the NSFD scheme in the literature. However, these studies 

are mostly about ordinary, fractional, and partial-order differential equations. In this study, the general 

solution of such equations will be obtained with distributed order differential equations. Thus, solutions 

from a different point of view will be entered into the literature. 

 

Citations must be given in brackets [1]. If there are two citations, use comma to separate [2,3]. If citations 

are more than two and in consecutive order, give the starting number and the last number [4-8]. For 

multiple citations with/without consequence, use the combination of the rules above [9,15,17-20].  

 

In this article, nonlinear and distributed order systems of one, two, and three-compartment 

Pharmacokinetic models are created and examined. This manuscript consists of 6 sections.  Basic 

definitions and concepts are presented in the Preliminaries section. In Section 3, ordinary nonlinear 

Pharmacokinetic models are presented. In Section 4, the expressions of nonlinear Pharmacokinetic 

models are defined with distributed order differential equations, later, discretizations of these created 

models are obtained with the NSFD scheme. In Section 5, stability analyses of discretized two and three-

compartment Pharmacokinetic models are performed and numerical simulations of the solutions are 

included. Section 6 is the conclusion section of the article, where obtained information is assessed. 
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2. PRELIMINARIES 

 

This section contains some basic concepts of Distributed order differential equations and NSFD method 

[10-40].  

 

Definition 2.1. [24] Let the function 𝑔(𝑡) is integrable in the range of [𝛼, 𝑘]. Let n be a positive integer 

and 𝛼 satisfy n-1 < 𝛼 ≤ n. Then, Riemann-Liouville fractional derivatives of order 𝛼 is defined by 

 

𝐷𝑅𝐿 
 𝛼 𝑔(𝑡) =

1

Г(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑔(𝑛)(𝑘)

(𝑡 − 𝑘) 𝛼−𝑛+1
𝑑𝑘.

𝑡

𝛼

 

 

Definition 2.2.  [24] Let the function 𝑔(𝑡) is integrable in the range of [𝛼, 𝑘]. Let n be a positive integer 

and 𝛼 satisfy n-1 < 𝛼 ≤ n. Then, Caputo fractional derivatives of order 𝛼 is defined by 

 

𝐷𝐶 
 𝛼𝑔(𝑡) =

1

Г(𝑛 − 𝛼)
∫

𝑔(𝑛)(𝑘)

(𝑡 − 𝑘) 𝛼−𝑛+1
𝑑𝑘

𝑡

𝛼

. 

 

Definition 2.3. [10] Let the function 𝐷𝑡
𝛼𝑔(𝑡) is a fractional derivative operator which can be determined 

as Riemann-Liouville, Caputo or Grünwald-Letnikov for  𝛼 𝜖 (𝜏1, 𝜏2) and  ∫ 𝑢(𝛼)
𝜏2
𝜏1

= 𝑑 > 0. 

Distributed order differential equations are defined as; 

 

𝐷𝑡
𝑢(𝛼)𝑔(𝑡) =∑𝛼𝑖∫ 𝑢𝑖(𝛼)

𝜏2

𝜏1

𝑛

𝑖=1

𝐷𝑡
𝑖−𝛼𝑔(𝑡)𝑑𝛼 +∑𝑏𝑗𝑔

𝑖(𝑡).

𝑛

𝑗=0

 

 

The most important factor here is 𝑢(𝛼) density function. Distributed order differential equations can 

evolve into ordinary or fractional order differential equations with density function. For example, by 

determining 𝑢(𝛼) = 1 , distributed order differential equations evolve into fractional order differential 

equations; and by doing so solutions for fractional order can be obtained. Thanks to these differential 

equations, the need for different modeling and equation systems is eliminated in order to be able to 

model the effects of drugs [11-13]. Another important expression to the study of numerical solution is 

the approximate Grünwald-Letnikov derivative formula. 

 

Definition 2.4. [25] Grünwald-Letnikov derivative formula is as follows:  

 

𝐷𝐺−𝐿
𝛼 𝑔(𝑡) = lim

𝑣→0
𝑣−𝛼∑(−1)𝑖 (

𝛼

𝑖
) 𝑔(𝑡 − 𝑖𝑣)

𝑛

𝑖=0

. 

 

If necessary modifications are applied on this formula, then it turns into: 

 

𝐷𝑡
𝛼𝑔(𝑡) =∑𝑝𝑖

𝛼𝑔(𝑡𝑛−𝑖),    𝑛 = 1,2,3,… ,
𝑡 − 𝛼

ℎ

𝑛

𝑖=0

, 

 

where  𝑝𝑖
𝛼 = (1 −

1+𝛼

𝑖
)𝑝𝑖−1

𝛼 , 𝑝0
𝛼 = ℎ−𝛼 is for , 𝑖 = 0,1,2,3,… , 𝑛  and ℎ: step size is given a quite small 

value [26].  

 

In this study, a Nonstandard Finite Difference scheme defined by Mickens will be used for obtaining a 

numerical solution of distributed order model [27]. In this scheme, instabilities in solutions can be easily 

eliminated by choosing appropriate denominator functions.  
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Definition 2.5. [28] If we consider 𝜑(ℎ) as a parameter, and 
𝑑𝑔

𝑑𝑡
= 𝐻(𝜑, 𝑔) as an ordinary differential 

equation, NSFD scheme shall be as follows: 

 

𝑡 → 𝑡𝑛, 𝑅(𝑔) → 𝑅(𝑔𝑛),    𝑔(𝑡) → 𝑔(𝑡𝑛),    
𝑑𝑔

𝑑𝑡
→
𝑔𝑛+1 − 𝑔𝑛

𝜙
. 

 

In this definition, 𝜙:𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and   
1−𝑒−𝑑ℎ

𝑑
 is related to ℎ step size and 𝑑 variable which 

can be obtained with the help of equilibrium point. This scheme can be defined in the same way in 

fractional order differential equations with the help of the approximate Grünwald-Letnikov derivative 

formula [27-36]. Resource suggestions for different numerical methods and approaches are as follows 

[37-40]. Hammouch et al. applied a new numerical method to solve fractional variable order differential 

equations in the Caputo sense to investigate the dynamics of a circulating Halvorsen system [37]. The 

Grünwald-Letnikov nonstandard weighted average finite difference method (GL-NWAFDM) is 

developed for solving the proposed optimal control system by Haq et al. [38]. Sene examined an 

epidemic model defined by the Caputo fractional derivative. The local stability and global asymptotic 

stability of the equilibrium points of the SEIR model are presented by the Matignon criterion and the 

Lyapunov direct method [39]. 

 

In this article, the Matignon criterion will be used for the stability analyses of the equilibrium points. 

Basic information about this criterion will be given in the Numerical simulation section. For more 

detailed information, see [41,42] resources. 

 

3. NONLINEAR PHARMACOKINETIC MODELS 

 

In this section of the manuscript, ordinary differential equations of one, two, and three-compartment 

Pharmacokinetic models are expressed. Distributed order Pharmacokinetic equations shall be defined in 

Section 4 with the help of these definitions and their discretizations shall be provided. 

 

One Compartment I.V. Bolus Injection Nonlinear Pharmacokinetic Model 

 

 
𝑑𝐶

𝑑𝑡
= −

𝑉𝑚𝑎𝑥

(𝐾𝑚+𝐶)
𝐶.                                                                                                                                          (1) 

 

One Compartment I.V. Bolus Infusion Model Nonlinear Pharmacokinetic Model   

                     
𝑑𝐶

𝑑𝑡
=
𝑅1

𝑉1
−

𝑉𝑚𝑎𝑥

(𝐾𝑚+𝐶)
 𝐶                                                                                                                                                      (2)       

 

where 𝐶: Concentration of drug in central compartment, 𝑉𝑚𝑎𝑥: Maximal velocity of the metabolism, 

𝐾𝑚: Michaelis constant, 𝑅1: Infusion rate per unit time and 𝑉1: Apparent volume of distribution [8]. 

 

Two Compartment I.V. Bolus Injection and Infusion Nonlinear Pharmacokinetic Model 

 

 
𝑑𝐶

𝑑𝑡
= 𝑘21𝑃1 − (𝑘12 +

𝑉𝑚𝑎𝑥

(𝐾𝑚+𝐶)
)𝐶 + 𝐼0, 

 
𝑑𝑃1

𝑑𝑡
= 𝑘12𝐶 − 𝑘21𝑃1,                                                                                                                                    (3) 

 

here if we consider 𝐼(𝑡): 𝐼𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 and 𝐼(𝑡) = 𝐼0 = 0, then Equation (3) turns into a I.V. Bolus 

Injection model. If we consider 𝐼0 ≠ 0, then Equation (3) is called I.V. Bolus Injection model. The values 

in Equation (3) are as follows [9]: 𝑃1: Concentration of drug in peripheral compartment 1, 𝑘12: Transfer 

rate of drug from central to peripheral compartment 1, 𝑘21: Degradation rate of drug in peripheral 

compartment 1. 
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Three Compartment I.V. Bolus Injection and Infusion Nonlinear Pharmacokinetic Model 

  

 
𝑑𝐶

𝑑𝑡
= 𝑘21𝑃1 + 𝑘31𝑃2 − (𝑘12 + 𝑘13 +

𝑉𝑚𝑎𝑥

(𝐾𝑚+𝐶)
)𝐶 + 𝐼0, 

 

 
𝑑𝑃1

𝑑𝑡
= 𝑘12𝐶 − 𝑘21𝑃1, 

 

 
𝑑𝑃2

𝑑𝑡
= 𝑘13𝐶 − 𝑘31𝑃2                                                                                                                                 (4)  

 

where 𝑃2 : Concentration of drug in peripheral compartment 2, 𝑘13 :Transfer rate of drug from central to 

peripheral compartment 2, and 𝑘31: Degradation rate of drug in peripheral compartment 2 [5]. Here if we 

consider  𝐼0 = 0, then Equation (4) is called I.V. Bolus Injection model; on the other hand, if we consider 

𝐼0 ≠ 0, then this equation is called I.V. Bolus Infusion model [5]. 

 

4. DISCRETIZATION OF DISTRIBUTED ORDER NONLINEAR PHARMACOKINETIC 

MODELS 

 

In this section, nonstandard finite difference scheme, approximate Grünwald-Letnikov formula and 

classical quadrature formula shall be used for discretizations of distributed order Pharmacokinetic models. 

First of all, definitions of distributed order differential equations for one, two, and three-compartment 

Pharmacokinetic models are given respectively. 

 

One compartment: 

 

𝐷𝑡
𝑢(𝛼)

𝐶 = −
𝑉𝑚𝑎𝑥

(𝐾𝑚+𝐶)
𝐶,                                                                                                                                 (5) 

 

𝐷𝑡
𝑢(𝛼)

𝐶 =
𝑅1

𝑉1
−

𝑉𝑚𝑎𝑥

(𝐾𝑚+𝐶)
 𝐶.                                                                                                                            (6) 

 

Two compartments: 

 

𝐷𝑡
𝑢(𝛼)𝐶 = 𝑘21𝑃1 − (𝑘12 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶)

)𝐶 + 𝐼0, 

 

𝐷𝑡
𝑢(𝛼)𝑃1 = 𝑘12𝐶 − 𝑘21𝑃1.                                                                                                                          (7) 

 

Three compartments: 

 

 𝐷𝑡
𝑢(𝛼)𝐶 = 𝑘21𝑃1 + 𝑘31𝑃2 − (𝑘12 + 𝑘13 +

𝑉𝑚𝑎𝑥

(𝐾𝑚+𝐶)
)𝐶 + 𝐼0, 

 

𝐷𝑡
𝑢(𝛼)𝑃1 = 𝑘12𝐶 − 𝑘21𝑃1,       

 

𝐷𝑡
𝑢(𝛼)𝑃2 = 𝑘13𝐶 − 𝑘31𝑃2.                                                                                                                          (8) 

 

Discretizations of the distributed order Pharmacokinetic models are presented below. 

 

4.1. Discretization of One Compartment Injection and Infusion Model 

 

If quadrature formula is used together with approximate Grünwald-Letnikov formula, and NSFD scheme, 

discretizations for Injection and Infusion models become: 
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∑
𝑞(𝛼𝑘)

𝑇

𝑇

𝑘=1

∑𝑝𝑖
𝛼𝑘

𝑛+1

𝑖=0

𝐶𝑛+1−𝑖 = −
𝑉𝑚𝑎𝑥

(𝐾𝑚 + 𝐶𝑛)
𝐶𝑛+1,                                                                                                 (9) 

 

∑
𝑞(𝛼𝑘)

𝑇

𝑇

𝑘=1

∑𝑝𝑖
𝛼𝑘

𝑛+1

𝑖=0

𝐶𝑛+1−𝑖 =
𝑅1
𝑉1
−

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

𝐶𝑛+1,                                                                                          (10) 

where  𝑝0
𝛼𝑘 = (𝜙(ℎ))−𝛼𝑘 for 0 < 𝛼𝑘 < 1  and  𝑇 =

1

ℎ
, 𝜙(ℎ) =

1−𝑒
𝑉𝑚𝑎𝑥
𝐾𝑚

ℎ

𝑉𝑚𝑎𝑥
𝐾𝑚

.   

If a term is opened on the left side of Equations (9) and (10), the discretized expressions of the 𝐶𝑛+1 terms 

are obtained as shown below:  

 

𝐶𝑛+1 =
−𝐾 (∑ 𝑝𝑖

𝛼𝑘𝑛+1
𝑖=1 𝐶𝑛+1−𝑖)

((𝐿)−𝛼𝑘 +
𝑉𝑚𝑎𝑥

(𝐾𝑚 + 𝐶𝑛)
)
,                                                                                                                             (11) 

 

𝐶𝑛+1 =

𝑅1
𝑉1
−𝐾 (∑ 𝑝𝑖

𝛼𝑘𝑛+1
𝑖=1 𝐶𝑛+1−𝑖)

((𝐿)−𝛼𝑘 +
𝑉𝑚𝑎𝑥

(𝐾𝑚 + 𝐶𝑛)
)
                                                                                                                      (12) 

 

where  ∑
𝑢(𝛼𝑘)

𝑇
𝑇
𝑘=1 = 𝐾 and ∑

𝑢(𝛼𝑘)

𝑇
𝑇
𝑘=1  𝜙(ℎ) = 𝐿. 

 

4.2. Discretization of Two Compartment Injection and Infusion Model 

 

In the same way, if discretization is performed for Equation (7): 

 

∑
𝑞(𝛼𝑘)

𝑇

𝑇

𝑘=1

∑𝑝𝑖
𝛼𝑘

𝑛+1

𝑖=0

𝐶𝑛+1 = 𝑘21𝑃𝑛
1 − (𝑘12 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)𝐶𝑛+1 + 𝐼0, 

 

∑
𝑞(𝛼𝑘)

𝑇

𝑇

𝑘=1

∑𝑝𝑖
𝛼𝑘

𝑛+1

𝑖=0

𝑃𝑛+1
1 = 𝑘12𝐶𝑛 − 𝑘21𝑃𝑛+1

1                                                                                                   (13)    

 

where   𝑝0
𝛼𝑘 = (𝜙𝑖(ℎ))

−𝛼𝑘 for 0 < 𝛼𝑘 < 1, 𝑖 = 1,2 and 𝑇 =
1

ℎ
, 𝜙1(ℎ) =

1−𝑒𝑘12ℎ

𝑘12
, 𝜙2(ℎ) =

1−𝑒𝑘21ℎ

𝑘21
. In 

order to ensure ease of calculations, after placing ∑
𝑢(𝛼𝑘)

𝑇
𝑇
𝑘=1 = 𝐾 and ∑

𝑢(𝛼𝑘)

𝑇
𝑇
𝑘=1  (𝜙𝑖(ℎ)) = 𝐿𝑖 for 𝑖 = 1,2 

expressions in Equation (13): 

 

𝐶𝑛+1 =
𝑘21𝑃𝑛

1 + 𝐼0 − 𝐾 (∑ 𝑝𝑖
𝛼𝑘𝑛+1

𝑖=1 𝐶𝑛+1−𝑖)

((𝐿1)
−𝛼𝑘 + 𝑘12 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)
,            

 

𝑃𝑛+1
1 = 

𝑘12𝐶𝑛−𝐾 (∑ 𝑝
𝑖

𝛼𝑘𝑛+1
𝑖=1 𝑃𝑛+1−𝑖

1 )

((𝐿2)
−𝛼𝑘+𝑘21)

,                                                                                                            (14)   

 

a discretized version of Equation (7) is obtained. For equilibrium point of System (14), solutions of the 

following equations are required  

 

𝐶𝑛 =
𝑘21𝑃𝑛

1 + 𝐼0 − 𝐾 𝑣 𝐶𝑛

((𝐿1)
−𝛼𝑘 + 𝑘12 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)
, 
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𝑃𝑛
1 =

𝑘12𝐶𝑛 − 𝐾 𝑣 𝑃𝑛
1

((𝐿2)
−𝛼𝑘 + 𝑘21)

           

 

where 𝑣 = ∑ 𝑝𝑖
𝛼𝑘𝑛+1

𝑖=1 . By solving these two equations, equilibrium point of the system is determined as 

 𝐷1 = (𝐶𝑛, 𝑃𝑛
1). Because of complexity of the operations, equilibrium point analysis shall be performed in 

Section 5 by writing numeric values in their places. Jacobian matrix to be used for equilibrium point 

analysis is: 

 

𝐽(𝐶𝑛, 𝑃𝑛
1) 

(

  
 

−𝐾 𝑣 

((𝐿1)
−𝛼𝑘 + 𝑘12 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)
+

(𝑘21𝑃𝑛
1 + 𝐼0 − 𝐶 𝐾 𝑣 )𝑉𝑚𝑎𝑥

((𝐿1)
−𝛼𝑘 + 𝑘12 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)2(𝐾𝑚 + 𝐶𝑛)
2

𝑘21

((𝐿1)
−𝛼𝑘 + 𝑘12 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)

𝑘12
((𝐿2)

−𝛼𝑘 + 𝑘21)

−𝐾 𝑣 

((𝐿2)
−𝛼𝑘 + 𝑘21) )

  
 
. 

 

4.3. Discretization of Three Compartment Injection and Infusion Model 

 

If we conduct same operations respectively for Equation (8), firstly we obtain:  
 

∑
𝑞(𝛼𝑘)

𝑇

𝑇

𝑘=1

∑𝑝𝑖
𝛼𝑘

𝑛+1

𝑖=0

𝐶𝑛+1 = 𝑘21𝑃𝑛
1 + 𝑘31𝑃𝑛

2 − (𝑘12 + 𝑘13 +
𝑉𝑚𝑎𝑥

(𝐾𝑚 + 𝐶𝑛)
)𝐶𝑛+1 + 𝐼0,          

       

∑
𝑞(𝛼𝑘)

𝑇

𝑇

𝑘=1

∑𝑝𝑖
𝛼𝑘

𝑛+1

𝑖=0

𝑃𝑛+1
1 = 𝑘12𝐶𝑛 − 𝑘21𝑃𝑛+1

1 ,                                  

                                                   

∑
𝑞(𝛼𝑘)

𝑇

𝑇

𝑘=1

∑𝑝𝑖
𝛼𝑘

𝑛+1

𝑖=0

𝑃𝑛+1
2 = 𝑘13𝐶𝑛 − 𝑘31𝑃𝑛+1

2                                                                                                     (15) 

 

where   𝑝0
𝛼𝑘 = (𝜙𝑖(ℎ))

−𝛼𝑘 for 0 < 𝛼𝑘 < 1, 𝑖 = 1,2,3 and 𝑇 =
1

ℎ
,   𝜙1(ℎ) =

1−𝑒(𝑘12+𝑘13)ℎ

(𝑘12+𝑘13)
, 𝜙2(ℎ) =

1−𝑒𝑘21ℎ

𝑘21
, 𝜙3(ℎ) =

1−𝑒𝑘31ℎ

𝑘31
. With necessary modifications and ∑

𝑢(𝛼𝑘)

𝑇
𝑇
𝑘=1 = 𝐾 and ∑

𝑢(𝛼𝑘)

𝑇
𝑇
𝑘=1  (𝜙𝑖(ℎ)) =

𝐿𝑖 abbreviations for 𝑖 = 1,2 and 3, discretized equations system is obtained as: 

 

𝐶𝑛+1 =
𝑘21𝑃𝑛

1 + 𝑘31𝑃𝑛
2 + 𝐼0 −𝐾 (∑ 𝑝𝑖

𝛼𝑘𝑛+1
𝑖=1 𝐶𝑛+1−𝑖)

((𝐿1)
−𝛼𝑘 + 𝑘12 + 𝑘13 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)
, 

 

𝑃𝑛+1
1 =

𝑘12𝐶𝑛 − 𝐾 (∑ 𝑝𝑖
𝛼𝑘𝑛+1

𝑖=1 𝑃𝑛+1−𝑖
1 )

((𝐿2)
−𝛼𝑘 + 𝑘21)

,                     

                                               

𝑃𝑛+1
2 =

𝑘13𝐶𝑛 − 𝐾 (∑ 𝑝𝑖
𝛼𝑘𝑛+1

𝑖=1 𝑃𝑛+1−𝑖
2 )

((𝐿3)
−𝛼𝑘 + 𝑘31)

                                                                                                                (16) 

 

For equilibrium point of System (16), solutions of the following equations are required.   

 

𝐶𝑛 =
𝑘21𝑃𝑛

1 + 𝑘31𝑃𝑛
2 + 𝐼0 −𝐾 𝑣 𝐶𝑛

((𝐿1)
−𝛼𝑘 + 𝑘12 + 𝑘13 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)
, 
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𝑃𝑛
1 =

𝑘12𝐶𝑛 − 𝐾 𝑣 𝑃𝑛
1

((𝐿2)
−𝛼𝑘 + 𝑘21)

,         

𝑃𝑛
2 =

𝑘13𝐶𝑛 − 𝐾 𝑣 𝑃𝑛
2

((𝐿3)
−𝛼𝑘 + 𝑘31)

         

 

where 𝑣 = ∑ 𝑝𝑖
𝛼𝑘𝑛+1

𝑖=1 . By solving these three equations, equilibrium point of the system is found as  𝐷2 =

(𝐶𝑛, 𝑃𝑛
1, 𝑃𝑛

2).  Again, just like in two compartment models, equilibrium point analysis shall be performed 

in the Section 5 with given numeric values. Jacobian matrix to be used for equilibrium point analysis: 

 
𝐽(𝐶𝑛 , 𝑃𝑛

1, 𝑃𝑛
2) 

(

 
 
 
 
 

−𝐾 𝑣 

((𝐿1)
−𝛼𝑘 + 𝑘12 + 𝑘13 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)
+

(𝑘21𝑃𝑛
1 + 𝑘31𝑃𝑛

2 + 𝐼0 − 𝐶 𝐾 𝑣 )𝑉𝑚𝑎𝑥

((𝐿1)
−𝛼𝑘 + 𝑘12 + 𝑘13 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)2(𝐾𝑚 + 𝐶𝑛)
2

𝑘21

((𝐿1)
−𝛼𝑘 + 𝑘12 + 𝑘13 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)

𝑘31

((𝐿1)
−𝛼𝑘 + 𝑘12 + 𝑘13 +

𝑉𝑚𝑎𝑥
(𝐾𝑚 + 𝐶𝑛)

)

𝑘12

((𝐿2)
−𝛼𝑘 + 𝑘21)

,
−𝐾 𝑣 

((𝐿2)
−𝛼𝑘 + 𝑘21)

, 0

𝑘13

((𝐿3)
−𝛼𝑘 + 𝑘31)

0
−𝐾 𝑣 

((𝐿3)
−𝛼𝑘 + 𝑘31) )

 
 
 
 
 

. 

 

5. NUMERICAL STABILITY ANALYSIS AND SIMULATIONS 

 

In this section, stability analyses and simulations are investigated. There are some important articles about 

stability analyses [43-50]. Stability analyses of distributed order differential equations are found by the 

choice of density function. These analyses are found for the obtained equilibrium points. Two methods can 

be used for stability analysis. The first is the Laplace transform, and the second is the Matignon criterion. 

In this study, the Matignon criterion is used. The Matignon criterion is a method that deals with local 

stability in the context of fractional derivatives [41,42].  First, for the stability of equilibrium points, the 

information about stability in numerical schemes is expressed by the following Remark. 

 

Remark 5.1. [42] For the Matignon criterion, let 𝐽 be the Jacobian matrix obtained by the classical method 

and 𝜆(𝐽) be expressed as the set of eigenvalues of the 𝐽  Jacobian matrix. So, the equilibrium point is locally 

asymptotically stable if the following condition satisfied: 

 

|arg (𝜆(𝐽))| > 𝛼𝜋/2. 
 

The classical Jacobian matrix is used in the Matignon criterion. For local stability, the difference between 

the integer ordinal version and the fractional version is that in the fractional version, all matrix eigenvalues 

must satisfy condition. In other words, in the integer version, local stability of equilibrium points is achieved 

when the eigenvalues of the Jacobian matrix accept negative real parts. However, in the fractional version, 

the previous condition is more general [41,42].  

 

For the analysis of resulting solutions, constants are considered as 𝑉𝑚𝑎𝑥 = 3.33, 𝐾𝑚 = 5.56, 𝑘12 =
0.0187, 𝑘21 = 0.0157, 𝑘13 = 0.0415 and 𝑘31 = 0.0285.  Initial conditions are selected as 𝐶(0) =
1,  𝑃1 = 0 and 𝑃2 = 0. The constants here are determined by clinical trials of the drug Sisomycin [9]. Thus, 

with the data of this drug, it is aimed to find the effect of this drug, which is generally used in infectious 

diseases in different situations. 

 

First, stability analysis for the two-compartment model is examined. For this purpose, numeric values which 

mentioned above are first used and considered as 𝑢(𝛼) = 𝛼 − 0.8,  ℎ = 0.01, 𝐼0 = 1. According to these 

numeric values, Equilibrium point is determined as 𝐷1 = (𝐶𝑛, 𝑃𝑛
1) = (0.00993,0.18579. 10−5). 𝑃(𝜆) =

𝜆2 − 0.02403𝜆 − 0.00005 characteristic polynomial is obtained after placing equilibrium point in its place 

in the Jacobian matrix.  In this case, with given numeric values, 𝐷1 = (𝐶𝑛, 𝑃𝑛
1) equilibrium point is not 

stable. After solution of characteristic equations, it is seen that 𝜆1 = 0.02625 and 𝜆2 = −0.00221.  If the 

Matignon criterion is checked with the eigenvalues obtained, we found that the second eigenvalue satisfies 

Matignon criterion because |arg(𝜆2)| = 𝜋 >
𝛼𝜋

2
.  On the other hand, since it is |arg(𝜆1)| = 0 <

𝛼𝜋

2
, it was 

seen that the first eigenvalue does not satisfy Matignon criterion. So, the equilibrium point 𝐷1 is not stable 

under these conditions. 
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After then, for three compartment model, equilibrium point is found as 𝐷2 = (𝐶𝑛, 𝑃𝑛
1, 𝑃𝑛

2) =
(0.00412, 0.30875. 10−7, 0.68503. 10−7) with 𝑢(𝛼) = 𝛼,  ℎ = 0.02, 𝐼0 = 1 and numeric values. 

Characteristic polynomial is found as 𝑃(𝜆) = 𝜆3 + 0.00002 𝜆2 − 0.23579. 10−8  𝜆 − 47792. 10−14 by 

writing equilibrium point in its place in resulting Jacobian matrix. In these conditions, 𝐷2 = (𝐶𝑛, 𝑃𝑛
1, 𝑃𝑛

2) 
equilibrium point is not stable with the help of Matignon criterion. By solving characteristic polynomial, 

eigenvalues are determined as 𝜆1 = 0.00003, 𝜆2 = −0.19992. 10
−5 and 𝜆3 = −0.00006. We can notice 

that second and third eigenvalues satisfy Matignon criterion but first eigenvalue doesn’t satisfy because of 

|arg(𝜆1)| = 0 <
𝛼𝜋

2
. Therefore, equilibrium point 𝐷2 is not stable under the given conditions. 

 

The relationship between simple mathematical modeling and physical or biological system, integer order 

differential equations express the dynamics of systems. Integer order differential equations unify the 

relationship between complex system parameters in mathematical modeling, as well as describe the 

variation in structure, nonlinearity, and multiscale behavior within them. 

 

On the other hand, fractional analysis has attracted great attention by researchers and different aspects of 

the subject have been examined in recent years. This is because the fractional derivative is an important 

tool to explain the dynamic behavior of various physical systems. The strength of these differential 

operators is their nonlocal property which cannot be found in integer ordinal differential operators. The 

distinguishing features of fractional differential equations are that they summarize the memory and 

transmitted properties of a large number of mathematical models. Fractional ordinal models are more 

realistic and practical than traditional integer ordinal models. Arbitrary ordinal derivatives are powerful 

tools for evaluating the dynamic behavior of various biomaterials and systems. 

 

The most recurring features of these models are their global feature, which are not present in classical layout 

models. Since Pharmacokinetic models are also models of the above-mentioned styles, it is important to 

determine the dynamics and reach more realistic values. Therefore, distributed order differential equations 

are used in this article. 

 

When all graphs are considered, the behavior of all subgroups can be measured biologically by the choice 

of density function. Thus, the behavior of the populations of the model under variable conditions can be 

predicted and necessity measures can be taken against various situations according to these predictions 

[48,49]. 

 

Simulations and tables are presented below for both two, and three-compartment models. At the same time, 

there are different graphs of infusion and injection models in these simulations. In Table 1, CPU times 

compare for numerical methods. As seen in Table 1, we can say numerical methods evaluated among 

themselves are not extremely different. In Tables 2 and 3, qualitative results are given for different time 

step sizes. In Figure 1, fractional differential equation’s solution of two compartment model is given with 

𝑢(𝛼) = 𝛼 and 𝛼 = 1. As can be seen in Figure 1, solution of different types of differential equations can 

be obtained with the selection of 𝑢(𝛼). In Figure 2, unlike the Figure 1, it is determined as 𝐼0 = 1. A graph 

is obtained for the solution of fractional ordinary I.V. Bolus Infusion model.  In between Figures 3-5, some 

graphs are included to show the effects of different 𝑢(𝛼) and ℎ values on solutions.  In between Figures 6-

9, graphs are included based on the different 𝑢(𝛼) and ℎ values of the three-compartment model. In this 

manuscript, numerical calculations and graphics are obtained with the help of mathematical programs. 

 

Table 1. CPU Times (seconds) for 𝑢(𝛼) = 𝛼, 𝛼 = 1  ℎ = 0.01 and  𝐼0 = 1 

𝛼 Theta Method  Runge Kutta 

4th order  

NSFD  

0.2 0.6427 1.0223 0.6356 

0.5 0.6397 0.9881 0.6134 

1 0.7341 0.9796 0.5810 
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Table 2. Qualitative results for different time step sizes  ℎ in two compartment Pharmacokinetic models 

with 𝑢(𝛼) = 𝛼 − 0.8, 𝛼 = 1 and  𝐼0 = 1) 

ℎ Theta Method  Runge Kutta  NSFD  

0.002 Convergence Convergence Convergence 

0.001 Convergence Convergence Convergence 

0.1 Convergence Convergence Convergence 

1 Convergence Convergence Convergence 

1.5 Convergence Convergence Convergence 

1.9 Convergence Convergence Convergence 

2.5 Divergence Divergence Convergence 

5 Divergence Divergence Convergence 

 

Table 3. Qualitative results for different time step sizes  ℎ in three compartment Pharmacokinetic models 

with 𝑢(𝛼) = 𝛼, 𝛼 = 1 and  𝐼0 = 1) 

ℎ Theta Method  Runge Kutta      NSFD  

0.002 Convergence Convergence Convergence 

0.001 Convergence Convergence Convergence 

0.1 Convergence Convergence Convergence 

1 Convergence Convergence Convergence 

1.5 Convergence Convergence Convergence 

1.9 Divergence Convergence Convergence 

2.5 Divergence Divergence Convergence 

5 Divergence Divergence Convergence 

 

 
Figure 1. The concentration of drug in the central compartment and peripheral compartment1 for 

𝑢(𝛼) = 𝛼 where ℎ = 0.01 𝛼 = 1 and  𝐼0 = 0 (I.V. Bolus Injection) 
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Figure 2. The concentration of drug in the central compartment and peripheral compartment1 for 

𝑢(𝛼) = 1 where ℎ = 0.01 𝛼 = 1 and  𝐼0 = 1  (I.V. Bolus Infusion) 

 

 
Figure 3. The concentration of drug in the central compartment and peripheral compartment1 for 

different 𝑢(𝛼) values where ℎ = 0.02,  𝛼 = 1 and  𝐼0 = 0 (I.V. Bolus Injection) 
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Figure 4. The concentration of drug in the central compartment and peripheral compartment1 for 

different 𝑢(𝛼) values where ℎ = 0.02,  𝛼 = 1 and  𝐼0 = 1 (I.V. Bolus Infusion) 

 

 
Figure 5. The concentration of drug in the central compartment and peripheral compartment1 for 

different ℎ values where 𝑢(𝛼) = 2𝛼 + 1, 𝛼 = 2 and  𝐼0 = 0 (I.V. Bolus Injection) 

 

 
Figure 6. Comparative for of concentration of drug in the central compartment, peripheral compartment 

1 and peripheral compartment 2 for different 𝑢(𝛼) values where ℎ = 0.01, 

𝛼 = 1 and  𝐼0 = 0  (I.V. Bolus Injection) 
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Figure 7. Comparative for of concentration of drug in the central compartment, peripheral compartment 

1 and peripheral compartment 2 for different ℎ values where 𝑢(𝛼) = 𝛼, 𝛼 = 1 and  𝐼0 = 0  (I.V. Bolus 

Injection) 

 

 
Figure 8. Comparative for of concentration of drug in the central compartment, peripheral compartment 

1 and peripheral compartment 2 for different 𝑢(𝛼) values where ℎ = 0.03, 
𝛼 = 1 and  𝐼0 = 1  (I.V. Bolus Infusion) 

 

 
Figure 9. Comparative for of concentration of drug in the central compartment, peripheral compartment 

1 and peripheral compartment 2 for different ℎ values where 𝑢(𝛼) = 𝛼 − 0.5, 𝛼 = 1 and  𝐼0 = 1  (I.V. 

Bolus Infusion) 
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The results appear to be consistent when the graphs are compared with the fractional models for 𝑢(𝛼) = 1.  

Thus, it has been showed that fractional order differential equation’s solutions are found with the help of 

density function. The analyses show the solutions which obtained by the NSFD method, approach the right 

endemic equilibrium point. According to these analyses, the dynamics of situations which may occur 

because of different external factors can be understood with the obtained solutions. 

 

6. CONCLUSION  

 

One, two, and three-compartment of Pharmacokinetic models examined the effects of drugs used on human 

body. In this article, solutions of these models are researched. Distributed order differential equations used 

for these solutions. In this way, solutions are found for ordinary, fractional, and different cases with the 

help of density function. Discretizations are showed by using the NSFD scheme for numerical solution 

purposes. Equilibrium points are found after discretization. Analyses of these equilibrium points are 

presented under scope of Matignon criteria.  

 

It is seen that the use of distributed order differential equations in this type of nonlinear modelling is very 

useful and functional in achieving solutions. At the same time, solutions of models in fractional differential 

equations are achieved by selecting the density function. It is also seen that results and graphs are consistent 

with those shown in original articles. 

 

Positivity solutions under positive initial conditions are preserved with the NSFD discretization method. 

NSFD schemes can retain all the properties of continuous models for any discretization parameter. For this 

reason, the method is successful in dynamic consistency. 

 

The effects of drug use on the human body are found by using these solutions. In order to change these 

effects against different factors, the density function can be used. Thus, the main purpose of this article has 

been achieved. In other words, it is possible to predict the effects of drugs in different situations, and start 

treatment accordingly, by solving the determined equations. 
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