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Abstract 

In this paper, vehicle mass estimation problem was researched by the Kalman Filtering 

process to investigate the effectiveness of Extended Kalman Filter technique on mass 

estimation, which has widely been studied on the related literature with all the successful 

results. For the purpose, a longitudinal vehicle dynamics model was developed, and the 

equations were transformed into the well-known state space form. Nonlinear problem in 

its nature was discretised and linearized by using Euler method. In addition, road slope 

was calculated by a road slope inclinometer logic. IPG CarMaker® was utilized to 

overcome the nonlinearities, design the test environment and the conditions, as it was 

observed that the simulation results were not met the expectations with the logged 

vehicle physical test data. Several test scenarios were run to simulate level and wavy 

road with different vehicle speeds. The results showed that the Extended Kalman Filter 

could provide a reasonable convergence when the initial values were correctly selected, 

no nonlinear issue occurred and certain tuning parameters were defined with stable 

boundary conditions for mass estimation. 
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1. Introduction 

 

Vehicle mass is a significant parameter in the dynamic response, control and energy management of a vehicle. Force 

and moment generation potential of pneumatic tyre-road interface is directly affected by the dynamic load transfer and 

changing mass due to the different loadings. Nowadays, as many modern vehicles are equipped with many different 

sensors such as vehicle speed and accelerometers, signals of the sensors are already available in a common 

communication network, and therefore, automotive researchers exert effort to utilize the additional benefits of those 

sensors. Utilising on-board sensors instead of using external is one of the economic reasons for the researchers. As a 

benefit of the approach, considering the positive effects on the results of vehicle dynamics models, online mass and road 

slope estimation algorithms, which are actually some sort of virtual sensors, have extensively been studied by the 

researchers, in addition to the conventional dynamic load transfer calculation, in the literature. When the forces and 

moments such as wheel torque, resistance force due to road slope, air resistance, rolling resistance of tyres, and some 

measured vehicle acceleration parameters are known, an unknown parameter of the vehicle system can be estimated. 

 

Lingman et al. [1] focused on Road slope and mass estimation using Kalman Filter (KF). When the vehicle mass was 

known they studied to estimate road slope by using speed and some specific force measurements. In the study, different 

estimators were developed for mass and slope, separately, and the slope estimation and propulsive forces were calculated 

based on engine fuel injection amount. The brake force was not considered in the model due to the nonlinearity of the 

friction. When there was an active braking, related data was omitted during the simulation. It was found that Extended 

Kalman Filter (EKF) was feasible for the purpose. L. Imsland et al. [2] developed a nonlinear observer for vehicle 

velocity with friction and road bank angle adaptation with nonlinear filter. They used 3 Degree of Freedom (DOF) 

vehicle model including the road bank angle. Results were as good as with the EKF. Vahidi et al. [3] studied recursive 

least squares (RLS) with multiple forgetting factor for online estimation of vehicle mass and road grade for heavy duty 

vehicles. A forgetting factor for each parameter to weight the previous and present data to determine the next. A 

commercial test vehicle was used to obtain the data and the estimated mass error was found at around %5. Wragge-

Morley et al. [4] focused on gradient and mass estimation from CAN based data for a light passenger car. They followed 

two different steps to increase the accuracy of estimated mass output. In the first step, the period of convergence was 

calculated and the inappropriate outputs were rejected. Then, in the second step, KF was used to provide a smooth output. 

Road slope was calculated via longitudinal accelerometer. Smooth results were achieved in short settling time at around 

50s and with approximately 10% error. Kidambi et al. [5] assessed the accuracy and performance of four estimation 

methods, which were RLS, EKF, Dynamic grade observer and parallel mass and grade estimation using a longitudinal 

accelerometer, on road slope and vehicle mass estimation. Drive torque was measured at the front-left and front-right 

shaft by strain-gauges instead of the calculation of tractive force. They found that the estimations of RLS and EKF 

produced the error under 5%, with the realistic initial values. It was observed that when initial values are not accurate 

enough, algorithm converges with a residual error. Huh et al. [6] 
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developed a unified estimation algorithm especially for adaptive roll control which had three different mass estimators 

using vehicle longitudinal, lateral and vertical dynamics. RLS, KF and dual recursive least squares techniques were used 

to determine the vehicle sprung mass, in the longitudinal, lateral and vertical dynamics estimators, respectively. Wenzel 

et al. [7] studied Dual Extended Kalman filter technique on a four-wheel vehicle model to estimate vehicle dynamics 

states such as longitudinal velocity, lateral velocity, yaw rate and roll angle and the parameters like mass etc. The key 

point of the approach was to switch off one of the EKF when the other one provided a good estimation to prevent the 

over processing. 

 

Pence et al. [8] estimated the sprung mass of an off-road vehicle using RLS method. By considering the sprung and 

unsprung mass accelerations in a quarter car model, the mass was estimated within 8% error, under 100s. Bae et al. [9] 

utilized GPS signals to estimate road gradient. Then, estimated road gradient was used to determine the wheel torque, 

to be used in the estimation of the vehicle mass via a recursive algorithm.  Results were within 2% of the real values. 

Raffone [10] designed an observer using the KF method to calculate the road slope based accelerometer measurement 

on vehicle, and estimated the vehicle mass using RLS method with forgetting factor. Experimental test results showed 

that the mass estimator converged after around 150 s for three urban road scenarios. Holm [11] developed EKF to 

determine heavy commercial vehicle mass using road slope information provided by on-board sensors. Vehicle 

transmission and final drive inertias were included in the longitudinal model as parts of the inertial resistance. To 

eliminate the convergence problems and decrease the estimation error, a logic was developed disregarding braking and 

caring the experienced threshold values for vehicle speed and engine torque. The physical experiments showed that EKF 

could estimate the mass, correctly, after around 50s. However, due to the mass selection algorithm, total cycle time was 

300s. 

 

In this study, a longitudinal vehicle dynamics model was developed and Newtonian model equations were transformed 

into the well-known state space form for the Kalman Filtering process to investigate the effectiveness of Kalman Filter 

technique on mass estimation, which has widely been studied on the related literature with the successful results. Firstly, 

Simulation was done offline by logged vehicle physical test data. Secondly, IPG CarMaker® was utilized to overcome 

the nonlinearities in the real data and to design the test conditions and environment. The contribution of this study to the 

existing literature is simply to present a full projection of the method on general vehicle mass estimation, rather than 

focusing on the very limited and in fact conditionally successful simulation results as presented in the literature, 

generally. It was seen that the KF only converges when the initial values were correctly selected, and the vehicular inputs 

causing the nonlinearities were eliminated for mass estimation. 

 

2. Vehicle Longitudinal Dynamics Model  

 

Road slope was calculated by an inclinometer logic, which was developed by Renault. Inputs were wheel speeds, vehicle 

speed, calculated road slope and powertrain wheel torque. Due to the nature of conventional Kalman Filtering technic, it 

is normally applicable only to the systems represented by the linear equations. The problem which was considered in this 

study, on the other hand, includes nonlinearities and an alternative solution of this kind of problems is EKF. It is a modified 
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version of KF, and nonlinear problems are, in fact, linearized around the working point. Road and vehicle dynamics data 

were collected from IPG CarMaker®, which simply represents a virtual vehicle test capabilities to develop and test the 

systems [12] in a highly controllable environment [13], for the validation of vehicle longitudinal dynamics model 

developed for this study. On the basis of this model, an estimation algorithm was developed, and the simulation results 

were discussed based on some the scenarios.  

 

The Figure 1 shows the free body diagram of a vehicle on a sloped road. In the figure,  𝐹_𝑔𝑟𝑎𝑑𝑒, 𝐹_𝑟, 𝐹_𝑎𝑒𝑟𝑜, 

𝐹_𝑇𝑞, 𝑇_𝑞, 𝑟, 𝐹_𝑏 represent gradient resistance, rolling resistance of tyres, air resistance, tractive force, wheel torque, tyre 

rolling radius, and braking force, respectively. Powertrain wheel torque calculation can simply be expressed as in equation 

(1) without slip between the road and tyre interface.  

 

 

Figure 1. Forces applied to a vehicle on a sloped road 

 

          𝐹𝑇𝑞 = 𝑇𝑞/𝑟                                                                                                                  (1) 

 

                                 𝐹𝑇𝑞 − 𝐹𝑟 − 𝐹𝑎𝑒𝑟𝑜 − 𝐹𝑔𝑟𝑎𝑑𝑒 = 𝑚�̇�                                                                                (2) 

 

                                                         𝑉̇ =
𝑇𝑞

𝑚𝑟
− 𝑔𝑓 cos(𝛼) −

1

2𝑚
𝜌𝐴𝐶𝐷𝑉2 − 𝑔 sin(𝛼)

̇
                                                        (3) 

 

 

The condition for the motion is given in equation (2). By replacing the equivalences of the forces in the equation, vehicle 

speed can be derived from the second order expression in equation (3). The expressions 𝑔, 𝑓, 𝐶𝐷, 𝜌, 𝐴, 𝑇𝑞, 𝑟, 𝑉, refer to 

gravity, rolling resistance coefficient, air drag coefficient, air density, vehicle frontal area, wheel torque, rolling radius 

and vehicle speed, respectively. As another important quantity of a longitudinal vehicle model, braking force, which is 

developed by the friction of braking pads, is inherently nonlinear and the tyre-road friction cannot be measured or 

calculated, exactly, by the classical mechanics. Additionally, the tyres naturally slips and it deteriorates the tractive force 

calculation during braking. As a result, braking force was not taken into account in the equation (2) [14].   

 

Kalman filter is a linear estimation algorithm for linear systems and it is represented in state space form [15]. 𝑉,m,α are 

the velocity, total mass of vehicle and road slope, respectively, and they are the states of the system shown in equation 

(4). In the equation, velocity and road slope are measured and mass is an estimated quantity. 
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               𝑥 = [
𝑉
𝑚
α

]                                                                                                                (4) 

 

As Kalman filter is a technique for linear problems, and EKF is used for nonlinear equations, thus, discretization with 

Euler method can be applied as in equation 5. 

 

           {  
𝑉𝑘 = 𝑉𝑘−1 + ∆𝑡 × (

𝑇𝑞

𝑚×𝑟
− 𝑔 × 𝑓 × cos(α) −

1

2×𝑚
× 𝐶𝐷 × 𝐴 × 𝜌 × 𝑉2 − 𝑔 × sin(α))

𝑚𝑘 = 𝑚𝑘−1

α𝑘 = α𝑘−1

                (5) 

 

For small angles of α, sin(α) ≅ α  &  cos(α) ≅ 1 are assumed and then, equation 3 can be simplified into the form as in 

equation 6. 

 

�̇� =
𝑇𝑞

𝑚×𝑟
− 𝑔 × 𝑓 −

1

2×𝑚
× 𝐶𝐷 × 𝐴 × 𝜌 × 𝑉2 − 𝑔 × α                                                                         (6) 

 

After the linearization of the equations, fundamental matrix, which is known as Jacobian matrix, is designed and the 

columns of the matrix are derived  with respect to v, m, and  𝛼  as they are shown in equations 7 and 8. 

 

𝐹 =

[
 
 
 
 
𝑑𝑓1

𝑑𝑣

𝑑𝑓2

𝑑𝑚

𝑑𝑓3

𝑑𝛼
𝑑𝑓1

𝑑𝑣

𝑑𝑓2

𝑑𝑚

𝑑𝑓3

𝑑𝛼
𝑑𝑓1

𝑑𝑣

𝑑𝑓2

𝑑𝑚

𝑑𝑓3

𝑑𝛼 ]
 
 
 
 

                                                                                     (7) 

 

 

𝐹 = [
1 −

𝐶𝐷×𝐴×𝜌×𝑉

𝑚
× ∆𝑡

𝐶𝐷×𝐴×𝜌×𝑉2−2×𝑇𝑞

2×𝑚2×𝑟
× ∆𝑡 −𝑔 × ∆𝑡

0 0 0
0 0 0

]                                              (8) 

 

 

 

Measurements represented by ‘y’ include vehicle speed and road slope and H is the measurement  and 𝑤𝑧 is the 

measurement noise, incorporated in R matrix, in equation 9.  

 

𝑦 = 𝐻𝑥 + 𝑤𝑧                                                                                                                             (9) 

 

Measurement variance matrix is represented in equation 10 and the dimension of R matrix depends on the number of the 

measurements. In this study, vehicle speed and road slope were measured and some proper sensor measurement errors 

were selected. Measurement errors may be selected different than their theoretical errors, while process noise and 
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measurement error matrix are also used as the tuning knob of the system. Measurement covariance was set to zero, hence, 

road slope and vehicle speed were taken as independent measurements. 

 

𝑅 = [
𝜎𝑉

2 0

0 𝜎𝛼
2]                                                                                                 (10) 

 

Variance and covariances of each state variable are shown in process noise matrix, in equation 11; 

 

𝑄 = [

𝜎𝑉
2 0 0

0 𝜎𝑚
2 0

0 0 𝜎𝛼
2

]                                                                                           (11) 

 

Inclinometer used in this study is an algorithm that uses longitudinal accelerometer measurements,  𝑎𝑥 , and vehicle 

longitudinal velocity, 𝑉𝑥 , at driven axle wheels. Basically, on a flat and level road surface, vectors of 𝑎𝑥 𝑎𝑛𝑑 𝑉𝑥  point the 

same direction, otherwise vehicle is tilted due to the road grade or pitch, and the measured 𝑎𝑥 component includes the 

road grade component of gravity and vehicle longitudinal acceleration as presented in equation 12. This equation simply 

produces the road slope given in equation 13 [16]. 

 

 𝑎𝑥 = �̇�𝑥 + 𝑔. 𝑠𝑖𝑛𝛼                                                                                                                                  (12) 

 

𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛((𝑎𝑥 − �̇�𝑥)/𝑔)                                                                                                                      (13) 

 

In the first stage of the study, several data were collected from the vehicle tests to perform offline calculations in 

MATLAB/Simulink® to observe the vehicle mass and road grade. Due to the nonlinearities such as variable slope of the 

road, various manoeuvres and the gear shifting necessities caused by the traffic conditions, the results were 

incomprehensible. Therefore, it was decided to provide road and vehicle data in a simulation environment, which is 

capable of to design the vehicle and road conditions, flexibly, allowing to reduce the nonlinearities. IPG CarMaker® is 

one of the powerful and well-known tools to design and represent the vehicle, road, driving conditions and the test 

environment. Thus, three scenarios and driving conditions were designed by using the capabilities of the software. Table 

1 represents the simulation scenarios.   

 

Table 1. Simulation scenarios 

Scenario  Road Condition Driving Conditions Grade Speed  

Braking 

Status 

1 Level road with small changes IPG Driver Model -/+1º 120kph None 

2 Wavy road with grade change IPG Driver Model -/+5.5º 100kph Braking  

3 Wavy road grade sharp grade change  IPG Driver Model -/+5.5º 80kph Braking 
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In the first scenario, neither braking nor gear shifting were applied. Vehicle speed was set to around 120kph (Figure 2) on 

a level road (Figure 3), which was to simulate a highway and small engine torques were applied to keep the vehicle at a 

constant speed. For a good estimation, initial mass value was set as close as the real value. Therefore, 1800 kg, which 60 

kg is less than the real mass, was chosen. 

 

     

                             Figure 2. Scenario no:1 speed profile                    Figure 3. Scenario no:1 road height profile 

 

 

The second scenario was designed to observe the severe braking effects on the estimator. Therefore, the vehicle was 

speeded up to 100 kph and the maximum braking force was applied to a full stop. The same manoeuvres were repeated 

three times for the duration of 100s (Figure 4). Figure 5 shows the road height profile while Figure 6 shows the braking 

status during the simulation. 

 

 

                                    

                                     Figure 4. Scenario no:2 speed profile                    Figure 5. Scenario no:2 road height profile 

 

                                                                   Figure 6. Scenario no:2 braking status 

 

 

In the third scenario, vehicle was speeded up to 80 kph with the road slope variation of -/+6° during the 350 s (Figure 7 

and 8). While the vehicle was going downhill, IPG Driver applied small brakes to keep the vehicle speed constant at 

around 50, 120 and 260 seconds of the simulation as seen in the Figure 9. 
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                                    Figure 7. Scenario no:3 speed profile                   Figure 8. Scenario no:3 road height profile 

                                                                    

                                                                              Figure 9. Scenario no:3 braking status 

 

 

3. Results and Discussion  

Three scenarios were studied to reveal the effects of the gear shifting and longitudinal forces applied on the vehicle for 

the purpose of providing an acceptable mass estimator. Braking and gear shifting were important to observe their negative 

effects on the estimation.  

 

In the first scenario, vehicle speed was set to around 120kph on a level road, representing a highway, without any brake 

and gear shifting input. Small engine torques were applied to keep the vehicle speed constant. For the accuracy of the 

estimation, initial mass value was set close to the real value as 57kg less than the real mass. The results showed that the 

estimated mass was converged to the real value at around 150s (Figure 10), on the other hand, it was seen that the 

estimation was quite sensitive to the wheel torque changes after 150s (Figure11). However, while the vehicle was being 

driven downhill, the lower tractive force demand was affected the estimation. Thus, the estimated mass diverged from the 

real value. With an appropriate initial value and without any disturbance, estimator error was less than %5. 

 

In the second scenario, vehicle was accelerated up to 100kph by severe wheel torque application and the data included the 

gear shifting and a severe braking for a full stop. The first braking was applied at around 40s and afterwards, it was 

repeated two times at 120s and 260s. As a result, estimated mass increased, significantly (Figure 12 and 13). 

  

In the third scenario, vehicle was started to move from stand still, and the speed was increased to 80kph. After reaching 

the target speed, no gear shifting was applied. Wheel torque was smooth. When the vehicle was in downhill, three braking 

inputs were applied by the cruise control of IPG driver at 50s,120s and 260s to keep the speed constant. The three braking 

inputs were increased the estimated mass (Figure 14 and 15). 
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                       Figure10. Scenario no:1 estimated with respect to real mass.                                   Figure11.  Scenario no:1 Wheel torque  

 

                         

                       Figure 212. Scenario no:2 with respect to real mass                            Figure13. Scenario no:2 Wheel torque 

 

                     

                        Figure14. Scenario no:3 with respect to real mass                             Figure15. Scenario no:3 Wheel torque 

 

 

             It's known that appropriate initial value is strongly needed for accurate estimation and proper filter tuning 

parameters. The first scenario’s results showed that EKF works fine with appropriate initial value and the smooth data, 

which includes braking or gear shifting for accurate estimation within acceptable error range. The second scenario’s results 

showed that braking force was a disturbance for the estimation. To eliminate the over or under estimation, either the 

braking should be included in the equations or the selected data must not include any braking input. The third scenario’s 

results underlined that even a small amount of braking input was existed, EKF systematically overestimates and causes 

error, which was around 13% in the case of this study. As a result of this, it is possible to have a conclusion that either all 

the disturbances should be taken into consideration or compensated by additional algorithms.  

 

4. Conclusion 

 

Longitudinal dynamics equations were derived under the assumptions such as, tyre was not sliding and road adhesion and 

tyre dynamic radius were constant and tractive force at wheel was accurate. However, the total error of the model was 

increased by these assumptions. It is known that the tractive force provided by the tyre-road interface is calculated based 
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on engine map and the accuracy decreases due to the alternator and air conditioner engagement. Due to physical 

experiment bottlenecks, offline studies were carried out by IPG CarMaker®, which has a highly controllable environment.  

Based on the worst case test results, 13% error was observed during the tests with the data provided by IPG CarMaker®, 

which is a value, nearly half of the useful load of a typical passenger car. On the contrary of the presented results in the 

literature, it is difficult to have a valid outcome. EKF could only give the reasonable outcomes under some certain and 

limited conditions, as depended on the correct initial information and some certain tuning parameters defined for the stable 

boundary conditions. Additionally, estimated mass output should be validated, carefully. Therefore, to validate the results, 

estimated value can be re-estimated more than once during the calculation.  So, it could be inferred that to provide the 

correct initial value to the filter and to validate the estimation results, alternative out-source variables may be needed for 

the corrections. Nevertheless, estimation can be more robust for future vehicles, which will have more accurate tractive 

force output of electric motors with more sensors on-board.  
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