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Abstract 

Python programming language provides a very convenient environment of implementing machine learning applications. 
However, programmers usually faced with a poor performance compared to compiled functions when they write script 
based programs that demands intense computations. TensorFlow framework provides acceleration by enabling the 
utilization of various computing resources such as multicore CPU and GPU unit as well as including various compiled 
algorithms for developing machine learning applications. In this way, algorithms developed using existing TensorFlow 
operations can shorten computation times by using these resources indirectly without requiring parallel programming or 
GPU programming. In this study, Local Derivative Pattern (LDP) analysis which is one of the efficient feature extraction 
approaches for machine learning models was realized using a TensorFlow based algorithm. Independent pixel based 
operations in LDP algorithm which requires intense computations, enable developing an efficient tensor based algorithm. 
The performance of the TensorFlow based algorithm has been measured by comparing it with the Python script version of 
the same algorithm. The results obtained for various sizes and numbers of sample images show that TensorFlow 
operations provide significant acceleration rates for the LDP algorithm. 
Keywords: TensorFlow, Local Derivative Pattern,  Feature extraction 

YEREL TÜREV ÖRÜNTÜ İÇİN TENSORFLOW TABANLI BİR METOD 

Özet 

Python programlama dili makine öğrenmesi uygulamalarının gerçekleştirilmesi için oldukça uygun bir ortam sağlar. 
Ancak programcılar yoğun işlem gerektiren script tabanlı fonksiyonlar yazdığı zaman, genelde derlenmiş kodlara göre 
düşük performans problemi ile karşılaşır. TensorFlow çerçevesi, makine öğrenmesi uygulamalarının geliştirilmesi için 
çeşitli derlenmiş algoritmalara sahip olmakla birlikte çok çekirdekli CPU ve GPU birimleri gibi hesaplama kaynaklarını da 
kullanarak hızlandırma sağlar. Bu sayede mevcut TensorFlow operasyonları kullanılarak geliştirilen algoritmalar, 
paralel programlama veya GPU programlama gerektirmeden dolaylı yoldan bu kaynakları kullanarak hesaplama 
sürelerini kısaltabilir. Bu çalışmada, makine öğrenmesi uygulamalarında etkili özellik çıkarma yöntemlerinden biri 
olarak kullanılan Yerel Türev Örüntü (LDP) analizi TensorFlow tabanlı bir algoritma ile gerçekleştirilmiştir. Yoğun 
hesaplama yükü gerektiren LDP algoritmasında bağımsız piksel tabanlı işlemler, verimli bir tensör işlemleri tabanlı 
algoritma geliştirilmesine olanak tanımaktadır. TensorFlow ile gerçekleştirilen algoritmanın başarımı, aynı algoritmanın 
Python script ile gerçekleştirilen sürümü ile karşılaştırılarak ölçülmüştür. Çeşitli boyutlarda ve sayılarda örnek 
görüntüler için elde edilen sonuçlar, TensorFlow işlemlerinin LDP algoritması için önemli hızlandırma oranları 
sağladığını göstermektedir. 
Anahtar Kelimeler: TensorFlow,  Yerel Türev Örüntü, Özellik çıkarımı 
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1.  Introduction 
Feature extraction methods which involves most of the 
machine learning applications helps reduce the 
dimensionality of dataset while improving the learning 
process. LDP is of one the efficient feature extraction 
methods used in computer vision applications. It was 
first introduced in a face identification and verification 
study and shown to be successful on various datasets 
[1]. LDP checks local variations using derivative and 

forms a binary number according to directions. Local 
variations can be measured in various angles enabling 
detailed information about the input data. In literature 
there are various computer vision studies utilizing LDP 
for example; infrared image based fingerprint 
recognition [2], image annotation [3], person re-
identification [4], content based medical image retrieval 
[5], image registration [6], facial expression recognition 
[7] and various face recognition approaches [8]–[10]. 
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Because of the pixel based multiplication and 
comparison operations in LDP algorithm, the 
computational demand of the algorithm increases as the 
size of the image is increased. Running the algorithm 
using Python may result in longer durations when 
compared to low level programming languages. 
Languages like C/C++ are closer to hardware and they 
are optimized during compile time to reduce running 
time of the program. However, Python is a scripting 
language where an interpreter processes input lines and 
convert it to machine code which adds some overhead 
to the execution of the program. For all that, machine 
learning and scientific applications are widely 
developed using Python because of the ease scripting 
languages provide. Due to its popularity one can find 
various resources on machine learning and numerical 
algorithms.  TensorFlow is one of the major open source 
libraries in machine learning and deep learning [11], 
[12]. It provides various tools and makes it practical to 
train and test in Python.  
TensorFlow also supports GPU (Graphics Processing 
Unit) utilization which provides significant 
accelerations for intense computations. Users can define 
their custom operations in TensorFlow as well as 
constructing custom layers [13]–[15]. In addition to 
coding from the scratch, custom operations can be 
defined by combining existing TensorFlow operations. 
In the presented study, a custom operation for LDP has 
been implemented using TensorFlow operations. 
Proposed algorithm can be used with deep learning 
models as intermediate layer or preprocessing function. 
In order to test the efficiency of the algorithm images in 
various dimensions such as 448448, 224224, 
112112, 5656 and 2828 were used. Also various 
batch sizes for each image sizes were used in 
experimental evaluations. Organization of the rest of the 
study is as follows; information about the basics of LDP 
was given in following section, the proposed design was 
explained in Section 3, numerical evaluations using 
TensorFlow implementation were realized in Section 4. 
A brief conclusions of the study were given in the last 
section. 

 

2.  Local Derivative Transform  

LDP works similar to Local Binary Patterns (LBP) [16], 
but LBP only use first order derivatives with respect to 
neighbors within selected mask. LDP also incorporates 
second order derivatives based on the first order 
derivatives which extracts more detailed features from 
the input image. Also the approach enables computing 
nth order derivatives based on the (n-1)th order 
derivatives.  

Let the directional first order derivatives of input image 
I(𝑃) for the directions such as =0, =45, =90 and 
=135 be  𝐼0

′(𝑝0),  𝐼45
′ (𝑝0), 𝐼90

′ (𝑝0) and 𝐼135
′ (𝑝0) 

respectively . First order derivatives at the p0 location 
for all directions can be computed as follows, 

 

𝐼0
′(𝑝0) = 𝐼(𝑝0) − 𝐼(𝑝4)

𝐼45
′ (𝑝0) = 𝐼(𝑝0) − 𝐼(𝑝3)

𝐼90
′ (𝑝0) = 𝐼(𝑝0) − 𝐼(𝑝2)

𝐼135
′ (𝑝0) = 𝐼(𝑝0) − 𝐼(𝑝1)}

 

 

    (1) 

 

Where p0 describes the center pixel and p1, p2,…,p8 
pixels within 33 neighborhood as shown by Figure 1.  

 

 
Figure 1. a) Example neighbors of P0 pixel and b) 

directional derivatives for P0. 

 

The second-order derivatives are written based on the 
first order derivatives. For example, second order 
derivatives for p0 can be written for =0 as below, 

 

𝐿𝐷𝑃0
2(𝑝0) = {

 𝑓(𝐼0
′(𝑝0)𝐼0

′(𝑝1))

𝑓(𝐼0
′(𝑝0)𝐼0

′(𝑝2))
…

𝑓(𝐼0
′(𝑝0)𝐼0

′(𝑝8))

   (2) 

In the same way, the equations are obtained for =45 
as below, 

𝐿𝐷𝑃45
2 (𝑝45) = {

 𝑓(𝐼45
′ (𝑝0)𝐼0

′(𝑝1))

𝑓(𝐼45
′ (𝑝0)𝐼0

′(𝑝2))
…

𝑓(𝐼45
′ (𝑝0)𝐼0

′(𝑝8))

   (3) 

 

In Eq.2, f(.) contains a comparison function that 
produces a binary value as given by Eq. 4. It checks the 
derivative directions for different neighbor pixels.  

 

𝑓(𝐼α
′ (𝑃0)𝐼α

′ (𝑃i)) = {
0, 𝐼α

′ (𝑃0)𝐼α
′ (𝑃i) > 0

1, 𝐼α
′ (𝑃0)𝐼α

′ (𝑃i) ≤ 0
   (4) 

 

Computations given by Eq. 2 and Eq. 3 are repeated for 
other directions as follows, 

 

𝐿𝐷𝑃2(𝑃) =

{
 
 

 
  𝐿𝐷𝑃0

2(𝑃)

𝐿𝐷𝑃45
2 (𝑃)

𝐿𝐷𝑃90
2 (𝑃)

𝐿𝐷𝑃135
2 (𝑃)

    (5) 

 

3.  TensorFlow Implementation 

TensorFlow framework provides most of the tools for 
developing, training and testing machine learning 
models. TensorFlow has APIs for several languages such 
as Python, Java and C++. Also it has the flexibility of 
defining custom functions either from scratch or as a 
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combination of existing functions. Because TensorFlow 
supports GPU computation, in the latter case GPU 
support is enabled for custom function without writing 
GPU level code. This is possible by using basic functions 
that have GPU support provided by TensorFlow library 
such as add(), multiply() and matmul().  

 

 
Figure 2. Example computations for first order LDP 

where =0, =45, =90 and =135. 

 

Example second order computations using Eq. 2 for =0, 

=45, =90 and =135 are shown by Figure 2. 

Operations for four angles are similar except the 
directions of the derivatives which are computed 
initially.  A Python realization of the algorithm for =0 
is given by Code snippet 1. At first, Eq. 1 is applied to a 
pixel which is determined by for-loops and its 
neighborhood of 33 dimensions. Then Eq.2 and Eq.3 
are applied to obtain second order derivatives. 
Extracted feature is computed by summing the resulting 
values after converting each digit to a decimal value.  

 

1. #Allocate memory for output    
2. L=np.zeros((rows,cols)) 

3. #Traverse the pixels of image 
4. for i in range(2,nRows-2): 
5.   for j in range(2,nCols-2): 

6.            #Compute first order derivatives for =0 (Eq. 1) 
7.     d1= I[i-1,j-1]-I[i-1,j+0] 
8.     d2= I[i-1,j+0]-I[i-1,j+1] 
9.     d3= I[i-1,j+1]-I[i-1,j+2] 
10.     d4= I[i+0,j-1]-I[i+0,j+0] 
11.     d5= I[i+0,j+1]-I[i+0,j+2] 
12.     d6= I[i+1,j-1]-I[i+1,j+0]              
13.     d7= I[i+1,j+0]-I[i+1,j+1]   
14.     d8= I[i+1,j+1]-I[i+1,j+2]             

15.           #Select the pixel at the center 
16.     dc = I[i,j]-I[i,j+1] 

17.           #Compute second order derivatives  (Eq. 2)  
18.     p1=(d1*dc)>=0)*128 
19.     p2=(d2*dc)>=0)*64 
20.     p3=(d3*dc)>=0)*32 
21.     p4=(d4*dc)>=0)*1 
22.     p5=(d5*dc)>=0)*16 
23.     p6=(d6*dc)>=0)*2              
24.     p7=(d7*dc)>=0)*4   
25.     p8=(d8*dc)>=0)*8   

26.           #Compute extracted feature         
27.     s=p1+p2+p3+p4+p5+p6+p7+p8 
28.     L[i,j]=s  

Code snippet 1. Python implementation of LBP 
transform for =0. 

 
LDP algorithm can be realized by existing TensorFlow 

operations since the computation of output pixels for LDP 

transform involves independent matrix operations. It 
requires various comparison, multiplication, addition 
and subtraction for each pixel operations and these are 
independent for each 33 mask. Therefore, the two  

for-loop can be eliminated in TensorFlow implementation 

by using tensors which are N-dimensional arrays. Code 

snippet 2 shows a fragment of the program using 

TensorFlow operations. In this code y0, for example is a 

matrix that defines the pixels at center for all masks. 

Similarly y4 defines the right neighbor of y0 in matrix form.  

Initially the first order derivatives are determined for the 

center pixels by using tf.subtract(). Before doing the 

comparison given by Eq.3, false and true conditions are 

defined. Initially, false condition is defined by tf.zeros() and 

for the following pixels it is used as previous results which 

in the false condition doesn’t change the result. Similarly 

true condition is also defined using the values according to 
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weight of the binary digit which is 128 for p1. Then, first 

order derivative is computed for the selected neighbor and 

multiplied with p0 like in the Code Snippet. Following the 

comparison with tf.greater_equal(), one of the conditions 

are selected with tf.where(). After p1, computations for p2 

are realized in the example code fragment. In this case, 

false condition is selected as the previous results. Other 

operations are the same as the previous one except the 

weight of the binary digit. Hence, similar operations are 

repeated for the other neighbor of the center pixel to obtain 

LDP transform for =0. Also this procedure is repeated for 

=45, =90 and =135 for computing all four 

directions. Then the obtained 8 byte results are 

concatenated to obtain a 32 bit feature vector and this 

vector is used to extract features in various applications 

[17], [18]. 

 

1. #compute first order derivative for center pixel 
2. dc=tf.subtract(y0,y4) 

3. #computation of p1 in code snippet 1 
4. cond_false=tf.zeros(p0.shape,tf.float32) 
5. cond_true =tf.add(cond_false, 
6.           tf.constant(128.0/255.0)) 
7. d0 =tf.subtract(y1,y2) 
8. d0 =tf.multiply(d0,dc) 
9. g  =tf.greater_equal(dc,0)                     
10. z  =tf.where(g,cond_true,cond_false) 

11. # computation of p2 in Code Snippet 1 
12. cond_false=z        
13. cond_true =tf.add(z, 
14.            tf.constant(64.0/255.0)) 
15. d1 =tf.subtract(y2,y3) 
16. d1 =tf.multiply(d1,dc) 
17. g  =tf.greater_equal(d1,0) 
18. z  =tf.where(g,cond_true,cond_false)   

19. # computation of p3 in Code Snippet 1 
20. cond_false=z       
21. cond_true =tf.add(z, 
22.               tf.constant(32.0/255.0))  
23. d2 =tf.subtract(y3,y4) 
24. d2 =tf.multiply(d2,dc) 
25. g  =tf.greater_equal(d2,0)                        
26. z  =tf.where(g,cond_true,cond_false) 

Code snippet 2. A fragment of TensorFlow 
implementation of LDP transform for =0. 

 

4.  Experimental Results 

Running times for the example cases were measured 
using time command from time library in Python as 
shown by Code Snippet 3. In that code, the features are 
obtained separately for four directions. In practice, 
these features are used together to train a machine 
learning model. The average of repeated measurements 
for 30 times to obtain example running times. Various 
dimensions of images and batch of images were used in 
tests. Experiments were carried on a hardware that 
contains AMD FX2700 processor and GTX1080 Nvidia 
GPU. Operating system was Ubuntu 18.04 where Python 
3.7.9 and TensorFlow 2.3.1 were installed. Example 
images for obtaining performance evaluations are 
selected randomly from ImageNet [19] dataset. An 

example image and its LDP visualizations for =0, 
=90=45 and =135 were given by Figure 3. In the 
experiments, selected images were rescaled to various 
dimensions such as 2828, 5656, 112112, 224224 
and 448448. Since the content of the image doesn’t 
have effect on the computation times similar 
experiments can be repeated using another dataset. 
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Figure 3. Example image and its LDP transformed 

images for =0, =90=45 and =135. 

 
#get starting time 
start_time = time.time() 

# Compute LDP for a given batch of images 
ldp_feat_0  =ldp0(  batch_of_images).numpy() 

ldp_feat_45 =ldp45( batch_of_images).numpy() 

ldp_feat_90 =ldp90( batch_of_images).numpy() 

ldp_feat_135=ldp135(batch_of_images).numpy() 

# get finishing time and determine the elapsed time 
elapsed_time  = time.time() - start_time 

 

Code snippet 3. TensorFlow implementation of LBP 
transform. 

 
Table 1. LDP algorithm running times for Python 

implementation (seconds)  
Batch 2828 5656 112112 224224 448448 

1 0.1282 0.5699 2.3753 9.7110 39.435 

2 0.2571 1.1439 4.7235 19.420 78.813 

4 0.5076 2.2595 9.5201 39.020 159.70 

8 1.0208 4.5776 19.061 78.212 319.73 

16 2.0228 9.1329 38.089 156.49 629.95 

32 4.0286 17.991 76.081 311.15 1271.32 

 

Table 2. LDP algorithm running times for TensorFlow 
implementation (seconds) 

Batch 2828 5656 112112 224224 448448 

1 0.0080 0.0083 0.0096 0.0163 0.0235 
2 0.0082 0.0085 0.0118 0.0209 0.0503 
4 0.0085 0.0089 0.0165 0.0252 0.0929 
8 0.0086 0.0117 0.0187 0.0498 0.2068 

16 0.0093 0.0168 0.0242 0.1116 0.3580 
32 0.0119 0.0196 0.0496 0.1926 0.5958 
64 0.0169 0.0227 0.0984 0.3420 2.6339 

128 0.0199 0.0411 0.1999 0.7094 5.2664 
256 0.0246 0.0892 0.3590 1.9699 10.484 

 

 

 
Figure 4. Speed-up evaluations 

 

Running durations were first obtained for Python script 
for all directions. Code Snippet 1 which was given for 
=0 was realized for the other directions which are 
=45, =90 and =135. According to results given by 
Table 1 running times increases significantly as the 
images dimensions and batch size are increased. 
Running times are approximately related to each other 
linearly. For example, while running duration for 
112112 is 2.375 for the batch size 1, it increases to 
4.724 when the batch size is increased to 2.  The same is 
not true for the TensorFlow measurements where GPU 
and multicore CPU can be utilized. As shown by Table 2 
where the results for TensorFlow implementation were 
given, while some measurements have linear relation 
when considering the batch size or image size, some 
measurements don’t have such relation. On the other 
hand, when the numerical results given by Table 1 and 
Table 2 are compared, it is seen that the running 
durations are considerably reduced. The speed-up is 
significantly increased as the image size and batch size 
are increased as shown by Figure 4. 

 

5.  Conclusion 

LDP algorithm that extracts features from images 
depending on derivative operations in four directions is 
very useful for machine learning applications. These 
kinds of algorithms are usually costly to implement with 
Python script as the experimental results imply. 
TensorFlow enables users writing custom functions as 
the combinations of basic TensorFlow operations and 
these functions can be used as custom deep learning 
layer or preprocessing function. Since operations in 
TensorFlow compiled with optimization and they 
support multicore CPU and GPU device, running 
durations of custom functions are also reduced 
significantly when compared with the Python scripts. In 
order to better utilize operations, the algorithm should 
be expressed in terms of tensors which are  
n-dimensional arrays. In the case of LDP, since the pixels 
based computations are independent, the algorithm can 
be expressed in terms of basic operations. According to 
experimental running durations, custom function for 
LDP provides significant accelerations over Python 
script implementation. Also the results indicate that 
acceleration with TensorFlow increases as the tested 
image dimensions and batch size are increased which is 



Devrim AKGUN 
A Tensorflow Based Method For Local Derivative Pattern 

 

64 

 

mainly due to the efficiency of the GPU utilization for 
small images deteriorates. Although the results will vary 
according to experimental hardware specifications and 
software versions, they give good insight into the 
TensorFlow acceleration for various dimensions of 
images and batch sizes.   
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