

Mugla Journal of Science and Technology

59

A TENSORFLOW BASED METHOD FOR LOCAL DERIVATIVE PATTERN

Devrim AKGUN*, Software Engineering Department, Sakarya University, Turkey, dakgun@sakarya.edu.tr

(https://orcid.org/0000-0002-0770-599X)

Received: 24.11.2020, Accepted: 20.02.2021
*Corresponding author

 Research Article

DOI: 10.22531/muglajsci.830691

Abstract

Python programming language provides a very convenient environment of implementing machine learning applications.
However, programmers usually faced with a poor performance compared to compiled functions when they write script
based programs that demands intense computations. TensorFlow framework provides acceleration by enabling the
utilization of various computing resources such as multicore CPU and GPU unit as well as including various compiled
algorithms for developing machine learning applications. In this way, algorithms developed using existing TensorFlow
operations can shorten computation times by using these resources indirectly without requiring parallel programming or
GPU programming. In this study, Local Derivative Pattern (LDP) analysis which is one of the efficient feature extraction
approaches for machine learning models was realized using a TensorFlow based algorithm. Independent pixel based
operations in LDP algorithm which requires intense computations, enable developing an efficient tensor based algorithm.
The performance of the TensorFlow based algorithm has been measured by comparing it with the Python script version of
the same algorithm. The results obtained for various sizes and numbers of sample images show that TensorFlow
operations provide significant acceleration rates for the LDP algorithm.
Keywords: TensorFlow, Local Derivative Pattern, Feature extraction

YEREL TÜREV ÖRÜNTÜ İÇİN TENSORFLOW TABANLI BİR METOD

Özet

Python programlama dili makine öğrenmesi uygulamalarının gerçekleştirilmesi için oldukça uygun bir ortam sağlar.
Ancak programcılar yoğun işlem gerektiren script tabanlı fonksiyonlar yazdığı zaman, genelde derlenmiş kodlara göre
düşük performans problemi ile karşılaşır. TensorFlow çerçevesi, makine öğrenmesi uygulamalarının geliştirilmesi için
çeşitli derlenmiş algoritmalara sahip olmakla birlikte çok çekirdekli CPU ve GPU birimleri gibi hesaplama kaynaklarını da
kullanarak hızlandırma sağlar. Bu sayede mevcut TensorFlow operasyonları kullanılarak geliştirilen algoritmalar,
paralel programlama veya GPU programlama gerektirmeden dolaylı yoldan bu kaynakları kullanarak hesaplama
sürelerini kısaltabilir. Bu çalışmada, makine öğrenmesi uygulamalarında etkili özellik çıkarma yöntemlerinden biri
olarak kullanılan Yerel Türev Örüntü (LDP) analizi TensorFlow tabanlı bir algoritma ile gerçekleştirilmiştir. Yoğun
hesaplama yükü gerektiren LDP algoritmasında bağımsız piksel tabanlı işlemler, verimli bir tensör işlemleri tabanlı
algoritma geliştirilmesine olanak tanımaktadır. TensorFlow ile gerçekleştirilen algoritmanın başarımı, aynı algoritmanın
Python script ile gerçekleştirilen sürümü ile karşılaştırılarak ölçülmüştür. Çeşitli boyutlarda ve sayılarda örnek
görüntüler için elde edilen sonuçlar, TensorFlow işlemlerinin LDP algoritması için önemli hızlandırma oranları
sağladığını göstermektedir.
Anahtar Kelimeler: TensorFlow, Yerel Türev Örüntü, Özellik çıkarımı
Cite
Akgun, D., (2021). “A TensorFlow Based Method For Local Derivative Pattern, Mugla Journal of Science and Technology,
7(1), 59-64.

1. Introduction
Feature extraction methods which involves most of the
machine learning applications helps reduce the
dimensionality of dataset while improving the learning
process. LDP is of one the efficient feature extraction
methods used in computer vision applications. It was
first introduced in a face identification and verification
study and shown to be successful on various datasets
[1]. LDP checks local variations using derivative and

forms a binary number according to directions. Local
variations can be measured in various angles enabling
detailed information about the input data. In literature
there are various computer vision studies utilizing LDP
for example; infrared image based fingerprint
recognition [2], image annotation [3], person re-
identification [4], content based medical image retrieval
[5], image registration [6], facial expression recognition
[7] and various face recognition approaches [8]–[10].

Devrim AKGUN
A Tensorflow Based Method For Local Derivative Pattern

60

Because of the pixel based multiplication and
comparison operations in LDP algorithm, the
computational demand of the algorithm increases as the
size of the image is increased. Running the algorithm
using Python may result in longer durations when
compared to low level programming languages.
Languages like C/C++ are closer to hardware and they
are optimized during compile time to reduce running
time of the program. However, Python is a scripting
language where an interpreter processes input lines and
convert it to machine code which adds some overhead
to the execution of the program. For all that, machine
learning and scientific applications are widely
developed using Python because of the ease scripting
languages provide. Due to its popularity one can find
various resources on machine learning and numerical
algorithms. TensorFlow is one of the major open source
libraries in machine learning and deep learning [11],
[12]. It provides various tools and makes it practical to
train and test in Python.
TensorFlow also supports GPU (Graphics Processing
Unit) utilization which provides significant
accelerations for intense computations. Users can define
their custom operations in TensorFlow as well as
constructing custom layers [13]–[15]. In addition to
coding from the scratch, custom operations can be
defined by combining existing TensorFlow operations.
In the presented study, a custom operation for LDP has
been implemented using TensorFlow operations.
Proposed algorithm can be used with deep learning
models as intermediate layer or preprocessing function.
In order to test the efficiency of the algorithm images in
various dimensions such as 448448, 224224,
112112, 5656 and 2828 were used. Also various
batch sizes for each image sizes were used in
experimental evaluations. Organization of the rest of the
study is as follows; information about the basics of LDP
was given in following section, the proposed design was
explained in Section 3, numerical evaluations using
TensorFlow implementation were realized in Section 4.
A brief conclusions of the study were given in the last
section.

2. Local Derivative Transform

LDP works similar to Local Binary Patterns (LBP) [16],
but LBP only use first order derivatives with respect to
neighbors within selected mask. LDP also incorporates
second order derivatives based on the first order
derivatives which extracts more detailed features from
the input image. Also the approach enables computing
nth order derivatives based on the (n-1)th order
derivatives.

Let the directional first order derivatives of input image
I(𝑃) for the directions such as =0, =45, =90 and
=135 be 𝐼0

′(𝑝0), 𝐼45
′ (𝑝0), 𝐼90

′ (𝑝0) and 𝐼135
′ (𝑝0)

respectively . First order derivatives at the p0 location
for all directions can be computed as follows,

𝐼0
′(𝑝0) = 𝐼(𝑝0) − 𝐼(𝑝4)

𝐼45
′ (𝑝0) = 𝐼(𝑝0) − 𝐼(𝑝3)

𝐼90
′ (𝑝0) = 𝐼(𝑝0) − 𝐼(𝑝2)

𝐼135
′ (𝑝0) = 𝐼(𝑝0) − 𝐼(𝑝1)}

 (1)

Where p0 describes the center pixel and p1, p2,…,p8
pixels within 33 neighborhood as shown by Figure 1.

Figure 1. a) Example neighbors of P0 pixel and b)

directional derivatives for P0.

The second-order derivatives are written based on the
first order derivatives. For example, second order
derivatives for p0 can be written for =0 as below,

𝐿𝐷𝑃0
2(𝑝0) = {

 𝑓(𝐼0
′(𝑝0)𝐼0

′(𝑝1))

𝑓(𝐼0
′(𝑝0)𝐼0

′(𝑝2))
…

𝑓(𝐼0
′(𝑝0)𝐼0

′(𝑝8))

 (2)

In the same way, the equations are obtained for =45
as below,

𝐿𝐷𝑃45
2 (𝑝45) = {

 𝑓(𝐼45
′ (𝑝0)𝐼0

′(𝑝1))

𝑓(𝐼45
′ (𝑝0)𝐼0

′(𝑝2))
…

𝑓(𝐼45
′ (𝑝0)𝐼0

′(𝑝8))

 (3)

In Eq.2, f(.) contains a comparison function that
produces a binary value as given by Eq. 4. It checks the
derivative directions for different neighbor pixels.

𝑓(𝐼α
′ (𝑃0)𝐼α

′ (𝑃i)) = {
0, 𝐼α

′ (𝑃0)𝐼α
′ (𝑃i) > 0

1, 𝐼α
′ (𝑃0)𝐼α

′ (𝑃i) ≤ 0
 (4)

Computations given by Eq. 2 and Eq. 3 are repeated for
other directions as follows,

𝐿𝐷𝑃2(𝑃) =

{

 𝐿𝐷𝑃0

2(𝑃)

𝐿𝐷𝑃45
2 (𝑃)

𝐿𝐷𝑃90
2 (𝑃)

𝐿𝐷𝑃135
2 (𝑃)

 (5)

3. TensorFlow Implementation

TensorFlow framework provides most of the tools for
developing, training and testing machine learning
models. TensorFlow has APIs for several languages such
as Python, Java and C++. Also it has the flexibility of
defining custom functions either from scratch or as a

Devrim AKGUN
A Tensorflow Based Method For Local Derivative Pattern

61

combination of existing functions. Because TensorFlow
supports GPU computation, in the latter case GPU
support is enabled for custom function without writing
GPU level code. This is possible by using basic functions
that have GPU support provided by TensorFlow library
such as add(), multiply() and matmul().

Figure 2. Example computations for first order LDP

where =0, =45, =90 and =135.

Example second order computations using Eq. 2 for =0,

=45, =90 and =135 are shown by Figure 2.

Operations for four angles are similar except the
directions of the derivatives which are computed
initially. A Python realization of the algorithm for =0
is given by Code snippet 1. At first, Eq. 1 is applied to a
pixel which is determined by for-loops and its
neighborhood of 33 dimensions. Then Eq.2 and Eq.3
are applied to obtain second order derivatives.
Extracted feature is computed by summing the resulting
values after converting each digit to a decimal value.

1. #Allocate memory for output
2. L=np.zeros((rows,cols))

3. #Traverse the pixels of image
4. for i in range(2,nRows-2):
5. for j in range(2,nCols-2):

6. #Compute first order derivatives for =0 (Eq. 1)
7. d1= I[i-1,j-1]-I[i-1,j+0]
8. d2= I[i-1,j+0]-I[i-1,j+1]
9. d3= I[i-1,j+1]-I[i-1,j+2]
10. d4= I[i+0,j-1]-I[i+0,j+0]
11. d5= I[i+0,j+1]-I[i+0,j+2]
12. d6= I[i+1,j-1]-I[i+1,j+0]
13. d7= I[i+1,j+0]-I[i+1,j+1]
14. d8= I[i+1,j+1]-I[i+1,j+2]

15. #Select the pixel at the center
16. dc = I[i,j]-I[i,j+1]

17. #Compute second order derivatives (Eq. 2)
18. p1=(d1*dc)>=0)*128
19. p2=(d2*dc)>=0)*64
20. p3=(d3*dc)>=0)*32
21. p4=(d4*dc)>=0)*1
22. p5=(d5*dc)>=0)*16
23. p6=(d6*dc)>=0)*2
24. p7=(d7*dc)>=0)*4
25. p8=(d8*dc)>=0)*8

26. #Compute extracted feature
27. s=p1+p2+p3+p4+p5+p6+p7+p8
28. L[i,j]=s

Code snippet 1. Python implementation of LBP
transform for =0.

LDP algorithm can be realized by existing TensorFlow

operations since the computation of output pixels for LDP

transform involves independent matrix operations. It
requires various comparison, multiplication, addition
and subtraction for each pixel operations and these are
independent for each 33 mask. Therefore, the two

for-loop can be eliminated in TensorFlow implementation

by using tensors which are N-dimensional arrays. Code

snippet 2 shows a fragment of the program using

TensorFlow operations. In this code y0, for example is a

matrix that defines the pixels at center for all masks.

Similarly y4 defines the right neighbor of y0 in matrix form.

Initially the first order derivatives are determined for the

center pixels by using tf.subtract(). Before doing the

comparison given by Eq.3, false and true conditions are

defined. Initially, false condition is defined by tf.zeros() and

for the following pixels it is used as previous results which

in the false condition doesn’t change the result. Similarly

true condition is also defined using the values according to

Devrim AKGUN
A Tensorflow Based Method For Local Derivative Pattern

62

weight of the binary digit which is 128 for p1. Then, first

order derivative is computed for the selected neighbor and

multiplied with p0 like in the Code Snippet. Following the

comparison with tf.greater_equal(), one of the conditions

are selected with tf.where(). After p1, computations for p2

are realized in the example code fragment. In this case,

false condition is selected as the previous results. Other

operations are the same as the previous one except the

weight of the binary digit. Hence, similar operations are

repeated for the other neighbor of the center pixel to obtain

LDP transform for =0. Also this procedure is repeated for

=45, =90 and =135 for computing all four

directions. Then the obtained 8 byte results are

concatenated to obtain a 32 bit feature vector and this

vector is used to extract features in various applications

[17], [18].

1. #compute first order derivative for center pixel
2. dc=tf.subtract(y0,y4)

3. #computation of p1 in code snippet 1
4. cond_false=tf.zeros(p0.shape,tf.float32)
5. cond_true =tf.add(cond_false,
6. tf.constant(128.0/255.0))
7. d0 =tf.subtract(y1,y2)
8. d0 =tf.multiply(d0,dc)
9. g =tf.greater_equal(dc,0)
10. z =tf.where(g,cond_true,cond_false)

11. # computation of p2 in Code Snippet 1
12. cond_false=z
13. cond_true =tf.add(z,
14. tf.constant(64.0/255.0))
15. d1 =tf.subtract(y2,y3)
16. d1 =tf.multiply(d1,dc)
17. g =tf.greater_equal(d1,0)
18. z =tf.where(g,cond_true,cond_false)

19. # computation of p3 in Code Snippet 1
20. cond_false=z
21. cond_true =tf.add(z,
22. tf.constant(32.0/255.0))
23. d2 =tf.subtract(y3,y4)
24. d2 =tf.multiply(d2,dc)
25. g =tf.greater_equal(d2,0)
26. z =tf.where(g,cond_true,cond_false)

Code snippet 2. A fragment of TensorFlow
implementation of LDP transform for =0.

4. Experimental Results

Running times for the example cases were measured
using time command from time library in Python as
shown by Code Snippet 3. In that code, the features are
obtained separately for four directions. In practice,
these features are used together to train a machine
learning model. The average of repeated measurements
for 30 times to obtain example running times. Various
dimensions of images and batch of images were used in
tests. Experiments were carried on a hardware that
contains AMD FX2700 processor and GTX1080 Nvidia
GPU. Operating system was Ubuntu 18.04 where Python
3.7.9 and TensorFlow 2.3.1 were installed. Example
images for obtaining performance evaluations are
selected randomly from ImageNet [19] dataset. An

example image and its LDP visualizations for =0,
=90=45 and =135 were given by Figure 3. In the
experiments, selected images were rescaled to various
dimensions such as 2828, 5656, 112112, 224224
and 448448. Since the content of the image doesn’t
have effect on the computation times similar
experiments can be repeated using another dataset.

Devrim AKGUN
A Tensorflow Based Method For Local Derivative Pattern

63

Figure 3. Example image and its LDP transformed

images for =0, =90=45 and =135.

#get starting time
start_time = time.time()

Compute LDP for a given batch of images
ldp_feat_0 =ldp0(batch_of_images).numpy()

ldp_feat_45 =ldp45(batch_of_images).numpy()

ldp_feat_90 =ldp90(batch_of_images).numpy()

ldp_feat_135=ldp135(batch_of_images).numpy()

get finishing time and determine the elapsed time
elapsed_time = time.time() - start_time

Code snippet 3. TensorFlow implementation of LBP
transform.

Table 1. LDP algorithm running times for Python

implementation (seconds)
Batch 2828 5656 112112 224224 448448

1 0.1282 0.5699 2.3753 9.7110 39.435

2 0.2571 1.1439 4.7235 19.420 78.813

4 0.5076 2.2595 9.5201 39.020 159.70

8 1.0208 4.5776 19.061 78.212 319.73

16 2.0228 9.1329 38.089 156.49 629.95

32 4.0286 17.991 76.081 311.15 1271.32

Table 2. LDP algorithm running times for TensorFlow
implementation (seconds)

Batch 2828 5656 112112 224224 448448

1 0.0080 0.0083 0.0096 0.0163 0.0235
2 0.0082 0.0085 0.0118 0.0209 0.0503
4 0.0085 0.0089 0.0165 0.0252 0.0929
8 0.0086 0.0117 0.0187 0.0498 0.2068

16 0.0093 0.0168 0.0242 0.1116 0.3580
32 0.0119 0.0196 0.0496 0.1926 0.5958
64 0.0169 0.0227 0.0984 0.3420 2.6339

128 0.0199 0.0411 0.1999 0.7094 5.2664
256 0.0246 0.0892 0.3590 1.9699 10.484

Figure 4. Speed-up evaluations

Running durations were first obtained for Python script
for all directions. Code Snippet 1 which was given for
=0 was realized for the other directions which are
=45, =90 and =135. According to results given by
Table 1 running times increases significantly as the
images dimensions and batch size are increased.
Running times are approximately related to each other
linearly. For example, while running duration for
112112 is 2.375 for the batch size 1, it increases to
4.724 when the batch size is increased to 2. The same is
not true for the TensorFlow measurements where GPU
and multicore CPU can be utilized. As shown by Table 2
where the results for TensorFlow implementation were
given, while some measurements have linear relation
when considering the batch size or image size, some
measurements don’t have such relation. On the other
hand, when the numerical results given by Table 1 and
Table 2 are compared, it is seen that the running
durations are considerably reduced. The speed-up is
significantly increased as the image size and batch size
are increased as shown by Figure 4.

5. Conclusion

LDP algorithm that extracts features from images
depending on derivative operations in four directions is
very useful for machine learning applications. These
kinds of algorithms are usually costly to implement with
Python script as the experimental results imply.
TensorFlow enables users writing custom functions as
the combinations of basic TensorFlow operations and
these functions can be used as custom deep learning
layer or preprocessing function. Since operations in
TensorFlow compiled with optimization and they
support multicore CPU and GPU device, running
durations of custom functions are also reduced
significantly when compared with the Python scripts. In
order to better utilize operations, the algorithm should
be expressed in terms of tensors which are
n-dimensional arrays. In the case of LDP, since the pixels
based computations are independent, the algorithm can
be expressed in terms of basic operations. According to
experimental running durations, custom function for
LDP provides significant accelerations over Python
script implementation. Also the results indicate that
acceleration with TensorFlow increases as the tested
image dimensions and batch size are increased which is

Devrim AKGUN
A Tensorflow Based Method For Local Derivative Pattern

64

mainly due to the efficiency of the GPU utilization for
small images deteriorates. Although the results will vary
according to experimental hardware specifications and
software versions, they give good insight into the
TensorFlow acceleration for various dimensions of
images and batch sizes.

6. References

[1] Zhang , B., Gao, Y., Zhao, S. and Liu, J., “Local
derivative pattern versus local binary pattern: Face
recognition with high-order local pattern descriptor,”
IEEE Trans. Image Process., vol. 19, no. 2, pp. 533–544,
2010.

[2] Lee, E. C., H. Jung and Kim, D., “New finger biometric
method using near infrared imaging,” Sensors, vol. 11,
no. 3, pp. 2319–2333, 2011.

[3] Srivastava,G. and Srivastava, R., “Annotation of
images using local binary pattern and local derivative
pattern after salient object detection using minimum
directional contrast and gradient vector flow,” Signal,
Image Video Process., pp. 1–9, 2020.

[4] Imani, Z. and Soltanizadeh, H., “Local Binary Pattern,
Local Derivative Pattern and Skeleton Features for RGB-
D Person Re-identification,” Natl. Acad. Sci. Lett., vol. 42,
no. 3, pp. 233–238, 2019.

[5] Darapureddy, N., N. and Karatapu, Battula, T. K.,
“Optimal weighted hybrid pattern for content based
medical image retrieval using modified spider monkey
optimization,” Int. J. Imaging Syst. Technol., p. e22475,
2020.

[6] Jiang, D., Shi, Y., Chen, X., Wang, M. and Song, Z., “Fast
and robust multimodal image registration using a local
derivative pattern:,” Med. Phys., vol. 44, no. 2, pp. 497–
509, 2017.

[7] Kalam, A., Hasan, M., Enamul Haque, M., Ibrahim, M.,
Jashem, M. and Jabid, T., “Facial expression recognition
using local composition pattern,” in ACM International
Conference Proceeding Series, 2019, pp. 63–67.

[8] Soltanpour, S. and Wu, Q. M. J., “Weighted Extreme
Sparse Classifier and Local Derivative Pattern for 3D
Face Recognition,” IEEE Trans. Image Process., vol. 28,
no. 6, pp. 3020–3033, 2019.

[9] Kwon, O. S., “Illuminant-invariant face recognition
using high-order local derivative pattern,” J. Imaging Sci.
Technol., vol. 62, no. 1, p. 10501, 2018.

[10] Liang, J., Zhou, J. and Gao, Y. “3D local derivative
pattern for hyperspectral face recognition,” in 2015
11th IEEE International Conference and Workshops on
Automatic Face and Gesture Recognition, FG 2015,
2015, vol. 1, pp. 1–6.

 [11] Abadi, M. et al., “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems,” arXiv
Prepr. arXiv1603.04467, 2016.

[12] Abadi, M. et al., “TensorFlow: A system for large-
scale machine learning,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, 2016, pp. 265–283.

[13] Chien, S. W. D., Markidis, S., V. Olshevsky, Bulatov,
Y., E. Laure and Vetter, J., “TensorFlow Doing HPC,” in
2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2019, pp.
509–518.

[14] Agrawal, A. et al., “TensorFlow Eager: A Multi-
Stage, Python-Embedded DSL for Machine Learning,”
arXiv Prepr. arXiv1903.01855, 2019.

[15] Andrade-Loarca, H. and Kutyniok, G., “tfShearlab:
The TensorFlow Digital Shearlet Transform for Deep
Learning,” arXiv Prepr. arXiv2006.04591, 2020.

[16] Pietikäinen, M., Hadid, A., Zhao, G. and Ahonen, T.,
“Local Binary Patterns for Still Images,” Springer, pp.
13–47, 2011.

[17] Zhao, Y., Ding, Y. and Zhao, X. Y., “Image quality
assessment based on complementary local feature
extraction and quantification,” Electron. Lett., vol. 52,
no. 22, pp. 1849–1851, 2016.

[18] Gomathy Nayagam, M. and Ramar, K., “Reliable
object recognition system for cloud video data based on
LDP features,” Comput. Commun., vol. 149, pp. 343–349,
2020.

[19] Deng, J., Dong, W., Socher, R., Li, L.J., Li, Kai and Fei-
Fei, Li, “ImageNet: A large-scale hierarchical image
database,” IEEE conference on computer vision and
pattern recognition, 2010, pp. 248–255.

