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ABSTRACT  

Early crop yield estimates could provide up-to-date information 

on supply, demand, stocks, and export availability through 

which governing bodies can make better agricultural 

management plans. This study aims to develop a yield model 

estimating pre-harvest winter wheat yield at both tillering and 

flowering stages using a multiple linear regression approach 

based on the relationship between actual yield and satellite 

derived crops’ phenological parameters. Four crop parameters 

(NDVI, Cumulative NDVI, LAI and FPAR) were regressed in 

combination to find the best applicable model. Regression results 

showed that correlations for all models among the variables of 

the flowering period are higher than that of tillering (0.63>0.53). 

The mean RMSE’s of the observed vs predicted yields for 

tillering period was 645.9 kg ha-1 and 574.5 kg ha-1 for flowering 

period. The optimal developed model which consists of NDVI and 

CNDVI variables provided 76% and 79% of predicting accuracy 

3 and 1.5 months before harvest respectively. 
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INTRODUCTION 

It’s thought that wheat can feed the world in future. Recent records support this 

argument that wheat is one of the most two common cereals (with rice) available all 

over the world today since it is grown on more land area than the other commercial 

crops and continues to be the most important food source of the global population 

(Helene, 2012). It is therefore important to make an accurate and in time forecasts of 

wheat yield, through which policymakers do necessary actions for national food security 

and import-export decisions (Justice and Becker-Reshef, 2007). 

As crop yield is considered to be one of the essential indicators for planning and 

monitoring of agricultural production, most of the wheat producing countries try to find 

and develop appropriate forecast methods. For this purpose, some techniques such as 

visual estimates, sample crop cut surveys, simulation models and statistical regression 
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approaches have been used with some degrees of success (Doraiswamy et al., 2003). 

Among these, the most-used crop simulation models (CERES, WOFOST, CROPSYST 

and AQUACROP) seem appropriate for accurate forecasts because they integrate 

various environmental factors such as temperature, available water, wind, soil 

practices. But the main drawback of these complex models is that they mostly require 

several cropspecific inputs and are often limited by constraints that are not easy to 

measure without on-site field equipment. To overcome these limitations, easier and 

simpler methodologies, which use statistical regression approach based on the 

relationship between crop specific data captured via satellite and field data have been 

offered in the scientific literature (Dubey et al., 1994; Boken and Shaykewich, 2002; 

Wall et al., 2007).  

Satellite imagery regressed yield estimation methods have been used for this purpose 

since the early 1970s (Colwell et al., 1977; Tucker et al., 1980; Wiegand et al., 1991; 

Serrano et al., 2000). The statistical regression models for yield forecasting generally 

depend on the experiential relations between field-measured yield (reference data) and 

reflectance based crop data. The basic assumption of this viewpoint is that yield relates 

with plant’s spectral behaviors in the electromagnetic spectrum, which is responsive 

indicator of plants’ development and live biomass to be assessed through spectral 

indices such as normalized difference vegetation indices (NDVI) leaf area index (LAI) 

and fractioned photosynthetic active radiation (FPAR) etc. (Tucker, 1979). In academic 

literature, many researches have been carried out in this field such as Fischer (1975) 

expressed that wheat yield was a function Tucker et al. (1980) found that wheat yield 

had a significant linear relationship with time-integrated NDVI in growing season. 

Pinter et al. (1981) found a similar result that wheat yield could be related to temporal 

cumulative NDVI during the growing period. Similarly, Doraiswamy et al. (2003) used 

several input variables derived from satellite imagery in a crop growth model to 

simulate wheat yields at county levels in North Dakota. Becker-Reshef et al. (2010) used 

official yield statistics and maximum NDVIs of the wheat growing period to develop a 

forecasting model for winter wheat production nearly two months before harvest in 

Ukraine. Even though all these statistical approaches have some disadvantages of being 

localized and non-extendible to vast areas, they are still preferred way due to simplicity 

and fewer input requirements. 

This study aims firstly to develop a yield model estimating pre-harvest winter wheat 

yield at both tillering and flowering stages using multiple linear regression approach 

and then secondly to check the model’s robustness and accuracy performance with root 

mean square error. Though this study reflects the results of a yield forecast model 

developed for a pilot area, the ultimate goal should be to find a simple and easy model 

at the national level providing information on yield and production supply for 

agricultural planning. 

MATERIAL and METHODS 

Study area 

Central Anatolia is the main wheat-growing region of Turkey which makes 

approximately 30% of the total wheat areas (TUIK, 2011).  Altinova TIGEM Farm 

locality, as a study area, lies in the central Anatolia homeland of Konya province, 

approximately 60 km North of Kadınhanı town (Figure 1). TIGEM farms are 

governmental establishments responsible for producing certified seeds of field crops 
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(90% of wheat) in vast areas of the country. Currently, there are 18 TIGEM farms which 

mostly grow cereal crops and some forage crops on their lands throughout the country 

(TIGEM, 2018).  

Altinova TIGEM farm was selected as a study site because it has extensive parcels 

(2x2 km), which allow working with moderate or low-resolution satellite imagery. In 

addition, it is also easy to obtain reliable parcel related yield records, total production, 

harvested area, etc. annually and historically with an official claiming. Continental 

climate prevails in the area with irregular rainfall which mostly occurs in winter and 

early spring within the year. The territory of Altinova TIGEM farm stretches almost 27 

by 20 km in size with 76 main square parcels divided into 126 sub-parcels where cereals 

and forage crops are cultivated in rotation (Ünal and De Bie, 2017). In the farm area, 

winter wheat is mostly sown in October and crop germination starts in late November 

if climate conditions are suitable before entering winter dormancy. Vegetative 

development restarts in spring and reaches full maturity in summer before harvest 

season from early July to the first week of August. 

 

 
Figure 1. Study area and TIGEM Altınova Farm parcels.  

 

Data 

The study data includes satellite-derived data of wheat sown parcels and their actual 

yield records. Both data cover the six-year period (2008-2013) so as to construct a 

regression model of both tillering and flowering periods to forecast wheat yield prior to 

harvest.  The yield models assess linear relationships between field and satellite data 

representing the variables as dependent and independent respectively. 
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Field Data 

Field data includes yield records of the parcels, which were collected from the measured 

grain mass weight of the harvested wheat crop by a combine harvester. A total of 438 

yield records of the wheat sown parcels for the 6year period (2008-2013) were obtained 

from farm administration. While 282 of them were used in regression analysis as 

dependent variables to get yield models, remaining (156) called “Test Parcels” were used 

to check the performance of generated models using root mean squared errors (RMSE) 

values.  

The use of RMSE is very common to measure model performance and considered a 

good general-purpose error metric for numerical predictions (Chai and Draxler, 2014). 

Field surveys were also conducted to check the overall condition of wheat parcels and 

to observe their vegetative development at the tillering and flowering stages. During 

the period of 2012-2015, a total of 24 field visit campaigns were organized. 21 of them 

were for vegetative monitoring and the remaining 3 visits were carried out just for the 

informative trip in harvest and germination stage. The parcels for field visits were 

selected based on the criteria that they should be accessible easily by vehicle and be 

distributed throughout the farm area (Figure 2). Surveys were done visually to see 

whether wheat crop entered tillering and flowering stages and also to observe the 

existing vegetative conditions. 

Tillering and flowering periods were selected for the field campaigns because they 

are both pre-harvest time allowing yield forecasting in advance and are seem to be an 

important stage of crop growth (Acevedo et al., 2002; White and Edwards, 2008). The 

tillering period is important because it allows plants to take advantage of good growing 

conditions. Similarly, flowering stage provides maximum green canopy cover which 

reflects active biomass that can easily be captured by spectral measures such as NDVI 

and FPAR (Hanan et al., 1995). Although depending on the weather conditions and 

geographic locations, past experiences of consulted local farmers indicate that tillering 

generally coincides the date of approximately 3-months ahead of harvest, while 

flowering stage starts 1.5 months before harvest in the study area, which makes the 

first half of the April as “Tillering” and end of May as “Flowering”. 

 

https://www.sciencedirect.com/topics/engineering/numerical-prediction


UNAL et al., / Turk J. Agr Eng Res (TURKAGER), 2020, 1(2), 390-403                            394 

  

 
Figure 2. Study area and selected parcels 

 

Satellite and vector data 

Yield forecasting studies based on satellite data generally use parameters related to 

biophysical characteristics of crops such as vegetation index (VI), leaf area index (LAI) 

and fractioned photosynthetic active radiation (FPAR). These parameters are indicative 

of crop development, green biomass and eventually yield capacity, which were referred 

to in several scientific literature (Campbell, 1996; Prince and Goward, 1995; Huang et 

al., 2014). Remotely sensed data used in this study were normalized difference 

vegetation index (NDVI), temporal cumulative NDVI, leaf area index and fractioned 

photosynthetic active radiation which were all treated as independent variables in the 

regression models. NDVI, LAI and FPAR are as of grid data and ready-to-use products 

of the Moderate Resolution Imaging Spectrometer (MODIS) sensor and hereafter 

they’re called MODIS products. All these raster data products were separately 

downloaded through the internet as a time series dataset matching “Tillering” and 

Flowering” periods from 2008 to 2013. 

In this study, the seasonal maximum NDVI was treated as the main input parameter 

since it enabled a timely prediction of production approximately a month and a half 

prior to harvest (Becker et al., 2010). MODIS NDVI data were downloaded from the 

Global Agriculture Monitoring (GLAM) Project archive web site (GLAM, 2018). The 

GLAM data offers 16-day composite NDVI imagery produced from aerosol corrected 

surface reflectance data (Vermote et al., 2002). Cumulative NDVI’s (CNDVI) of tillering 

and flowering stages were calculated by summing the NDVI dataset of starting from 

germination to end of the relevant stage. Tillering cumulative NDVI covers the 

February – March period, while the flowering stage of cumulative NDVI sums up all 

NDVI data from February to the end of May. LAI/FPAR data (MOD15A2 product) were 
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retrieved from the online Data Pool, through the NASA Land Processes Distributed 

Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science 

(EROS) Center (USGS, 2018). The MODIS MOD15A2 LAI/FPAR product is produced 

globally at a 1 km resolution grid tiles from MODIS bands for all vegetated land surface 

and used to calculate surface photosynthesis, evapotranspiration, and net primary 

production.  

Vector data consist of digitized parcel polygons as an ESRI shape file. A total of 125 

polygons covers the whole TIGEM farm area. The vector dataset was used as a zone to 

retrieve the cell values of independent variables in raster format. 

 

Methodology 

The methodology of this study was based on the approach that satellite-derived data of 

crops’ parameters have a relationship with the actual yields, which made available to 

develop a yield estimation model with multiple linear regression. Multiple regression 

analysis is used to see if there is a statistically significant relationship between sets of 

variables and to find trends in those sets of data. This relationship here is such 

explained that crop yield is dependent upon the at least two crop parameters or more 

which were given here as mean NDVI, cumulative NDVI, LAI and FPAR. The resulting 

yield model/models calculate(s) the wheat yield as a function of these parameters in 

combination aiming to get the most accurate one. The following equation (Eq. 1) is given 

to represent a yield model with 4 variables as an example.    

                     

Yield = f (NDVI, CNDVI, LAI, FPAR)                 (1) 

 

The relationship between the parameters is linear and represented in multiple 

regression yield model as follow (Eq. 2); 

 

y = α + βNDVI + ηCNDVI + ɛLAI + γFPAR                        (2) 

 

Where, y is the wheat yield as dependent variable. α, β, η, ɛ and γ are coefficients, 

NDVI, CNDVI, LAI and FPAR are the input crop parameters representing independent 

variables. 

The values of crop parameters required for the regression model were retrieved 

through GIS analysis (ARCGIS-ESRI Software) with a zonal statistics tool, which 

allows us to calculate statistics on the values of raster data within the zones of vector 

dataset. The vector dataset represents parcels borders as polygon features. The zonal 

tool calculates the mean value of all pixels within each zone (parcel polygon) of the 

specified raster dataset (NDVI, CNDVI, LAI and FPAR) and produces an attribute table 

where all parcels are listed with a mean value of relevant raster data. Zonal statistics 

were applied for all MODIS products at both tillering and the flowering phase during 6 

year period and parcel-based results were exported to the statistical datasheet as 

independent variables. The parcels’ yield records were also added to this resultant sheet 

as a dependent variable ready for multiple regression analysis. The graphical 

representation of the methodology was given in Figure 3.  

 

https://www.statisticshowto.datasciencecentral.com/what-is-statistical-significance/
https://www.statisticshowto.datasciencecentral.com/variable/


UNAL et al., / Turk J. Agr Eng Res (TURKAGER), 2020, 1(2), 390-403                            396 

  

 
Figure 3. Methodology of the study 

 

Since the final aim is to find the best yield model which could provide more accurate 

results, series of independent variables in the regression were used in combination 

keeping NDVI and CNDVI as two primary predictors. So four different yield models 

below were developed based on the number of independent variables.  

Model 1: (NDVI, CNDVI, LAI and FPAR),  

Model 2: (NDVI, CNDVI and FPAR),  

Model 3: (NDVI, CNDVI and LAI),  

Model 4: (NDVI and CNDVI)   

Used variables and coefficients in the models are given in Figure 4. 

The four regression models were run for 6 years of data for both tillering and 

flowering stages to obtain yield equations. A total of 282 data points for 6 year period 

was used in the analysis to develop models to forecast the yields of Test Parcels (TP). 

The predicted yields and the accuracy of the models’ prediction were compared to actual 

yields and assessed using the root mean square error (RMSE) expressed in units of the 

measured data (kg ha-1). The RMSE gives the weighted variations in errors (residual) 

between the predicted and observed values and was calculated as follows (Eq. 3); 

 

                                                 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1     (3) 

 

Where n is the number of observations, Pi is the predicted yield and Oi is the 

measured yield. 
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RESULTS and DISCUSSION 

To evaluate the models, predicted versus observed values were regressed and their 

coefficients of determination were compared. Four different yield models generated 

based on the number of used explanatory variables were separately tested with scatter 

plots of observed vs. predicted yields and the resulting models produced following yield 

equations (Figure 4). The results show that the highest correlations were found in Model 

1 and Model 3 (r2=0.539) while the lowest one was seen in Model 4 (r2=0.535) for the 

tillering period. Model 1 and Model 2 provided slightly higher correlations (r2=0.635) 

than Model 3 and Model 4 did with the R2 values of 0.633 and 0.632 respectively for the 

flowering period.  

Regression results showed that correlations between the dependent variable and 

independent variables for the flowering period are higher than that of the tillering 

period (0.63>0.53), because of the full canopy cover occurred in the flowering stage, 

which was also validated by field survey observations conducted at the first week of 

March and the end of May (Figure 5).  Canopy cover is considered to be an important 

aspect that has a strong relationship, at some level (until 80% green coverage), with 

crops’ phenologic metrics such as NDVI, LAI and FPAR and hence is the indication of 

yield according to various scientific literature (Ahlrichs and Bauer, 1983; Zhao, 2003; 

Jiang, 2006; Ren, 2008). 

In order to test the predictive performance of the developed models for both stages, 

predicted yields of 156 test parcels through 2008-2013 were compared to observed yields 

and evaluated with RMSE values (Table 1). The mean RMSE’s of the observed vs 

predicted yields for the tillering period was 645.9 kg ha-1 equivalent to 23.53% error and 

for the flowering period 574.5 kg ha-1 with an error of 20.93%.  This underlines that four 

models’ yield estimation performance is higher in flowering than in the tillering period 

because of the steadily increasing NDVI values which affect wheat yield to rise 

accordingly. This is consistent with the findings of Babar et al. (2006), Aparicio et al. 

(2000) and Royo et al. (2003) that there was a strong positive relationship between yield 

and NDVI. 

All models produced similar performance results for both stages. RMSE values of 

models’ results for tillering and flowering stage are very close to each other with very 

low standard deviations of 0.14 and 0.10 respectively. These results suggest that it’s 

rational to use a simple model requiring fewer inputs with an acceptable estimation 

accuracy in comparison with others. Model 4 consisting of NDVI and CNDVI variables 

seems to be an appropriate yield estimation model in these conditions providing 76% of 

accuracy for the tillering period and 79% for the flowering period. 
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TILLERING                                                FLOWERING 

Model 1 variables; NDVI, CNDVI, LAI, FPAR 

   

Model 2 variables; NDVI, CNDVI, FPAR 

   

Model 3 variables; NDVI, CNDVI, LAI 

   

Model 4 variables; NDVI, CNDVI 

   
Figure 4. Yield models equations and correlations between predicted and observed 

yields 
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Figure 5. Pictures from field surveys at tillering and flowering periods 

 

Table 1. Yield models’ performances in terms of RMSE at growing period 

Models 
Explanatory 

Variables 

Growing Stages 

Tillering Flowering 

RMSE (kg ha-1) RMSE % RMSE (kg ha-1) RMSE% 

Model 1 

NDVI 

CNDVI 

LAI 

FPAR 

644.71 23.49 573.68 20.90 

Model 2 

NDVI 

CNDVI 

LAI 

644.80 23.49 575.29 20.96 

Model 3 

NDVI 

CNDVI 

FPAR 

646.52 23.55 573.72 20.90 

Model 4 
NDVI 

CNDVI 
647.85 23.60 575.70 20.97 

Mean 645.91 23.53 574.51 20.93 

Std. dev. 0.14 0.14 0.10 0.03 

 

Notably, the models predict the yields better in the flowering stage than they do in 

the tillering period producing approximately a 3% accuracy increase in RMSE. Figure 

6 shows the predicted yields at the tillering and flowering stages with their difference 

values from the measured yields as an absolute percentage value (deviation). It’s clear 

that the number of parcels which have high deviation values at tillering period 

decreased in flowering period meaning the models provide better accuracy when crops 

enter flowering stage approximately 1.5 months prior to harvest. This situation does 

not offer satisfactory advantages for authorities because predictions need to be available 

as early in the growing season as possible. Yet, the local farmers or mid-size farms could 

benefit from it to estimate possible incomes-expenses and to make arrangements for 

farming. 

Tillering Flowering 
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Figure 6.  Predicted yields and deviations from actual yield. Model 4 (NDVI-CNDVI) 

predicted the yields of wheat parcels of TIGEM Farm in 2014 growing season before 

harvest time at tillering (A) and then flowering stage (C). Deviations were calculated as 

an absolute value from the difference between actual yields and predicted ones at both 

tillering (B) and flowering (D) stages. 

 

 

 



UNAL et al., / Turk J. Agr Eng Res (TURKAGER), 2020, 1(2), 390-403                            401 

  

CONCLUSION 

This study aimed to develop a yield model estimating pre-harvest winter wheat yield at 

both tillering and flowering stages using multiple linear regression approach. Yield 

models were based on the relationship between satellite data derived independent 

variables (NDVI, Cumulative NDVI, LAI and FPAR) and observed yields at field level. 

The predictive performance of the developed four different models was tested and 

evaluated with actual yields and RMSE. According to the results; all models could 

predict the yield with approximately 76% accuracy at the tillering period and 79% 

accuracy at the flowering period which corresponds to 3 months and 1 month before 

harvest time respectively. Though prediction accuracy is higher for the flowering period, 

it’s not advisable to make a prediction in this period because harvesting time is close 

and there isn’t be enough time for actions such as crop insurance, cash-flow budgeting, 

planning harvest and storage requirements.   

Even though all models give more or less the same performance results, the model 

consisting of NDVI and temporal cumulative NDVI variables was the best one in terms 

of simplicity and easy applicability. Estimation accuracy may not be considered as 

sufficient, but yet predicted yield figures could give valuable information especially 3 

months before harvesting for governing bodies to make agricultural management plans 

on supply and demand for the crop. This study showed that satellite based yield models 

provide an easy crop yield estimations with low cost and time saving especially for large 

areas. Producing the most ideal forecasting models based on climatic and environmental 

conditions and including additional variables for different product types should be one 

of the main objectives in subsequent studies. 
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