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Highlights 

• This paper focuses on reliability estimation in a multicomponent stress-strength model. 

• Three sampling schemes are employed for estimation problem. 

• A simulation study is provided for illustrative purposes. 
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Abstract 

Stress-strength models are considered of great significance due to their applicability in varied 

fields. We address the estimation of the system reliability of a multicomponent stress-strength 

model, say Rs,k, of an s out of k system when the pair stress and strengths are drawn from a 

generalized inverted exponential distribution. The system is deemed as working if at least s out 

of k strengths be more than its stress. We obtain the reliability estimators when the data of strength 

and stress distributions are collected from three sampling schemes, specifically; simple random 

sampling, ranked set sampling, and median ranked set sampling. We obtain four estimators of Rs,k 

out from median ranked set sampling. The behavior of different estimates is examined via a 

simulation study based on mean squared errors and efficiencies. The simulation studies point out 

that the reliability estimates of Rs,k, from the ranked set sampling scheme are preferred than other 

estimates picked from the simple random sample and median ranked set sampling in a majority 

of the situations. The theoretical studies are explained with the aid of real data analysis.  
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1. INTRODUCTION 

 
In many circumstances where the exact measurements of the characteristic under study are costly or hard 

to get, but sorting them (in small sets) is cheap or easy, ranked set sampling (RSS) scheme is indeed suitable 

than simple random sampling (SRS). The RSS is another cost-effective sampling method that can be 

utilized for a given sampling unit of an experiment or a study. The RSS was originally prepared in [1] for 

estimating the mean of grass yield. He observed that whereas getting the exact value of yield of a plot is 

hard and takes a long time, one can easily rank closely plots in terms of their pasture yield by an eye 

examination. 

 

The RSS design is formed as: Randomly take random samples of size n from the population study each of 

size n, then rank the units in each sample according to the interested variable by optical inspection or by 

any other economical process. Then the lowest and second lowest units from the first and second samples 

are chosen for substantial measurement. Repeat this procedure up-till the highest unit from the nth sample 

is chosen for measurements. Thus all of n measured units, which exemplified one cycle, are collected. This 

procedure may be worked out r times until the number of nr units is yielded. 

 

Reference [2] offered the mathematical theory, which supports McIntyre's claims. [3] indicated that the 

mean of RSS is unbiased and more efficient than the mean of SRS. [4] provided some tests of exponentiated 

Pareto distribution in case of extreme RSS. [5] handled with the maximum likelihood (ML) and Bayesian   
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estimators using RSS. Modified tests of the Weibull model were provided in [6]. For some more knowledge 

about RSS, see [7-9]. 

 

Various researchers proposed a modification of the RSS design to get better estimators for the population 

mean. Median RSS (MRSS) is perhaps one of the popular schemes (see [10]). MRSS strategy is formed 

as: we select n random samples randomly from the target population each of size n. The units within each 

sample are sorted according to the interesting variable. For an odd sample size, choose the median member 

of each arranged set. For an even sample size, take from the first
 

2n  samples the ( 2)thn  smallest sorted 

member and from the second 2n  samples the (( 2) 1)thn +  smallest ordered member. To get more samples 

from MRSS, the cycle is worked out r steps to gain a sample of size nr members. 

 

In the area of mechanical engineering stress-strength (SS) reliability models are frequently serviced to 

characterize the life of a unit that possesses a random strength X and is submitted to a random stress Y. The 

SS reliability, mathematically is formed as R = P (Y < X ), that is, the system will stop working if the stress 

applied to it overrides its strength. This model was first established in [11] and expanded in [12]. Broadly, 

making inferences about SS reliability have been discussed extensively in the statistical literature based on 

SRS data by many researchers. For instance, [13] discussed the reliability estimator for the exponential 

distributions. [14] considered three estimators of the SS model when X and Y are independent exponential 

models. [15] considered the estimation of the SS reliability for the generalized inverted exponential (GIE) 

distribution from RSS. The SS reliability was discussed for independent Burr type XII distribution under 

some types of RSS [16, 17]. Estimation of the SS model for Weibull distribution was provided in [18]. 

Reliability estimation of the SS model was considered in [19] for two independent Lindley populations. 

[20] addressed the reliability estimation for X and Y are independent exponentiated Pareto populations using 

RSS.  

 

A multicomponent structure consists of k strength members (ingredients), where k identically independent 

distributed (iid) random variables X1, X2,…, Xk and each member (ingredient) faces a random stress Y. The 

structure is considered as active only if at least s out of k (s < k) strengths override the stress. Consider X1, 

X2,…, Xk be iid with common cumulative distribution function (CDF) F(x). Also, let G(y) be the CDF of a 

random stress Y. The reliability in the multicomponent SS (MSS) model adopted in [21] is assigned by:  

 

Rs,k =P [ at least s of the (X1, X2,…, Xk) exceed Y ] 

( ) [1 ( )] ( ).
k

k i i

i s

k
F y F y dG x

i



−

= −

 
= − 

 
    

(1) 

 

Systems of MSS type can be found in industrial and military applications (see [22]). Estimation of the MSS 

reliability was treated and applied in some areas by several authors. For example [23] handled the reliability 

of the MSS when both X and Y variables are distributed as generalized Pareto. [24, 25] discussed the 

reliability of the MSS for exponentiated Pareto distribution. [26] considered the MSS reliability estimator 

for generalized exponential distribution. [27] estimated the MSS reliability when X and Y are independent 

Burr XII distribution. [28] discussed the estimation of the MSS reliability when X and Y are independent 

Burr XII distribution under selective RSS. [29] discussed s-out-of-k reliability estimator for Weibull 

distribution from record values. 

 

Applications of the RSS scheme are not limited to the agricultural field, but also include forestry, medicine 

environmental monitoring and entomology. In the literature, there are few studies that had been performed 

about the SS problem incorporating multicomponent systems based on the RSS technique. Therefore, our 

objective here is to assess the MSS reliability estimators for GIE distribution depend on SRS, RSS and 

MRSS. We attain the simulation study to compare estimates of the suggested sampling schemes. This article 

is outlined as follows. Section 2 displays the model description and the reliability of the structure. Section 

3 assigns to the ML estimator of Rs,k under SRS. Section 4 deals with the MSS reliability estimator under 

RSS. Section 5 presents different MSS reliability estimates when the available observations of X and Y 
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variables are gathered from MRSS for even or odd sample sizes. Simulation studies, as well as applications 

to real data, are managed, respectively in Sections 6 and 7. We conclude the paper at the end of the paper.  

 

2. MODEL SPECIFICATION AND THE RELIABILITY OF THE STRUCTURE 

 
The exponential distribution is a very simple and the most popular studied distribution in life testing. 

Several generalizations of the exponential distribution were proposed due to the lack of ability to model 

real-life phenomena with non-constant failure rates. The inverted exponential (IE) carries the inverted 

bathtub hazard rate which has many applications in various areas. [30] proposed the two-parameter 

generalization of the IE distribution known as the GIE. They have recommended that the GIE model is the 

acceptable model to real data compared to the IE model. The GIE model is practically employed in multiple 

field areas. The GIE model has a probability density function assigned as: 

 

( )
1

2( ; , ) e 1 e ; 0,x xf x x x


   
−

− − −= −   
(2) 

where, , 0    are the shape and scale parameters respectively. The CDF associated with (2) is: 

 

( )( ; , ) 1 1 , 0.xF x e x


  −= − −   
(3) 

 

Studies about the GIE distribution were discussed by several researchers (for instance see [31-35]). Note 

that; for 1, =  the CDF (Equation (3)) reduces to the IE distribution. 

 
Suppose that X1, X2,…, Xk  be the strengths components (ingredients) of a structure that is exposed to the 

stress Y. Let X1, X2,…, Xk is a random sample from GIE ( , )  distribution and 𝑌 is a random variable from 

GIE ( , )   distribution are independent. The reliability of MSS for the GIE distribution can be obtained 

using (1) − (3) as  
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(4) 

such that ,





=  and B(.,.) is the beta function.  

 

3. MSS RELIABILITY ESTIMATOR BASED ON SRS 

 
Here, we derive the ML reliability estimator of the MSS given the samples. We consider that X1, X2, ..., Xn 

and Y1, Y2,…, Ym are independent from GIE ( ,  ) and GIE ( ,  ) respectively. We must obtain the ML 

estimators of   and , to get the ML estimator of MSS reliability. The joint log-likelihood function of the 

observed sample is: 

 

( )
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1 1 1 1 1
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(5) 

Differentiating Equation (5) related to the population parameters, the following equations are obtained 

 

( )( )
1

ln ln 1 ,i

n
x

i

n
L e






−

=

  = + −  
(6)
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and,
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The ML estimators are derived after putting Equations (6) − (8) with zero. As seen, the ML estimator of 
and   is obtained as a function of   by using Equation (6) and Equation (7) as follows: 
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The ML estimators of  and   can be obtained from Equation (9) when   is known. In the case of all 

unknown parameters, the parameter  is estimated by solving the following nonlinear equation: 
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(10) 

 

Note that ̂  is a fixed point solution of Equation (10), hence we apply iterative methodology to get the 

solution. Consequently, the ML estimator of the MSS reliability Rs.k is attained after substituting the ML of 

 and  in Equation (4).  

 

4. MSS RELIABILITY ESTIMATOR BASED ON RSS 

 
Here, the ML reliability estimator in an MSS model Rs,k is obtained when X and Y are independent GIE 

distribution from RSS. Suppose { Xi(i)c, i =1,2…,mx; c =1,2,…rx }, where mx is the set size and rx is the 

number of cycles, is observed RSS with sample size n=mxrx, chosen from the GIE ( , ).   Similarly, let { 

Yj(j)d, j =1,2…,my; d =1,2,…ry} is an observed RSS having sample size m= my ry where my is the set size, 

accepted from the GIE ( , ).  The likelihood function L1 for the accessible samples is  
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where, 
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= − and 
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y

j j dO e
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= − The log-likelihood function L1 of ,   and 

  is written as
  



318  Amal HASSAN, Heba NAGY / GU J Sci, 35 (1): 314-331 (2022) 

 
 

( )( )

1 ( ) ( )
( )1 1 1 1 1 1

( )
( )1 1 1 1 1 1

( )

ln ln( ) 2 ln ( 1 ) 1 ln

( 1) ln 1 ln( ) 2 ln

( 1 ) 1 ln

x x x x x x

y y y yx x

i i c

r m r m r m

x x i i c x i i c
i i cc i c i c i

r m r mr m

y y j j d
j j dc i d j d j

y j j d

L r m x m i H
x

i H r m y
y

m j O




 






= = = = = =

= = = = = =

 − − + + − −  

+ − − + − −

 + + − − + 

  

  

( ) ( )

1 1

( 1) ln 1 .

y y

j j d

r m

d j

j O 

= =

− − 

 

 

The ML estimators of parameters are obtained by maximizing ln L1 as follows:  
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(13) 

An iterative technique is worked to solve Equations (11) − (13) numerically. Hence the ML estimators of 

and   are obtained. According to invariance property the MSS reliability estimator is obtained after 

substituting these estimators in Equation (4).  

 

5. MSS RELIABILITY ESTIMATOR BASED ON MRSS 

 
Here, we obtain four estimators of Rs,k when X and Y are independent GIE distributions using MRSS for 

odd set size (MRSSO) or MRSS for even set size (MRSSE). The first and second estimators are considered 

when both stress and strength data are selected from the same set sizes. The third and fourth estimators are 

regarded when both stress and strength data are selected from the different set sizes.  

 

Here, the MSS reliability estimator is derived when X ~ GIE ( , )   and Y~ GIE ( , )   and their samples 

are selected from MRSSO. Let Xi(g)c; i=1,…,mx, c=1,…,rx; g=  ( 1) 2xm +  be the available MRSSO selected 

from strength distribution. Also, suppose that Yj(k)d ; j=1,…,my, d=1,…,ry ; k= ( 1) 2ym +   be the available 

MRSSO chosen from stress distribution. The likelihood function L2 of the observed samples is:  
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So, the log-likelihood function of L2 is  
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The first partial derivatives of ln L2 related to parameters are derived below:  
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(16) 

 

 

Solving numerically Equations (14) − (16), we get the ML estimators of ,   and   based on MRSS. 

Inserting the ML estimators of   and 
 
in Equation (4) we get the MSS reliability estimator.  

 

5.1. MSS Reliability Estimator with Even Set Size 

 

We regard the MSS estimator, where X ~ GIE ( , )   and Y~ GIE using MRSSE. Let [{Xi(q)c , i=1,…,q}

{Xi(q+1)c , i=q+1,…,mx }; c=1,…,rx, 2]xq m=  be the MRSSE chosen from strength distribution. Also, let 

[{Yj(v)d , j=1,…,v}{Yj(v+1)d , j=v+1,…,my }; d=1,…,ry, 2]ym =  be the MRSSE chosen from the stress 

distribution. The likelihood function L3 is given by
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The log-likelihood function of L3 for ,   and   depending on the observed MRSSE is 
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The partial derivatives of L3 regard to ,   and  are obtained as follows: 
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 (19) 

 

We solve numerically Equations (17) − (19) to get the ML estimators of ,   and  . Hence, the ML of 

MSS reliability is obtained from Equation (4).  

 

5.2. MSS Reliability Estimator with Odd &Even Set Sizes 

 

Here, the MSS reliability estimator is discussed, where X ~ GIE ( , )   under MRSSO. In contrast, we 

observe the random samples of Y~ GIE ( , )   under MRSSE.  
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Let Xi(g)c; i=1,…,mx,  ( 1) 2xg m= + , c=1,…,rx;  be the required MRSSO selected from strength 

distribution. Let {Yj(v)d ; j=1,…,v } {Yj(v+1)d ; j=v+1,…,my }.; d=1,…,ry be the required MRSSE extracted 

from stress distribution. Therefore, the likelihood function is 
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The log-likelihood is as follows: 

( )( )

( ) ( 1)

4 ( ) ( )
( )1 1 1 1

1 1
1 2 ( ) ( 1)

1 1 1 1

ln ln( ) 2 ln( ) ( 1) ln 1 ( 1) ln( )

ln( ) ( ) 2 ln ln

x x x x

i g c

y y y

j d j d

r m r m

x x i g c i g c
i g cc i c i

r m r

y y j d j

d j j d

L r m x g N g N
x

m r y y T T y y
 





 




 

 
+

= = = =

− −
+

= = = + =

 
  − + + − − + −      

 
 + − + + + − +
 
 

   

   
1 1 1

.

y yr m

d

d j j



= = = +

 
 
 
 

  
 

The partial derivatives of ln L4 related to   and
 


 
are derived in Equations (14) and (18) respectively. 

The first partial derivative of ln L4 related to  is as follows: 
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Equations (14), (18) and (20) have no closed form solutions, so we employ the numerical technique to get 

the solution. Further, the MSS reliability estimator is yielded from Equation (4). 

 

5.3. MSS Reliability Estimator with Even &Odd Set Sizes 

 

Here, we derive the MSS reliability estimator when the data of the strength are taken from the GIE 

distribution based on MRSSE.  At the same time, the data of stress are taken from the GIE distribution from 
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The log-likelihood function is 
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The partial derivatives of   and   are derived in (15) and (17) respectively. Also, we obtain the first 

derivative of  as follows: 
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(21) 

 

Solving Equations (15), (17) and (21) numerically, we find the ML estimators of ,   and . Hence, the 

MSS reliability estimator is yielded from Equation (4).  

 

6. SIMULATION STUDY 

 

A comprehensive illustration is utilized to compare the behaviour of Rs,k estimates using SRS, RSS and 

MRSS. We consider four issues of stress and strength random variables under MRSS. The simulation study 

is designed as follows: 

 

❖ 1000 random samples of sizes (n, m) = (10, 10), (10, 15), (15, 10), (15, 15), (15, 20), (20, 15), (20, 

20), (25, 25), (30, 30), (35, 35) are generated from the strength X ~ GIE ( , )  and stress Y ~ GIE

( , )  distributions based on SRS. 

❖ 1000 random samples of set sizes (mx, my) =(2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5), (6, 

6), (7, 7), where the number of cycles is rx = ry = r = 5, are generated from stress and strength 

populations based on RSS. A random sample{(X1(1)c, X2(2)c,...Xn(n)c), c=1,...,5} of size (n = 

𝑚xrx=𝑚xr) is drawn from strength population. Also, a  random sample {(Y1(1)d, Y2(2)d,...Ym(m)d), d 

=1,...,5} of size (m= myry= myr) is drawn from stress population.  

❖  1000 random samples of set sizes (mx, my) =(3, 3), (5, 5), (7, 7), where the number of cycles is rx = 

ry = r = 5, are generated from X and Y populations based on MRSSO. Let n = 𝑚xrx and m = myry  

are the available random samples from X and Y, where {X1(g)c, X2(g)c, Xn(g)c, c=1…5, g=(mx+1)/2}
 

and{Y1(k)d, Y2(k)d, Ym(k)d, d=1,2,…5, k=(my+1)/2}.  

❖ 1000 random samples of set sizes (mx, my) = (2, 2), (4, 4), (6, 6), where the number of cycles is rx = 

ry = r = 5, are generated from X and Y populations based on MRSSE. A random sample of size (n= 

mxrx = mxr) and (m = my ry=my r) is drawn from X and Y as follows {X1(q)c, X2(q)c,…, Xq(q)c , Xq+1(q+1)c, 

Xq+2(q+1)c,…, Xn(q+1)c} and {Y1(v)d, Y2(v)d,…, Yv(v)d , Yv+1(v +1)d, Yv+2(v+1)d,…, Ym(v+1)d} where 2xq m=  

and 2yv m= .  

❖ Values of ( , )   are chosen as (0.5, 1), (0.5, 2.5), (1, 3.5), (1.5, 2.5) and  = 0.5. 

❖ The true values of Rs,k at (s, k) = (1, 3) are equal to 0.869, 0.9, 0.963 and 0.982 and the true values of 

system reliability Rs,k at (s, k) = (2, 4) are equal to 0.752, 0.8, 0.91 and 0.952. 

❖ The ML estimate (MLE) of   is obtained using (10), then substituting the MLE of   in Equation 

(9), we get the MLEs of  and .  Then, inserting the MLE of population parameter in Equation 

(4), we obtain the MLE of Rs,k in the case of SRS technique. 
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❖ The MLEs of ,   and  based on RSS are obtained by solving numerically Equations (11) − (13). 

Then, the MLE of Rs,k is yielded from Equation (4). 

❖ The MLEs of ,   and  are obtained in four cases based on MRSS. Then, the MLE of Rs,k is yielded 

from Equation (4). 

❖ In comparison, we compute the mean squared errors (MSEs) and relative efficiencies (REs) 

measures, where the RE of the RSS and MRSS relative to SRS are defined as: 

( )
( )

,

1

,

ˆ ( )
,

ˆ ( )

SRSs k SRS

s k RSS RSS

MSE R Y X
RE

MSE R Y X


=


           

( )
( )

,

,

ˆ ( )
.

ˆ ( )R

SRs k SRS

2

s k M SS MRS

S

S

MSE R Y X
RE

MSE R Y X


=


 

All simulated studies are obtained via MathCAD 14. Tables 1 −8 summarize the MSEs and REs of Rs,k 

using the proposed sampling designs. 

 

According to Tables 1 −8 and Figures 1 −6, we remark the following: 

• The MSEs of MSS reliability estimates under MRSS scheme, are preferable than the corresponding 

under SRS in majority of cases (Tables 1 −8). 

• The MSEs of MSS reliability estimates via RSS scheme are smaller than the corresponding MSEs of 

MSS reliability estimates under SRS in majority of cases (Tables 1 −8). 

• The MSEs of the MSS estimate via RSS are less than the corresponding under MRSS and SRS schemes 

for most cases (see Figures 1 and 2). 

  

Figure 1. MSE of MSS estimate at R2,4 =0.8 Figure 2. MSE of MSS estimate at R1,3 =0.9 

 

• The MSEs of Rs,k estimate for the considered sampling schemes decline as the exact value of Rs,k 

increases for majority of situations (see Figures 3 and 4).  

• Figures 5 and 6 show that the RSS method is preferable than MRSS method compared to SRS for most 

cases. 

 

  

Figure 3. MSE of the MSS estimate at  (mx, 

my)=(2, 2) and (s, k)=(1, 3) 

Figure 4. MSE of the MSS estimate at (mx, 

my)=(2, 2) and (s, k)=(2, 4) 

0

0,002

0,004

0,006

0,008

0,01

0,869 0,9 0,963 0,982

SRS RSS MRSS

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0,752 0,8 0,91 0,952

SRS RSS MRSS

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

(2,2) (4,4) (6,6) (3,3) (5,5) (7,7) (3,2) (3,4) (2,3) (4,3)

SRS RSS MRSS

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

(2,2) (4,4) (6,6) (3,3) (5,5) (7,7) (3,2) (3,4) (2,3) (4,3)

SRS RSS MRSS



324  Amal HASSAN, Heba NAGY / GU J Sci, 35 (1): 314-331 (2022) 

 
 

  

Figure 5. Efficiency of the MSS reliability estimates 

at R1,3=0.869 under RSS and MRSS with the 

corresponding SRS estimate 

Figure 6. Efficiency of MSS reliability 

estimates at R2,4=0.8 under RSS and MRSS 

with the corresponding SRS estimate 

• The MSEs of Rs,k under all schemes are decreasing with sample size. While the REs of Rs,k under 

all schemes are increasing with sample size.  

• The MSEs of MSS reliability estimates are decreasing as the value of  increases for the same 

sample size and for a fixed value of , in approximately most of the situations. While, the MSEs 

of MSS reliability estimates are increasing as the value of  increases for the same sample size and 

for fixed value of  in majority of the issues.  

• This study posted that the MLEs of Rs,k when X and Y are selected from MRSS are efficient than 

the MLEs of Rs,k in the situation of (XMRSS &YMRSS) and (XRSS &YRSS). Also, the MLEs of Rs,k using 

RSS are efficient than the MLEs in the situation of (XMRSS &YMRSS) and (XSRS &YSRS).  

• Generally, the MSS estimates using RSS are efficient than the associated estimates under MRSS 

and SRS 

 

Table 1. MSEs of Rs,k  estimates and their efficiencies based on SRS, RSS and MRSSE for 5 cycles, (s, k)=(1, 

3) 

r (mx, my) 
MSE RE1 RE2 

SRS RSS MRSSE RSS MRSSE 

Rs,k = 0.869, (α, β)=(1.5, 2.5) 

5 (2, 2) 0.00826 0.00582 0.00699 1.419 1.182 

5 (4, 4) 0.00402 0.00174 0.00197 2.31 2.041 

5 (6, 6) 0.00268 0.00085 0.00114 3.153 2.351 

Rs,k =0.9, (α, β)=(0.5, 1) 

5 (2, 2) 0.00612 0.00399 0.00494 1.534 1.239 

5 (4, 4) 0.00276 0.00132 0.00178 2.091 1.551 

5 (6, 6) 0.00188 0.00059 0.00142 3.186 1.324 

Rs,k =0.963, (α, β)=(1, 3.5) 

5 (2, 2) 0.00196 0.00111 0.00126 1.766 1.556 

5 (4, 4) 0.00032 0.00030 0.00035 1.067 0.914 

5 (6, 6) 0.00048 0.00015 0.00029 3.200 1.655 

Rs,k =0.982, (α, β)=(0.5, 2.5) 

5 (2, 2) 0.00078 0.00043 0.00032 1.814 2.438 

5 (4, 4) 0.00022 0.00011 0.00012 2.000 1.833 

5 (6, 6) 0.00015 0.00005 0.00013 3.000 1.154 
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Table 2. MSEs of Rs,k estimates and their efficiencies based on SRS, RSS and MRSSO for 5 cycles, (s, 

k)=(1, 3) 

r (mx, my) 
MSE RE1 RE2 

SRS RSS MRSSO RSS MRSSO 

Rs,k = 0.869, (α, β)=(1.5, 2.5) 

5 (3, 3) 0.00606 0.00300 0.00295 2.020 2.054 

5 (5, 5) 0.00299 0.00122 0.00125 2.451 2.392 

5 (7, 7) 0.00225 0.00066 0.00067 3.409 3.358 

Rs,k =0.9, (α, β)=(0.5, 1) 

5 (3, 3) 0.00361 0.00225 0.00229 1.604 1.576 

5 (5, 5) 0.00217 0.00081 0.00096 2.679 2.260 

5 (7, 7) 0.00154 0.00042 0.00055 3.667 2.800 

Rs,k =0.963, (α, β)=(1, 3.5) 

5 (3, 3) 0.00117 0.00054 0.00067 2.167 1.746 

5 (5, 5) 0.0006 0.00021 0.00025 2.857 2.400 

5 (7, 7) 0.00041 0.00011 0.00014 3.727 2.929 

Rs,k = 0.982, (α, β)=(0.5, 2.5) 

5 (3, 3) 0.00036 0.00017 0.00019 2.118 1.895 

5 (5, 5) 0.00018 0.00007 0.00007 2.571 2.571 

5 (7, 7) 0.00015 0.00004 0.00004 3.750 3.750 

 

Table 3. MSEs of Rs,k estimates and their efficiencies based on SRS, RSS and MRSS (X has odd set size and 

Y has even set size) for 5 cycles, (s, k)=(1, 3) 

r (mx, my) 
MSE RE1 RE2 

SRS RSS MRSS RSS MRSS 

Rs,k = 0.869, (α, β)=(1.5, 2.5) 

5 (3, 2) 0.00653 0.00400 0.00404 1.633 1.616 

5 (3, 4) 0.00485 0.00229 0.00335 2.118 1.448 

Rs,k =0.9, (α, β)=(0.5, 1) 

5 (3, 2) 0.00445 0.00309 0.0033 1.440 1.348 

5 (3, 4) 0.00362 0.00171 0.00274 2.117 1.321 

Rs,k =0.963, (α, β)=(1, 3.5) 

5 (3, 2) 0.0012 0.00084 0.00066 1.429 1.818 

5 (3, 4) 0.00089 0.00046 0.00041 1.935 2.171 

Rs,k =0.982, (α, β)=(0.5, 2.5) 

5 (3, 2) 0.00052 0.00024 0.00014 2.167 3.714 

5 (3, 4) 0.00035 0.00014 0.00012 2.500 2.917 

 

Table 4. MSEs of Rs,k estimates and their efficiencies based on SRS, RSS and MRSS (X has even set size 

and Y has odd set size) for 5 cycles, (s, k)=(1, 3) 

r (mx, my) 
MSE RE1 RE2 

SRS RSS MRSS RSS MRSS 

Rs,k = 0.869, (α, β)=(1.5, 2.5) 

5 (2, 3) 0.00777 0.00476 0.00499 1.632 1.557 

5 (4, 3) 0.00461 0.00224 0.00300 2.058 1.537 

Rs,k =0.9, (α,β)=(0.5, 1) 

5 (2, 3) 0.00424 0.00336 0.00408 1.262 1.039 

5 (4, 3) 0.00363 0.00164 0.00326 2.213 1.113 

Rs,k =0.963, (α,β)=(1, 3.5) 

5 (2, 3) 0.0015 0.00094 0.00086 1.596 1.744 

5 (4, 3) 0.00087 0.00042 0.00048 2.071 1.813 

Rs,k =0.982, (α,β)=(0.5, 2.5) 
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r (mx, my) 
MSE RE1 RE2 

SRS RSS MRSS RSS MRSS 

5 (2, 3) 0.00059 0.00030 0.00026 1.967 2.269 

5 (4, 3) 0.00029 0.00013 0.00019 2.231 1.526 

 

Table 5. MSEs of Rs,k estimates and their efficiencies based on SRS, RSS and MRSSE for 5 cycles, (s, k)=(2, 

4) 

r (mx, my) 
MSE RE1 RE2 

SRS RSS MRSSE RSS MRSSE 

Rs,k =0.752, (α, β)=(1.5, 2.5) 

5 (2, 2) 0.01671 0.01102 0.01402 1.516 1.192 

5 (4, 4) 0.00735 0.00353 0.00480 2.082 1.531 

5 (6, 6) 0.00524 0.00162 0.00265 3.235 1.977 

Rs,k =0.8, (α, β)=(0.5, 1) 

5 (2, 2) 0.01213 0.00953 0.00980 1.273 1.238 

5 (4, 4) 0.00603 0.0027 0.00505 2.233 1.194 

5 (6, 6) 0.00416 0.00132 0.00422 3.152 0.986 

Rs,k =0.91, (α, β)=(1, 3.5) 

5 (2, 2) 0.0056 0.00384 0.00436 1.458 1.284 

5 (4, 4) 0.00273 0.00123 0.00161 2.220 1.696 

5 (6, 6) 0.00180 0.00061 0.00136 2.951 1.324 

Rs,k =0.952, (α, β)=(0.5, 2.5) 

5 (2, 2) 0.00239 0.00163 0.00181 1.466 1.32 

5 (4, 4) 0.00124 0.00049 0.00079 2.531 1.57 

5 (6, 6) 0.00070 0.00027 0.00078 2.593 0.897 

 

Table 6. MSEs of Rs,k estimates and their efficiencies based on SRS, RSS and MRSSO for 5 cycles, (s, k)=(2, 

4) 

r (mx, my) 
MSE RE1 RE2 

SRS RSS MRSSO RSS MRSSO 

Rs,k =0.752, (α, β)=(1.5, 2.5) 

5 (3, 3) 0.0106 0.0057 0.0056 1.873 1.900 

5 (5, 5) 0.0062 0.0027 0.0025 2.336 2.456 

5 (7, 7) 0.0047 0.0013 0.0013 3.500 3.580 

Rs,k =0.8, (α, β)=(0.5, 1) 

5 (3, 3) 0.0085 0.005 0.0058 1.706 1.478 

5 (5, 5) 0.0055 0.0019 0.0023 2.82 2.389 

5 (7, 7) 0.0037 0.001 0.0015 3.578 2.450 

Rs,k =0.91, (α, β)=(1, 3.5) 

5 (3, 3) 0.0037 0.0022 0.0022 1.682 1.652 

5 (5, 5) 0.0022 0.0009 0.0009 2.523 2.387 

5 (7, 7) 0.0015 0.0005 0.0005 3.020 2.792 

Rs,k =0.952, (α, β)=(0.5, 2.5) 

5 (3, 3) 0.0016 0.0008 0.0027 1.952 0.607 

5 (5, 5) 0.0009 0.0004 0.0004 2.300 2.629 

5 (7, 7) 0.0006 0.0002 0.0002 3.050 3.211 
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Table 7. MSEs of Rs,k estimates and their efficiencies based on SRS, RSS and MRSS (X has odd set size and 

Y has even set size) for 5 cycles, (s, k)=(2, 4) 

r (mx, my) MSE RE1 RE2 

SRS RSS MRSS RSS MRSS 

Rs,k =0.752, (α, β)=(1.5, 2.5) 

5 (3, 2) 0.01250 0.00784 0.00783 1.594 1.596 

5 (3, 4) 0.00888 0.00490 0.00764 1.812 1.162 

Rs,k =0.8, (α, β)=(0.5, 1) 

5 (3, 2) 0.00992 0.00681 0.00965 1.457 1.028 

5 (3, 4) 0.00677 0.00391 0.00669 1.731 1.012 

Rs,k =0.91, (α, β)=(1, 3.5) 

5 (3, 2) 0.00417 0.00274 0.00268 1.522 1.556 

5 (3, 4) 0.00322 0.00172 0.00229 1.872 1.406 

Rs,k =0.952, (α, β)=(0.5, 2.5) 

5 (3, 2) 0.00231 0.00121 0.00102 1.909 2.265 

5 (3, 4) 0.0015 0.00081 0.00085 1.852 1.765 

 

Table 8. MSEs of Rs,k estimates and their efficiencies based on SRS, RSS and MRSS (X has even set size 

and Y has odd set size) for 5 cycles, (s, k)=(2, 4) 

r (mx, my) 
MSE RE1 RE2 

SRS RSS MRSS RSS MRSS 

Rs,k = 0.752, (α, β)=(1.5, 2.5) 

5 (2, 3) 0.01398 0.00889 0.01055 1.573 1.325 

5 (4, 3) 0.00943 0.00458 0.00720 2.059 1.310 

Rs,k =0.8, (α, β)=(0.5, 1) 

5 (2, 3) 0.01199 0.00823 0.01001 1.457 1.198 

5 (4, 3) 0.00739 0.00401 0.00634 1.843 1.166 

Rs,k =0.91, (α, β)=(1, 3.5) 

5 (2, 3) 0.00485 0.00314 0.00336 1.545 1.443 

5 (4, 3) 0.00296 0.00157 0.00222 1.885 1.333 

Rs,k =0.952, (α, β)=(0.5, 2.5) 

5 (2, 3) 0.00237 0.00141 0.00131 1.681 1.809 

5 (4, 3) 0.00131 0.00069 0.00125 1.899 1.048 

 

 

7. REAL DATA EXAMPLE 

 
We provide two data sets for exemplifying purposes and characterize all the details. Data 1 and 2 reported 

in [36]. The data sets represent the strength for single carbon fibers of lengths 10 mm and 20 mm with 

sample sizes n = 63 and m = 69 respectively.  

The distance values of the Kolmogorov-Smirnov test for both data are equal to 0.086 and 0.041 with the 

corresponding P values as 0.74 and 0.999 respectively.  

According to the theoretical results provided in the above sections, we obtain the reliability estimates using 

the MRSS, RSS and SRS from the mentioned real data sets. Table 9 gives the MSS reliability estimates 

from the GIE distribution using the proposed sampling designs for selected values of mx, my  for 5 cycles.  
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Table 9. MSS reliability estimate of carbon fibres data based on SRS, RSS, MRSSE and MRSSO for 5 cycles  

r (mx, my) 
(s, k)=(1, 3) (s, k)=(2, 4) 

SRS RSS MRSSE SRS RSS MRSSE 

5 (2, 2) 0.787 0.886 0.924 0.644 0.778 0.839 

5 (4, 4) 0.947 0.939 0.955 0.880 0.865 0.896 

5 (6, 6) 0.905 0.965 0.957 0.809 0.915 0.900 

r (mx, my) SRS RSS MRSSO SRS RSS MRSSO 

5 (3, 3) 0.907 0.960 0.941 0.811 0.904 0.869 

5 (5, 5) 0.937 0.965 0.934 0.862 0.916 0.857 

5 (7, 7) 0.950 0.949 0.917 0.886 0.885 0.827 

r (mx, my) 
(s, k)=(1, 3) (s, k)=(2, 4) 

SRS RSS MRSS SRS RSS MRSS 

5 (3, 2) 0.907 0.896 0.982 0.812 0.793 0.770 

5 (3, 4) 0.964 0.932 0.982 0.913 0.853 0.952 

r (mx, my) SRS RSS MRSS SRS RSS MRSS 

5 (2, 3) 0.820 0.947 0.965 0.686 0.880 0.915 

5 (4, 3) 0.693 0.966 0.933 0.537 0.917 0.800 

 
8. CONCLUDING REMARKS 

 

This article discusses the estimation of the MSS reliability Rs,k when X and Y are independent but not 

identically distributed random variables from the GIE. We consider the reliability estimators viz SRS, RSS 

and MRSS designs. We inspect the MSS reliability estimators in four distinct cases under MRSS. A 

numerical investigation is established to measure the attitude of the different estimates in view of the three 

sampling schemes. According to the outcomes of the study, it is remarked that the MSEs of MSS reliability 

estimates depending on RSS and MRSS data are smaller than the corresponding in view of SRS data in 

most of the cases. Also, it can be remarked that RSS is efficient than MRSS compared to SRS in most of 

the cases (according to the choices of parameter values as well as a number of cycles). 

 

This work implied that the estimates of Rs,k when stress and strength data are chosen viz RSS are acceptable 

than the corresponding under MRSS and SRS. Also, the estimates of Rs,k under MRSS  are suitable than the 

estimate of Rs,k in case of SRS. Generally, we remarked that the MSS estimates under RSS are convenient  

than other estimates using MRSS and SRS.  
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