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Some Fixed Point Theorems in Partial Fuzzy Metric Spaces 

Başak ALDEMİR1, Elif GÜNER1*, Ebru AYDOĞDU1, Halis AYGÜN1 

ABSTRACT: The aim of this study is basically to give some fundamental fixed point theorems in partial 

fuzzy metric spaces. Firstly, we investigate the relationships of partial metric space and fuzzy metric 

space with partial fuzzy metric spaces. Then we define some contractive/contraction mappings similar 

to the Banach contraction mappings in the classical sense. Also, we show that these mappings have a 

unique fixed point under some conditions. Finally, we give some examples to illustrate the validity of 

the obtained results and the necessity of added conditions. 
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INTRODUCTION 

In 1965, Zadeh initiated the theory of fuzzy set to handle the uncertainty using the membership 

degree. This theory has found many applications in a lot of fields since there are many real-life problems 

where the nature of a given system possesses fuzziness. The concept of fuzzy metric space was defined 

in two different ways by Kramosil and Michalek (1975) and Kaleva and Seikkala (1984). Later, George 

and Veeramani (1994) redefined the notion of fuzzy metric space in a slightly different way from 

Kramosil and Michalek to construct a Hausdorff (𝑇2) topology from a given fuzzy metric space. Grabiec 

(1988) gave the Banach contraction theorem in the fuzzy metric setting in the means of Kramosil and 

Michalek (1975). Afterward, many authors (Piera, 2001, Vasuki 2003, Mihet 2004/2008, Rodriguez-

Lopez and Romaguera, 2004, Gregori et al., 2010) proved some fixed point theorems on fuzzy metric 

space in several senses and became interested in topological properties of fuzzy metric spaces.  

In literature, there are many types of generalized metric spaces were introduced by modifying 

the metric axioms (Gähler 1963, Czerwik 1993, Mustafa and Sims 2006).  At the same time, a lot of 

research has been done in these structures related to fixed point theory (Czerwik 1993, Lahiri et al. 2011, 

Şahin et al. 2015, Başarır and Şahin 2017). One of the generalizations of metric spaces is the notion of 

partial metric space which was given by Matthews (1994) as an extension of metric space where the 

self-distance of any point is not necessarily equal to zero. This concept is motivated with the applications 

to computer science. Bukatin et al. (2009) showed how the mathematics of nonzero self-distance for 

metric space has been established. They also considered some possible uses of partial metric spaces. 

Then, Valero (2005), Altun et al. (2010), Haghi et al. (2013) obtained some extensions of the result of 

Matthews related to Banach fixed point theorem. In the last years, Yue and Gu (2014), Sedghi et al. 

(2015) and Gregori et al. (2019) studied fuzzy partial metric spaces as a generalized of both partial metric 

space and fuzzy metric space. Yue and Gu (2014) defined the notion of fuzzy partial metric space by 

considering the continuous minimum t-norm. Then, Yue and Gu (2014) gave the probabilistic partial 

metric space is an extension of both partial metrics and fuzzy ones by the sense of Δ+-valued sets. They 

also generalized some fixed points theorems which is given by Grabiec sense and Gregori and Sapena 

sense to probabilistic partial metric spaces. After Sedghi et al. (2015) obtained the partial fuzzy metric 

space by generalizing the structure of non-Archimedean (strong) fuzzy metric and they obtained some 

fixed point results in this spaces. Gregori et al. (2019) approached the concept of fuzzy partial metric 

space by merging fuzzy metric space and partial metric space with residue operator which is pertinent 

to continuous t-norm. They also defined the notion of open ball and induced a 𝑇0-topology from fuzzy 

partial metric.  

In this work, we investigate the relationships of partial metric space and fuzzy metric space with 

partial fuzzy metric spaces in the sense of Sedghi et al. (2015). Then, we show that each fuzzy partial 

metric induces a fuzzy metric under some conditions. After, we define some contractive/contraction 

mappings similar to the Banach contraction mappings well-known in the fuzzy sense. As the main 

purpose, we show that these mappings have a unique fixed point under which conditions. Moreover, we 

show that some of the fixed point generalizations in partial fuzzy metric space can be induced by the 

pertinent result in fuzzy metric space. Finally, we give some examples to illustrate the validity of the 

presented results.  
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MATERIALS AND METHODS 

We recall some basic definitions such as fuzzy metric, partial metric, partial fuzzy metric in the 

sense of Sedghi et al. (2015) and some notions related in these concepts which will be useful for the 

main results. Also, we observe some basic properties of partial fuzzy metric spaces. 

 

Definition 1. A partial metric space (shortly, PMS) on 𝑈 is a pair (𝑈, 𝑝) such that 𝑈 is a non-empty set 

and 𝑝: 𝑈 × 𝑈 → ℝ+ is a mapping providing the listed conditions for all 𝔵, 𝔶, 𝔷 ∈ 𝑈: 

(PM1) 𝑝(𝔵, 𝔵) ≤ 𝑝(𝔵, 𝔶), 

(PM2) 𝑝(𝔵, 𝔵) = 𝑝(𝔵, 𝔶) = 𝑝(𝔶, 𝔶) if and only if 𝔵 = 𝔶, 

(PM3) 𝑝(𝔵, 𝔶) = 𝑝(𝔶, 𝔵), 

(PM4) 𝑝(𝔵, 𝔷) ≤ 𝑝(𝔵, 𝔶) + 𝑝(𝔶, 𝔷) − 𝑝(𝔶, 𝔶) (Matthews, 1994). 

 

Note that the self-distance of any point is not necessarily equal to zero in partial metric space. If  

𝑝(𝔵, 𝔵) = 0 for all 𝔵 ∈ 𝑈, then the partial metric 𝑝 is an ordinary metric on 𝑈. So a partial metric is a 

generalization of ordinary metric (Matthews, 1994). 

 

Example 1. Let 𝑝:ℝ+ × ℝ+ → ℝ+ be a mapping with 𝑝(𝔵, 𝔶) = max{𝔵, 𝔶} for all 𝔵, 𝔶 ∈ ℝ+. Then 

(ℝ+, 𝑝) is a PMS such that the self-distance of any point 𝔵 ∈ ℝ+ is equal to itself (O’Neill, 1995). 

 

Definition 2. Let (𝑈, 𝑝) be a PMS and (𝔵𝑛) be a sequence in U. 

(i) (𝔵𝑛) is said to converge to 𝔵 ∈ U if  𝑙𝑖𝑚
𝑛→∞

𝑝(𝔵𝑛, 𝔵) = 𝑝(𝔵, 𝔵). 

(ii) (𝔵𝑛) is said to be a Cauchy sequence if 𝑙𝑖𝑚
𝑛,𝑚→∞

𝑝(𝔵𝑛, 𝔵𝑚) exists. 

(iii) (𝑈, 𝑝) is said to be complete if there is a point 𝔵 ∈ 𝑈 such that 𝑙𝑖𝑚
𝑛,𝑚→∞

𝑝(𝔵𝑛, 𝔵𝑚) = 𝑙𝑖𝑚
𝑛→∞

𝑝(𝔵𝑛, 𝔵) =

𝑝(𝔵, 𝔵) (Matthews, 1994). 

 

Definition 3. Let (𝑈, 𝑝) be a complete PMS and 𝑓 be a self-mapping on 𝑈. The mapping 𝑓 is said to be 

a partial contractive mapping on 𝑈 if there exists a 𝑘 ∈ (0, 1) such that  

𝑝(𝑓(𝔵), 𝑓(𝔶)) ≤ 𝑘𝑝(𝔵, 𝔶) 

for all 𝔵, 𝔶 ∈ 𝑈 (Matthews, 1994). 

 

Theorem 1. Let (𝑈, 𝑝) be a complete PMS and 𝑓 be a partial contractive mapping on 𝑈. Then there 

exists a unique point 𝔵 ∈ 𝑈 such that 𝑓(𝔵) = 𝔵. Also, 𝑝(𝔵, 𝔵) = 0 (Matthews, 1994). 

 

Definition 4. A binary operation ⊛ on [0, 1] is called a continuous t-norm if the listed conditions are 

provided for all 𝔵, 𝔶, 𝔷, 𝔴, ∈ [0, 1]: 

(i) 𝔵 ⊛ 𝔶 = 𝔶⊛ 𝔵 and 𝔵 ⊛ (𝔶⊛ 𝔷) = (𝔵 ⊛ 𝔶)⊛ 𝔷 

(ii) ⊛ is continuous on [0, 1] × [0, 1],  

(iii) 𝔵 ⊛ 1 = 𝔵, 

(iv) If 𝔵 ≤ 𝔶 and  𝔷 ≤ 𝔴, then 𝔵 ⊛ 𝔷 ≤ 𝔶⊛𝔴 (George and Veeramani, 1994). 

 

Definition 5. Let 𝑈 be a nonempty set, ⊛ be a continuous t-norm and ℳ ∶  𝑈 × 𝑈 × (0,∞) → [0,1] be 

a mapping. If the listed conditions are satisfied for all 𝔵, 𝔶, 𝔷 ∈ 𝑈 and 𝔱, 𝔰 >  0, then the  

triplet (𝑈,ℳ,⊛) is said to be a fuzzy metric space (shortly, FMS): 
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(FM1)  ℳ(𝔵, 𝔶, 𝔱)  >  0, 

(FM2)  ℳ(𝔵, 𝔶, 𝔱)  =  1 if and only if 𝔵 = 𝔶, 

(FM3)  ℳ(𝔵, 𝔶, 𝔱)  =  ℳ(𝔶, 𝔵, 𝔱), 

(FM4)  ℳ(𝔵, 𝔷, 𝔱 + 𝔰) ≥ ℳ(𝔵, 𝔶, 𝔱) ⊛ℳ(𝔶, 𝔷, 𝔰),  

(FM5)  ℳ(𝔵, 𝔶,⋅) is continuous on (0,∞) (George and Veeramani, 1994). 

 

If a FMS (𝑈,ℳ,⊛) provide the following condition for all 𝔵, 𝔶, 𝔷 ∈ 𝑈 and 𝔰, 𝔱 >  0, then (𝑈,ℳ,⊛) 

is said to be a non-Archimedean (strong) FMS 

ℳ(𝔵, 𝔶,𝑚𝑎𝑥{𝔱, 𝔰}) ≥  ℳ(𝔵, 𝔷, 𝔱) ⊛ℳ(𝔷, 𝔶, 𝔰) 

(Gregori et al., 2010) 

 

Proposition 1. If (𝑈,ℳ,⊛) is a FMS, then ℳ(𝔵, 𝔶,⋅) ∶ (0,∞) → [0,1] is non-decreasing for all 𝔵, 𝔶 ∈ 𝑈 

(George and Veeramani, 1994). 

 

Definition 6.  Let (𝑈,ℳ,⊛) be a FMS and (𝔵𝑛) be a sequence in 𝑈. 

(i) (𝔵𝑛) is said to converge to 𝔵 ∈ U if  ℳ(𝔵𝑛, 𝔵, 𝔱) → 1 as 𝑛 → ∞ for all 𝔱 > 0. 

(ii) (𝔵𝑛) is said to be a Cauchy sequence if  ℳ(𝔵𝑛, 𝔵𝑚, 𝔱) → 1 as 𝑛,𝑚 → ∞ for all 𝔱 > 0. 

(iii) If each Cauchy sequence (𝔵𝑛) converges to a point 𝔵 ∈ 𝑈, then (𝑈,ℳ,⊛)  is called complete 

(George and Veeramani, 1994). 

 

Theorem 2. Let (𝑈,ℳ,⊛) be a FMS. If 𝑓 is a self-mapping on 𝑈 satisfying ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱) > ℱ(𝔵, 𝔶, 𝔱) 

for all 𝔵, 𝔶 ∈ 𝑈 (𝔵 ≠ 𝔶) and 𝔱 > 0 and there is a point 𝔵0 ∈ 𝑈 whose sequence of iterates (𝑓𝑛(𝔵0)) 

contains a convergent subsequence (𝑓𝑛𝑖(𝔵0)), then 𝑓 has a unique fixed point in 𝑈 (Grabiec, 1988). 

 

Partial fuzzy metric space was defined by Sedghi et al. (2015) as a generalization of partial metric 

and fuzzy metric spaces: 

 

Definition 7. Let U be a nonempty set, ⊛ be a continuous t-norm and ℱ ∶ 𝑈 × 𝑈 × (0,∞) → [0,1] be a 

mapping. If the listed conditions are satisfied for all 𝔵, 𝔶, 𝔷 ∈ 𝑈 and 𝔱, 𝔰 >  0, then the triplet (𝑈, ℱ,⊛) is 

said to be a partial fuzzy metric space (shortly, PFMS) : 

(PFM1) 𝔵 = 𝔶 if and only if ℱ(𝔵, 𝔶, 𝔱) = ℱ(𝔵, 𝔵, 𝔱) = ℱ(𝔶, 𝔶, 𝔱), 

(PFM2) ℱ(𝔵, 𝔵, 𝔱) ≥ ℱ(𝔵, 𝔶, 𝔱) > 0, 

(PFM3) ℱ(𝔵, 𝔶, 𝔱) = ℱ(𝔶, 𝔵, 𝔱), 

(PFM4) ℱ(𝔵, 𝔷, 𝔱) ⊛ 𝐹(𝔷, 𝔶, 𝔰) ≤ ℱ(𝔵, 𝔶, 𝑚𝑎𝑥{𝔱, 𝔰}) ⊛ ℱ(𝔷, 𝔷,𝑚𝑎𝑥{𝔱, 𝔰}), 

(PFM5) ℱ(𝔵, 𝔶,⋅) is continuous on (0,∞) (Sedghi et al., 2015). 

 

Remark 1. Let (𝑈, ℱ,⊛) be a PFMS. 

(1) If ℱ(𝔵, 𝔶, 𝔱) = 1, then 𝔵 = 𝔶 from the conditions (PFM1) and (PFM2). But the converse of this 

implication need not be necessarily true. i.e., ℱ(𝔵, 𝔶, 𝔱) may not be equal to 1 whenever 𝔵 = 𝔶. 

(2) It is clear that 

ℱ(𝔵, 𝔷, 𝔱) ⊛ ℱ(𝔷, 𝔶, 𝔱) ≤ ℱ(𝔵, 𝔶, 𝔱) ⊛ ℱ(𝔷, 𝔷, 𝔱) 

for all 𝔵, 𝔶, 𝔷 ∈ 𝑈 and 𝔱 > 0 from the conditions (PFM4) (Sedghi et al., 2015). 

 

Note that each non-Archimedean FMS is a PFMS, but the converse implication may not be true. 
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Example 2. Let (𝑈, 𝑝) be a PMS and 𝔞⊛ 𝔟 = 𝔞𝔟 for all 𝔞, 𝔟 ∈ [0,1]. Consider the mapping 

ℱ𝑝 ∶ 𝑈 × 𝑈 × (0,∞) → [0, 1] defined by 

ℱ𝑝(𝔵, 𝔶, 𝔱) =
𝔱

𝔱 + 𝑝(𝔵, 𝔶)
. 

Then (𝑈, ℱ𝑝,⊛) is a PFMS which is called the standard PFMS. Note that (𝑈, ℱ𝑝,⊛) is not a FMS  

(Sedghi et al., 2015).  

 

There are some difference between PFMS and FMS. One of them, in a FMS (𝑈,ℳ,⊛),  

ℳ(𝔵, 𝔶,⋅) ∶ (0,∞) → [0,1] is non-decreasing function for all 𝔵, 𝔶 ∈ 𝑈, but in a PFMS (𝑈, ℱ,⊛),  

ℱ(𝔵, 𝔶,⋅) ∶ (0,∞) → [0,1] may not be non-decreasing function for all 𝔵, 𝔶 ∈ 𝑈. 

 

In the following example, we show that there are partial fuzzy metric spaces (𝑈, ℱ,⊛) in which 

ℱ(𝔵, 𝔶,⋅) ∶ (0,∞) → [0,1] may not be non-decreasing function for all 𝔵, 𝔶 ∈ 𝑈. 

 

Example 3. Let 𝑈 = ℝ and  𝔞 ⊛ 𝔟 = 𝑚𝑖𝑛{𝔞 , 𝔟} for all 𝔞, 𝔟 ∈ [0,1]. Consider the mapping ℱ:𝑈 × 𝑈 ×

(0,∞) → [0,1] defined by 

ℱ(𝔵, 𝔶, 𝔱) = {
𝑒−𝔱,            𝔵 = 𝔶
1

3
𝑒−𝔱, 𝔵 ≠ 𝔶.

 

It is not complicated to see that (𝑈, ℱ,⊛) is a PFMS. Concretely, (PFM1)-(PFM3) are obviously hold 

by the definition of ℱ. Now, we show that (PFM4) is satisfied. Let 𝔵, 𝔶, 𝔷 ∈ 𝑈 and 𝔵 ≠ 𝔷 (for the contrary 

since 𝑒−𝔱 ≥
1

4
𝑒−𝔱, the inequality is fullfilled). Assume 𝔰 < 𝔱. For 𝔶 ≠ 𝔵 and 𝔶 ≠ 𝔷, we obtain 

ℱ(𝔵, 𝔷, 𝔱) ⊛ 𝐹(𝔷, 𝔶, 𝔰)= min {
1

3
𝑒−𝔱,

1

3
𝑒−𝑠} =

1

3
𝑒−𝔱= min {

1

3
𝑒−𝔱, 𝑒−𝑡} 

                        = ℱ(𝔵, 𝔶,𝑚𝑎𝑥{𝔱, 𝔰}) ⊛ ℱ(𝔷, 𝔷,𝑚𝑎𝑥{𝔱, 𝔰}). 

Let 𝔶 = 𝔵 and 𝔶 ≠ 𝔷, then we get 

ℱ(𝔵, 𝔷, 𝔱) ⊛ 𝐹(𝔷, 𝔶, 𝔰)= min {
1

3
𝑒−𝔱,

1

3
𝑒−𝑠} =

1

3
𝑒−𝔱≤ min{𝑒−𝔱, 𝑒−𝑡} 

                        = ℱ(𝔵, 𝔶,𝑚𝑎𝑥{𝔱, 𝔰}) ⊛ ℱ(𝔷, 𝔷,𝑚𝑎𝑥{𝔱, 𝔰}). 

Let 𝔶 = 𝔷 and 𝔶 ≠ 𝔵, then we get 

ℱ(𝔵, 𝔷, 𝔱) ⊛ 𝐹(𝔷, 𝔶, 𝔰)= min {
1

3
𝑒−𝔱, 𝑒−𝑠} =

1

3
𝑒−𝔱= min {

1

3
𝑒−𝔱, 𝑒−𝑡} 

                        = ℱ(𝔵, 𝔶,𝑚𝑎𝑥{𝔱, 𝔰}) ⊛ ℱ(𝔷, 𝔷,𝑚𝑎𝑥{𝔱, 𝔰}). 

Finally, ℱ(𝔵, 𝔶,⋅) is continuous on (0,∞). Hence (𝑈, ℱ,⊛) is a PFMS. Also, it is obvious that  ℱ(𝔵, 𝔶,⋅) ∶

(0,∞) → [0,1] is a decreasing function. 

 

Proposition 2. Let (𝑈, ℱ,⊛) be a PFMS. If 𝔟 ≥ 𝔠 whenever 𝔞⊛ 𝔟 ≥ 𝔞⊛ 𝔠 for all 𝔞, 𝔟, 𝔠 ∈ [0, 1], then 

ℱ(𝔵, 𝔶,⋅) ∶ (0,∞) → [0,1] is non-decreasing function for all 𝔵, 𝔶 ∈ 𝑈. (Sedghi et al., 2015). 

 

Definition 8: Let (𝑈, ℱ,⊛)  be a PFMS and (𝔵𝑛) be a sequence in 𝑈. 

(i) (𝔵𝑛)  is said to converge to a point 𝔵 ∈ U if 𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔵, 𝔱) = ℱ(𝔵, 𝔵, 𝔱) for all 𝔱 > 0 (Sedghi et al., 

2015). 
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(ii) (𝔵𝑛) is said to be a Cauchy sequence if 𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱)  exists for all 𝔱 > 0. If 

𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱) = 1 then (𝔵𝑛) is called a 1-Cauchy sequence. 

(iii) If each Cauchy sequence (resp. 1-Cauchy) (𝔵𝑛) converges to a point 𝔵 ∈ 𝑈 such that 

𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱) = ℱ(𝔵, 𝔵, 𝔱), then (𝑈, ℱ,⊛) is said to be complete (resp. 1-complete).  

Clearly, every 1-Cauchy sequence (𝔵𝑛) in (𝑈, ℱ,⊛) is also a Cauchy sequence and every complete 

PFMS is a 1-complete space. 

 

Proposition 3. Let (𝑈, ℱ,⊛) be a PFMS and ( 𝔵𝑛) be a sequence in 𝑈 such that 

𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔵𝑛, 𝔱) = 𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔵, 𝔱) =ℱ(𝔵, 𝔵, 𝔱).  If 𝔟 ≥ 𝔠 whenever 𝔞 ⊛ 𝔟 ≥ 𝔞 ⊛ 𝔠 for all 𝔞, 𝔟, 𝔠 ∈ [0, 1], 

then 𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔶, 𝔱) = 𝐹(𝔵, 𝔶, 𝔱) for all 𝔶 ∈ 𝑈 and 𝔱 > 0 (Sedghi et al., 2015). 

 

RESULTS AND DISCUSSION 

In this section, we define partial fuzzy (Edelstein) contractive/contraction and partial fuzzy  

𝜓-contractive mappings in PFMS which are analogous in FMS given by Grabiec (1988), Gregori and 

Sapena (2002) and Mihet (2008), respectively. Then we present some fixed point results for given self-

mappings in PFMS and present several examples to show the validity of obtained results. 

 

Proposition 4. Let (𝑈, 𝑝) be a PMS and (𝑈, ℱ𝑝,⊛) be a standard PFMS induced by this 𝑝. 

(1) (𝔵𝑛) converges to 𝔵 ∈ 𝑈 in (𝑈, ℱ𝑝,⊛) if and only if (𝔵𝑛) converges to 𝔵 ∈ 𝑈 in (𝑈, 𝑝). 

(2) (𝔵𝑛) is a Cauchy sequence in (𝑈, ℱ𝑝,⊛) if and only if (𝔵𝑛) is a Cauchy sequence in (𝑈, 𝑝). 

(3) (𝑈, ℱ𝑝,⊛) is complete if and only if (𝑈, 𝑝) is complete. Furthermore, 𝑙𝑖𝑚
𝑛→∞

𝑝(𝔵𝑛, 𝔵) = 𝑝(𝔵, 𝔵) =

𝑙𝑖𝑚
𝑛,𝑚→∞

𝑝(𝔵𝑛, 𝔵𝑚) if and only if 𝑙𝑖𝑚
𝑛→∞

ℱ𝑝(𝔵𝑛, 𝔵, 𝔱) = ℱ𝑝(𝔵, 𝔵, 𝔱) = 𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ𝑝(𝔵𝑛, 𝔵𝑚, 𝔱). 

 

Proof. (1) Let (𝔵𝑛) converges to 𝔵 ∈ 𝑈 in (𝑈, ℱ𝑝,⊛). Then we have 𝑙𝑖𝑚
𝑛→∞

ℱ𝑝(𝔵𝑛, 𝔵, 𝔱) = ℱ𝑝(𝔵, 𝔵, 𝔱). It 

means that 𝑙𝑖𝑚
𝑛→∞

𝔱

𝔱+𝑝(𝔵,𝔶)
=

𝔱

𝔱+𝑝(𝔵,𝔵)
. Hence, we get 𝑙𝑖𝑚

𝑛→∞
𝑝(𝔵𝑛, 𝔵) = 𝑝(𝔵, 𝔵). Therefore, (𝔵𝑛) converges to 𝔵 ∈

𝑈 in (𝑈, 𝑝). 

(2) Let (𝔵𝑛) be a Cauchy sequence in (𝑈, ℱ𝑝,⊛). Then 𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ𝑝(𝔵𝑛, 𝔵𝑚, 𝔱) exists. Thus 

𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ𝑝(𝔵𝑛, 𝔵𝑚, 𝔱) = 𝑙𝑖𝑚
𝑛,𝑚→∞

𝔱

𝔱 + 𝑝(𝔵𝑛, 𝔵𝑚)
=

𝔱

𝔱 + 𝑙𝑖𝑚
𝑛,𝑚→∞

𝑝(𝔵𝑛, 𝔵𝑚)
 

This means 𝑙𝑖𝑚
𝑛,𝑚→∞

𝑝(𝔵𝑛, 𝔵𝑚) exists. Hence (𝔵𝑛) is a Cauchy sequence in (𝑈, 𝑝). The converse statement 

is similar. 

(3) Let (𝑈, ℱ𝑝,⊛)  be a complete PFMS and (𝔵𝑛) be a Cauchy sequence in (𝑈, 𝑝). By (2), (𝔵𝑛) is also a 

Cauchy sequence in (𝑈, ℱ𝑝,⊛). Since (𝑈, ℱ𝑝,⊛) is complete, we have (𝔵𝑛) is convergent in (𝑈, ℱ𝑝,⊛). 

By (1), (𝔵𝑛) is also convergent in (𝑈, 𝑝). Thus (𝑈, 𝑝) is a complete PMS. The other side is obtained 

similarly. The equality of limits is obvious by the definition of ℱ𝑝.  

 

Theorem 3: Let (𝑈, ℱ,⊛) be a PFMS such that ℱ(𝔵, 𝔶,⋅) ∶ (0,∞) → [0,1] is non-decreasing function 

for all 𝔵, 𝔶 ∈ 𝑈. Then the mapping ℳℱ: 𝑈 × 𝑈 × (0,∞) → [0, 1] defined by ℳℱ(𝔵, 𝔶, 𝔱) = 1 whenever 
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𝔵 = 𝔶 and ℳℱ(𝔵, 𝔶, 𝔱)  =  ℱ(𝔵, 𝔶, 𝔱) whenever 𝔵 ≠ 𝔶, is a fuzzy metric on 𝑈. Moreover, (𝑈,ℳℱ ,⊛) is 

complete if and only if (𝑈, ℱ,⊛) is 1-complete. 

 

Proof: It is clear that (FM1), (FM2), (FM3) and (FM5) are satisfied. Now, we only show that (FM4) is 

satisfied. Let 𝔵, 𝔶, 𝔷 ∈ 𝑈. It is obvious that (FM4) is satisfied whenever 𝔵, 𝔶, 𝔷 are equal.  

Let 𝔵 ≠ 𝔶 ≠ 𝔷, then   

ℳℱ(𝔵, 𝔶, 𝔱) ⊛ℳℱ(𝔶, 𝔷, 𝔰) =  ℱ(𝔵, 𝔶, 𝔱) ⊛ ℱ(𝔶, 𝔷, 𝔰) ≤ ℱ(𝔵, 𝔷,𝑚𝑎𝑥{𝔱, 𝔰}) ⊛ ℱ(𝔶, 𝔶,𝑚𝑎𝑥{𝔱, 𝔰}) 

                          ≤ ℱ(𝔵, 𝔷,𝑚𝑎𝑥{𝔱, 𝔰}) ≤ ℱ(𝔵, 𝔷, 𝔱 + 𝔰) = ℳℱ(𝔵, 𝔷, 𝔱 + 𝔰). 

Let  𝔵 ≠ 𝔶 and 𝔵 = 𝔷, then 

ℳℱ(𝔵, 𝔶, 𝔱) ⊛ℳℱ(𝔶, 𝔷, 𝔰)  = ℱ(𝔵, 𝔶, 𝔱) ⊛ ℱ(𝔶, 𝔷, 𝔰) ≤ ℱ(𝔵, 𝔷,𝑚𝑎𝑥{𝔱, 𝔰}) ⊛ ℱ(𝔶, 𝔶,𝑚𝑎𝑥{𝔱, 𝔰}) 

                                                    = ℱ(𝔵, 𝔵,𝑚𝑎𝑥{𝔱, 𝔰}) ⊛ ℱ(𝔶, 𝔶,𝑚𝑎𝑥{𝔱, 𝔰})  ≤ 1 = ℳℱ(𝔵, 𝔷, 𝔱 + 𝔰). 

Let 𝔵 ≠ 𝔶  and 𝔶 = 𝔷, then 

ℳℱ(𝔵, 𝔶, 𝔱) ⊛ℳℱ(𝔶, 𝔷, 𝔰) =  ℱ(𝔵, 𝔶, 𝔱) ⊛ 1 = ℱ(𝔵, 𝔶, 𝔱) ≤ ℱ(𝔵, 𝔷, 𝔱 + 𝔰) = ℳℱ(𝔵, 𝔷, 𝔱 + 𝔰). 

Therefore, we have that (𝑈,ℳℱ ,⊛) is a fuzzy metric space.  

Let (𝑈,ℳℱ ,⊛) be a complete FMS and (𝔵𝑛) be a 1-Cauchy sequence in (𝑈, ℱ,⊛). Thus 

𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱) = 1. Wlog, we assume that 𝔵𝑛 ≠ 𝔵𝑚 for all 𝑛 ≠ 𝑚. Then 

𝑙𝑖𝑚
𝑛,𝑚→∞

ℳℱ(𝔵𝑛, 𝔵𝑚, 𝔱) = 1. This means that (𝔵𝑛) is a Cauchy sequence in (𝑈,ℳℱ ,⊛). Since (𝑈,ℳℱ ,⊛) 

is complete, there is a point 𝔵 ∈ 𝑈 such that 𝑙𝑖𝑚
𝑛→∞

ℳℱ(𝔵𝑛, 𝔵, 𝔱) = 1. Since ℳℱ(𝔵, 𝔵, 𝔱)  =  1, we obtain that 

𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔵, 𝔱) = 1 = ℱ(𝔵, 𝔵, 𝔱). Hence (𝑈, ℱ,⊛) is a 1-complete PFMS. 

Conversely, assume that (𝑈, ℱ,⊛) is a 1-complete PFMS and (𝔵𝑛) is a Cauchy sequence in 

(𝑈,ℳℱ ,⊛). Then 𝑙𝑖𝑚
𝑛,𝑚→∞

ℳℱ(𝔵𝑛, 𝔵𝑚, 𝔱) = 1 and then 𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱) = 1. Thus (𝔵𝑛) is a 1-Cauchy 

sequence in (𝑈, ℱ,⊛). Since (𝑈, ℱ,⊛) is a 1-complete PFMS, there is a point 𝔵 ∈ 𝑈 such that 

𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔵, 𝔱) = 1 = ℱ(𝔵, 𝔵, 𝔱). Thus 𝑙𝑖𝑚
𝑛→∞

ℳℱ(𝔵𝑛, 𝔵, 𝔱) = 1. Therefore, (𝔵𝑛) is convergent to 𝔵 ∈ 𝑈 in 

(𝑈,ℳℱ ,⊛). Consequently (𝑈,ℳℱ ,⊛) is a complete FMS. 

 

Denote by 𝛹 the collection of all self-mappings 𝜓 on [0, 1] such that 𝜓 is continuous, non-

decreasing and t < 𝜓(t) for each 𝑡 ∈ (0, 1). 

 

Definition 9. Let (𝑈, ℱ,⊛) be a PFMS and 𝜓 ∈ Ψ. A self-mapping 𝑓 on 𝑈 is called 

(i) partial fuzzy contraction if there exists a 𝑘 ∈ (0, 1) such that 

ℱ(𝑓(𝔵), 𝑓(𝔶), 𝑘𝔱) ≥ ℱ(𝔵, 𝔶, 𝔱) 

for all 𝔵, 𝔶 ∈ 𝑈 and 𝔱 > 0. 

(ii) partial fuzzy Edelstein contractive if  

ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱) > ℱ(𝔵, 𝔶, 𝔱) 

for all 𝔵, 𝔶 ∈ 𝑈 (𝔵 ≠ 𝔶) and 𝔱 > 0. 

(iii) partial fuzzy contractive if there exists a 𝑘 ∈ (0, 1) such that 

𝑘 (
1

ℱ(𝔵, 𝔶, 𝔱)
− 1) ≥

1

ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱)
− 1 

for all 𝔵, 𝔶 ∈ 𝑈 and 𝔱 > 0. 

(iv) partial fuzzy 𝜓-contractive if  

ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱) ≥ 𝜓(ℱ(𝔵, 𝔶, 𝔱)) 

for all 𝔵, 𝔶 ∈ 𝑈 and 𝔱 > 0. 
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Proposition 5. (i) Every partial fuzzy contractive mapping is a partial fuzzy Edelstein contractive. 

(ii)  Every partial fuzzy contractive mapping is a partial fuzzy 𝜓-contractive. 

(iii) If (𝑈, ℱ,⊛) is a PFMS such that ℱ(𝔵, 𝔶,⋅) ∶ (0,∞) → [0,1] is a non-decreasing function for all  

𝔵, 𝔶 ∈ 𝑈, then every partial fuzzy contraction mapping is a partial fuzzy Edelstein contractive. 

 

Proof. It is clear from the Definition 9. 

 

Theorem 4. Let (𝑈, ℱ,⊛) be a complete PFMS such that 𝑙𝑖𝑚𝑡→∞ℱ(𝔵, 𝔶, 𝔱) = 1 for all 𝔵, 𝔶 ∈ 𝑈. If a self-

mapping 𝑓 on 𝑈 is a partial fuzzy contraction mapping, then 𝑓 has a unique fixed point in 𝑈. 

 

Proof. Let 𝔵0 ∈ 𝑈 and 𝔵𝑛 = 𝑓
𝑛(𝔵0) for all 𝑛 ∈ ℕ. Since  𝑙𝑖𝑚𝑡→∞ℱ(𝔵, 𝔶, 𝔱) = 1 for all 𝔵, 𝔶 ∈ 𝑈, then we 

have 

ℱ(𝔵𝑛+1, 𝔵𝑛, 𝔱) = ℱ(𝑓(𝔵𝑛), 𝑓(𝔵𝑛−1), 𝔱) ≥ ℱ (𝔵𝑛, 𝔵𝑛−1,
𝔱

𝑘
) = ℱ (𝑓(𝔵𝑛−1), 𝑓(𝔵𝑛−2),

𝔱

𝑘
) 

                   ≥ ℱ (𝔵𝑛−1, 𝔵𝑛−2,
𝔱

𝑘2
) ≥ ⋯ ≥ ℱ (𝔵1, 𝔵0,

𝔱

𝑘𝑛
)
 𝑛→∞
→   1 

for all 𝔱 > 0. Therefore, we get 𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛+1, 𝔵𝑛, 𝔱) = 1  for all 𝔱 > 0.  

Let 𝑛,𝑚 ∈ ℕ and we may assume that 𝑛 < 𝑚. 

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱) ≥  ℱ(𝔵𝑛, 𝔵𝑚, 𝔱) ⊛ ℱ(𝔵𝑛+1, 𝔵𝑛+1, 𝔱) ≥ ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱) ⊛ ℱ(𝔵𝑚, 𝔵𝑛+1, 𝔱) 

                         ≥ ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱) ⊛ ℱ(𝔵𝑚, 𝔵𝑛+1, 𝔱) ⊛ ℱ(𝔵𝑛+2, 𝔵𝑛+2, 𝔱)   

   ≥ ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱) ⊛ ℱ(𝔵𝑛+1, 𝔵𝑛+2, 𝔱) ⊛ ℱ(𝔵𝑛+2, 𝔵𝑚, 𝔱)   

                ≥ ⋯ ≥ ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱) ⊛ ℱ(𝔵𝑛+1, 𝔵𝑛+2, 𝔱) ⊛ …⊛ℱ(𝔵𝑚−1, 𝔵𝑚, 𝔱) 

Thus, we obtain 𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱) = 1 for all 𝔱 > 0. Hence (𝔵𝑛) is a Cauchy sequence in (𝑈, ℱ,⊛). 

Since (𝑈, ℱ,⊛) is a complete PFMS, there exists a point 𝔵 ∈ 𝑈  such that (𝔵𝑛) converges to 𝔵. Besides, 

𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔵, 𝔱) = ℱ(𝔵, 𝔵, 𝔱) = 𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱) = 1  for all 𝔱 > 0. 

Then, 

ℱ(𝑓(𝔵), 𝔵, 𝔱) ≥ ℱ(𝑓(𝔵), 𝔵, 𝔱) ⊛ ℱ(𝔵𝑛, 𝔵𝑛, 𝔱) ≥ ℱ(𝑓(𝔵), 𝔵𝑛, 𝔱) ⊛ ℱ(𝔵𝑛, 𝔵, 𝔱) 

                                       ≥ ℱ(𝑓(𝔵), 𝑓(𝔵𝑛−1), 𝔱) ⊛ ℱ(𝔵, 𝔵, 𝔱) ≥ ℱ(𝔵, 𝔵𝑛−1, 𝔱) ⊛ ℱ(𝔵, 𝔵, 𝔱)  

Therefore, we have ℱ(𝑓(𝔵), 𝔵, 𝔱)  =  1. This means that 𝑓(𝔵) = 𝔵. Hence 𝔵 is a fixed point of 𝑓. 

We now show that 𝔵 is a unique fixed point 𝑓. Assume that 𝔵 ≠ 𝔶. Then, we get 

ℱ(𝔵, 𝔶, 𝔱) < ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱) = ℱ(𝔵, 𝔶, 𝔱) 

which is a contradiction. Hence, we obtain 𝔵 = 𝔶. 

 

Corollary 1. Let (𝑈, ℱ𝑝,⊛) be a standard PFMS induced by a given complete partial metric 𝑝 on 𝑈. If 

a self-mapping 𝑓 on 𝑈 is a partial fuzzy contraction mapping, then 𝑓 has a unique fixed point in 𝑈. 

 

Proof. If (𝑈, ℱ𝑝,⊛) is a standard PFMS induced by a given complete partial metric 𝑝 on 𝑈, then we 

know that (𝑈, ℱ𝑝,⊛) is a complete PFMS where  ℱ𝑝(𝔵, 𝔶, 𝔱) =
𝔱

𝔱+𝑝(𝔵,𝔶)
 for all 𝔵, 𝔶 ∈ 𝑈 and 𝔱 > 0. Also, 

we have 𝑙𝑖𝑚𝑡→∞ℱ𝑝(𝔵, 𝔶, 𝔱) = 1. So, all conditions of Theorem 4 are satisfied and it is obtained that 𝑓 has 

a unique fixed point in 𝑈. 
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The next example is given to illustrate the validity of Theorem 4.  

 

Example 4. Let 𝑈 = ℝ+, 𝔞⊛ 𝔟 = 𝔞𝔟 for all 𝔞, 𝔟 ∈ [0,1] and the mapping ℱ:𝑈 × 𝑈 × (0,∞) → [0, 1] 

be defined by 

ℱ(𝔵, 𝔶, 𝔱) =
𝔱

𝔱 + 𝑚𝑎𝑥{𝔵, 𝔶} 
 . 

It is known that (𝑈, ℱ,⊛) is a complete PFMS from Example 2 and Proposition 4. Consider the self-

mapping 𝑓 on 𝑈 defined by 𝑓(𝔵) =
𝔵

2
.  It is obvious that 𝑓 is a partial fuzzy contraction mapping. Indeed, 

we have 

ℱ(𝑓(𝔵), 𝑓(𝔶), 𝑘𝔱) = ℱ(𝑓(𝔵), 𝑓(𝔶), 𝑘𝔱) = ℱ (
𝔵

2
,
𝔶

2
, 𝑘𝔱) =

𝑘𝔱

𝑘𝔱 + 𝑚𝑎𝑥 {
𝔵
2 ,
𝔶
2} 
=

𝑘𝔱

𝑘𝔱 +
1
2𝑚𝑎𝑥

{𝔵, 𝔶} 
 

for all 𝔵, 𝔶 ∈ ℝ+. Therefore, we obtain that ℱ(𝑓(𝔵), 𝑓(𝔶), 𝑘𝔱) = ℱ(𝔵, 𝔶, 𝔱) for all 𝔵, 𝔶 ∈ ℝ+ whenever 

𝑘 =
1

2
. Also, lim

𝑡→∞
ℱ(𝔵, 𝔶, 𝔱) = lim

𝑡→∞

𝔱

𝔱+𝑚𝑎𝑥{𝔵,𝔶} 
= 1. Hence all conditions of Theorem 4 are satisfied for 

𝑓(𝔵) =
𝔵

2
 defined on this space. And one can easily verify that 𝑓 has a unique fixed point which is 𝔵 = 0. 

 

Note that, none of the conditions of Theorem 4 cannot be omitted. The next example shows that 

the condition to be non-decreasing is not superfluous. 

 

Example 5. Let 𝑈 be a non-empty set, 𝑎 ⊛ 𝑏 = min{𝑎, 𝑏} and the mapping ℱ:𝑈 × 𝑈 × (0,∞) → [0, 1] 

defined by ℱ(𝔵, 𝔶, 𝔱) = 𝑒−𝔱 for all 𝔵, 𝔶, 𝔷 ∈ 𝑈 and 𝔱 > 0. It can be shown with a similar proceeding in 

Example 3 that (𝑈, ℱ,⊛) is a PFMS. Furthermore, (𝑈, ℱ,⊛) is complete. Also,  

ℱ(𝑓(𝔵), 𝑓(𝔶), 𝑘𝔱) = 𝑒−𝑘𝔱 ≥ 𝑒−𝔱 = ℱ(𝔵, 𝔶, 𝔱) for all 𝑘 ∈ (0,1), 𝔵, 𝔶 ∈ 𝑈 and 𝔱 > 0. Consider the self-

mapping 𝑓 on 𝑈 given by 𝑓(𝔵) = 𝔵. Clearly, 𝑓 satisfies the contraction condition of Theorem 4. But the 

condition 𝑙𝑖𝑚𝑡→∞ℱ(𝔵, 𝔶, 𝔱) = 1 for all 𝔵, 𝔶 ∈ 𝑈 does not hold and also every point of 𝑈 is a fixed point 

of 𝑓. 

 

The following example shows that the contraction condition of Theorem 4 is not unnecessary. 

 

Example 6. Let 𝑈 = ℝ+, 𝔞⊛ 𝔟 = 𝔞𝔟 for all 𝔞, 𝔟 ∈ [0,1] and the mapping ℱ ∶ 𝑈 × 𝑈 × (0,∞) → [0, 1]  

defined by 

ℱ(𝔵, 𝔶, 𝔱) =
𝔱

𝔱 + 𝑚𝑎𝑥{𝔵, 𝔶} 
  . 

 

We know that (𝑈, ℱ,⊛) is a complete PFMS.  Also, the condition 𝑙𝑖𝑚𝑡→∞ℱ(𝔵, 𝔶, 𝔱) = 1 for all 𝔵, 𝔶 ∈ 𝑈 

is  hold. Consider the self-mapping 𝑓 on 𝑈 given by 𝑓(𝔵)  = 𝔵 +  1. The mapping 𝑓 does not satisfy the 

contraction condition of Theorem 4. Also, 𝑓 has not any fixed point. 

 

Theorem 5. Let (𝑈, ℱ,⊛) be a PFMS such that 𝔟 ≥ 𝔠  whenever 𝔞⊛ 𝔟 ≥ 𝔞⊛ 𝔠 for all 𝔞, 𝔟, 𝔠 ∈ [0, 1]. 

If a self-mapping 𝑓 on 𝑈 is a partial fuzzy Edelstein contractive mapping and there is a point 𝔵0 ∈ 𝑈 

whose sequence of iterates (𝑓𝑛(𝔵0)) contains subsequence (𝑓𝑛𝑖(𝔵0)) such that lim
𝑖→∞

ℱ(𝑓𝑛𝑖(𝔵0), 𝔵, 𝔱) =

lim
𝑖→∞

ℱ(𝑓𝑛𝑖(𝔵0), 𝑓
𝑛𝑖(𝔵0), 𝔱) = ℱ(𝔵, 𝔵, 𝔱)  , then 𝔵 = lim

𝑖→∞
𝑓𝑛𝑖(𝔵0) ∈ 𝑈 is a unique fixed point of 𝑓. 
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Proof.  Let (𝑈, ℱ,⊛) be a PFMS such that 𝔟 ≥ 𝔠 whenever 𝔞⊛ 𝔟 ≥ 𝔞⊛ 𝔠 for all 𝔞, 𝔟, 𝔠 ∈ [0, 1]. Then 

ℱ(𝔵, 𝔶,⋅) ∶ (0,∞) → [0,1] is a non-decreasing function for all 𝔵, 𝔶 ∈ 𝑈. So, we have (𝑈,ℳℱ ,⊛) is a 

fuzzy metric space which is given in Theorem 3. Hence, from the Theorem 2, we obtain that 𝑓 has a 

unique fixed point. 

 

Theorem 6. Let (𝑈, ℱ,⊛) be a complete PFMS. If a self-mapping 𝑓 on 𝑈 is a partial fuzzy 𝜓-contractive 

mapping, then 𝑓 has a unique fixed point in 𝑈. 

 

Proof. Let 𝔵0 ∈ 𝑈 and 𝔵𝑛 = 𝑓
𝑛(𝔵0) for all 𝑛 ∈ ℕ. Then for all 𝔱 > 0, we have 

  ℱ(𝔵𝑛+1, 𝔵𝑛+2, 𝔱) = ℱ(𝑓(𝔵𝑛), 𝑓(𝔵𝑛+1), 𝔱) ≥ 𝜓(ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱)) > ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱) > ⋯ > ℱ(𝔵0, 𝔵1, 𝔱).  

This means that the sequence (ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱))𝑛∈ℕ is non-decreasing on (0, 1]. Thus, for a given 

𝔱 > 0, there exists a point 𝔞 ∈ (0, 1] such that 𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱) = 𝔞. From contraction condition, 

ℱ(𝔵𝑛, 𝔵𝑛+1, 𝔱) ≥ 𝜓(ℱ(𝔵𝑛−1, 𝔵𝑛, 𝔱)) 

Therefore, we have 𝜓(𝔞) ≤ 𝔞 However, 𝔰 < 𝜓(𝔰) for all 𝔰 ∈ (0, 1) and 𝜓 continuous. Therefore, we 

must have 𝔞 =  1. By the triangular inequality we obtain 𝑙𝑖𝑚
𝑛,𝑚→∞

𝐹(𝔵𝑛, 𝔵𝑚, 𝑡) = 1. Hence (𝔵𝑛) is a Cauchy 

sequence in (𝑈, ℱ,⊛) . Since (𝑈, ℱ,⊛) is complete the sequence (𝔵𝑛) is convergent. Thus 

𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵𝑛, 𝔵, 𝔱) = ℱ(𝔵, 𝔵, 𝔱) = 1 = 𝑙𝑖𝑚
𝑛,𝑚→∞

ℱ(𝔵𝑛, 𝔵𝑚, 𝔱). 

ℱ(𝑓(𝔵), 𝔵, 𝔱) ≥ ℱ(𝑓(𝔵), 𝔵, 𝔱) ⊛ ℱ(𝔵𝑛+1, 𝔵𝑛+1, 𝔱) ≥ ℱ(𝑓(𝔵), 𝔵𝑛+1, 𝔱) ⊛ ℱ(𝔵𝑛+1, 𝔵, 𝔱)  

= ℱ(𝑓(𝔵), 𝑓(𝔵𝑛), 𝔱) ⊛ ℱ(𝔵𝑛+1, 𝔵, 𝔱) ≥ 𝜓(ℱ(𝔵, 𝔵𝑛, 𝔱)) ⊛ ℱ(𝔵𝑛, 𝔵, 𝔱)  ≥ ℱ(𝔵, 𝔵𝑛, 𝔱) ⊛ ℱ(𝔵𝑛, 𝔵, 𝔱)  

If we take limit both sides as 𝑛 → ∞, we have 

𝑙𝑖𝑚
𝑛→∞

ℱ(𝑓(𝔵), 𝔵, 𝔱) ≥ 𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵, 𝔵𝑛, 𝔱) ⊛ 𝑙𝑖𝑚
𝑛→∞

ℱ(𝔵, 𝔵𝑛, 𝔱) = 1 ⊛ 1 = 1         

Thus 𝑓(𝔵) = 𝔵. Assume that 𝔵 ≠ 𝔶 ∈ 𝑈 such that 𝑓(𝔶) = 𝔶. Then we have 

ℱ(𝔵, 𝔶, 𝔱) = ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱) ≥ 𝜓(ℱ(𝔵, 𝔶, 𝔱)) > ℱ(𝔵, 𝔶, 𝔱). 

which is a contradiction. Thus, 𝔵  is a unique fixed point of 𝑓. 

 

Corollary 2. Let (𝑈, ℱ,⊛) be a PFMS and the mapping 𝜓𝑘: [0, 1] → [0, 1] be defined by 

𝜓𝑘(𝑡) =
𝑡

𝑡 + 𝑘(1 − 𝑡)
 

where 𝑘 ∈ (0,1). Then, 𝜓𝑘 ∈ 𝛹. In this case, every partial fuzzy 𝜓𝑘-contractive mapping is a partial 

fuzzy contractive mapping. 

 

Proof. If 𝑓 is a partial fuzzy 𝜓𝑘-contractive mapping on 𝑈, then ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱) ≥ 𝜓𝑘(ℱ(𝔵, 𝔶, 𝔱)) for 

all 𝔵, 𝔶 ∈ 𝑈 and 𝔱 > 0. From this inequality, we obtain that ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱) ≥
ℱ(𝔵,𝔶,𝔱)

ℱ(𝔵,𝔶,𝔱)+𝑘(1−ℱ(𝔵,𝔶,𝔱))
 for all 

𝔵, 𝔶 ∈ 𝑈 and 𝔱 > 0. Hence, it is easily seen that 𝑘 (
1

ℱ(𝔵,𝔶,𝔱)
− 1) ≥

1

ℱ(𝑓(𝔵),𝑓(𝔶),𝔱)
− 1 for all 𝔵, 𝔶 ∈ 𝑈 and 

𝔱 > 0. This shows that 𝑓 is a partial fuzzy contractive mapping on 𝑈. 

 

Corollary 3. Let (𝑈, ℱ𝑝,⊛) be the standard PFMS induced by a given partial metric 𝑝 on 𝑈 Then the 

self-mapping 𝑓 on 𝑈 is a partial contractive mapping if and only if 𝑓 is a partial fuzzy contractive 

mapping. 
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Proof. If we assume that 𝑓 is a partial contractive mapping on 𝑈, then there exists a 𝑘 ∈ (0,1) such that 

𝑝(𝑓(𝔵), 𝑓(𝔶)) ≤ 𝑘𝑝(𝔵, 𝔶) for all 𝔵, 𝔶 ∈ 𝑈. Hence, we have that 

𝑘 (
1

ℱ𝑝(𝔵, 𝔶, 𝔱)
− 1) = 𝑘 (

𝑡 + 𝑝(𝔵, 𝔶)

𝑡
− 1) =

𝑘𝑝(𝔵, 𝔶)

𝑡
≥
𝑝(𝑓(𝔵), 𝑓(𝔶))

𝑡
=

1

ℱ(𝑓(𝔵), 𝑓(𝔶), 𝔱)
− 1 

for all 𝔵, 𝔶 ∈ 𝑈 and 𝔱 > 0. This shows that 𝑓 is a partial fuzzy contractive mapping. The vice versa is 

obvious with similarly. 

CONCLUSION 

In several branches of mathematics and other disciplines such as optimizations, computer science, 

economics, engineering and etc., the notion of (partial) metric spaces and its generalizations to the fuzzy 

environment with fixed point theory has a wide range of applications. Because of the significance of 

these concepts, we aim to study some fundamental fixed point theorems in partial fuzzy metric spaces 

in the sense of Sedghi et al. Defining some contractive/contraction mappings similar to the Banach 

contraction mappings in the fuzzy sense, we show that these mappings have a unique fixed point under 

some conditions. We also give some examples to illustrate the validity of these theorems. The obtained 

fixed point theorems lead to further investigations and applications. For example, it is possible to extend 

our results to the case of coupled fixed points in partial fuzzy metric spaces or the other senses of partial 

fuzzy metric spaces. 
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