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Abstract 

This study introduces us to a new model developed for computer viruses. The model is 

presented to remove the protective restriction on the total number of computers 

connected to the Internet. This model is nonlinear differential equation system. 

Therefore, finding analytical solutions is very difficult. This means that we have to 

apply numerical methods in order to find the solution. The behavior of numerical 

solution has been investigated for the discretized system. By using Nonstandard Finite 

Difference Scheme (NSFD), it is aimed to preserve both the positivity of the solutions 

for positive initial points and the local asymptotic stability of the equilibrium point.  
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1. Introduction 

A computer virus is a program that can infect other programs by changing them to include an evolved copy of its own. 

When a computer has a virus attack, the virus can perform destructive operations such as changing data, deleting data, 

deleting files, codifying files and formatting disks [1,2]. 

 

The computer virus began to attract attention in the world in the 1980s and it has been becoming a big threat in our daily 

life. In recent years, this threat has been even more serious with the improvement of hardware and software technology 

and the increasing importance of computer networks. For example, the personal data from network users such as bank 

accounts and passwords are likely to cause serious harm to persons and corporations. Therefore, it is inevitable to suggest 

various mathematical models to investigate the control and diffusion of computer virus and to define their behaviour. 

An anti-virus software program is the most important way to defend against viruses in these days. Nevertheless, the 

improvement of new anti-virus software program is always behind the appearance of new viruses; therefore, it can not 

help to bring out long-range policies that contain viruses. That is the reason why the solutions of virus programs with 

mathematical models have become more and more important [3-8]. 

 

Many research on the computer viruses, such as creating of new viruses and new vectors or the development of new 

techniques for invention and inclusion, has been conducted to explore how computer viruses work. However, recent 

studies were limited basically to three epidemic models: the SI model [9,10], the SIS model [10-20] and the SIR model 

[13,21-24]. 

 

Making the formulation of the model for shortness computers are called as nodules. A nodule is called “internal” or 

“external”, depending on whether it is connected to the Internet. A nodule is defined as infected or uninfected, depending 

on whether it contains viruses. An infected nodule is known as latent if the viruses in it are all latent. An infected nodule 

is called as breaking-out if at least one virus in it is breaking-out. Based on the former studies, all internal nodules are 

classified into uninfected internal nodules (S nodules), hidden internal nodules (L nodules), and fragmented internal 

nodules (B nodules).  Moreover, all external nodules are classified into uninfected external nodules (𝑆∗ nodules), hidden 

external nodules (𝐿∗ nodules) and broken external nodules (𝐵∗ nodules) [4,5]. Let 𝑆(𝑡), 𝐿(𝑡) and 𝐵(𝑡) indicate the points 

of 𝑆, 𝐿 and 𝐵 nodules at time 𝑡 respectively. The model on which we are working depends on the following acceptances: 

 

(A1) If  𝜇1 > 0 , 𝑆∗ nodules are bonded to the Internet at the fixed rate. 

If  𝜇2 > 0 , 𝐿∗  nodules are are bonded to the Internet at the fixed rate.  Let = 𝜇 = 𝜇1 + 𝜇2. 

(A2) 𝛿 > 0 is a constant probability for every internal nodules are disconnected from the Internet. 

(A3) 𝜃 > 0 is a constant probability for every S nodules are infected. 

(A4) For 𝛽1 > 0 ,  𝛽2 > 0, 

 𝛽1𝐿(𝑡)  : The probability function for every infected 𝑆 nodules  by L nodules, 

𝛽2𝐵(𝑡) : The probability function for every infected 𝑆 nodules by B nodules. 

 (A5) 𝛼 > 0 is a constant probability for each break out 𝐿 nodules. 

(A6) 𝜔1 > 0 is a constant probability for each cured 𝐿 nodules and 
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       𝜔2 > 0 is a constant probability for each cured 𝐵 nodules.  

Based on these acceptances, the investigated computer virus model is formulated as [5]; 

 

𝑑𝑆

𝑑𝑡
= 𝜇1 − (𝛽1𝐿 + 𝛽2𝐵)𝑆 + 𝜔1𝐿 + 𝜔2𝐵 − (𝛿 + 𝜃)𝑆,                                                                                      (1) 

𝑑𝐿

𝑑𝑡
= 𝜇2 + (𝛽1𝐿 + 𝛽2𝐵)𝑆 − (𝜔1 + 𝛼 + 𝛿)𝐿 + 𝜃𝑆,                                                                                           (2) 

𝑑𝐵

𝑑𝑡
= 𝛼𝐿 − (𝜔2 + 𝛿) 𝐵  .                                                                                                                                    (3) 

 

( 𝑆(0), 𝐵(0), 𝐿(0) ) are real numbers and initial conditions. 

 

In this study, the stability analysis of the Equations (1) – (3) will be presented with Nonstandard Finite Difference 

Schemes (NSFD). As the most important feature of this method, a suitable function that depends on ℎ can be selected 

instead of the step size ℎ. This scheme allows to find better results for the nonlinear model. The procedures for the NSFD 

method were introduced by Mickens in 1989 [25].  

 

Using the appropriate denominator function prevents the inconsistency of the solutions of the model. To see how to 

select the denominator function and how to implement it to different models, you can look at [25-32] . 

 

The format of this paper is arranged as follows: Section 2 gives some definitions and theorems about NSFD, which is 

the discretization method to be used in solving linear and nonlinear equations. Section 3 reports the discretization of the 

computer virus model. Section 4 first includes the useful information about the stability analysis, and then presents the 

findings related to the stability analysis of the system. Section 5 comprises some graphics and the simulations of the 

model with different parameters. Section 6, which is the last section, contains some discussions and conclusions. 

 

2. Nonstandard Finite Difference Schemes for ODEs 

 

Micken’s NSFD method can be expressed as follows using [27-33]. Consider the following ordinary differential equation: 

           

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝜆).                                                                                                                                                      (4) 

 

Here 𝜆 is a parameter. Basic nonstandard finite difference schemes are  

 

𝑡 → 𝑡𝑛 = ℎ𝑛,    𝑥(𝑡) → 𝑥𝑛, 𝑓(𝑥) → 𝑓(𝑥𝑛),    
𝑑𝑥

 𝑑𝑡
→

𝑥𝑛+1−𝑥𝑛

𝜙(ℎ)
.                                                                           (5) 

 

Here 𝜙(ℎ) depends on the step size of  ∆𝑡 = ℎ and satisfies 𝜙(ℎ) = ℎ + 𝑂(ℎ2). Therefore, the denominator function 

𝜙(ℎ), should be chosen as, 
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𝜙(ℎ) =
1−𝑒(−𝐾ℎ)

𝐾
                                                                                                                                                (6) 

 

where K is calculated from the information of the fixed points of  (4).  Here 𝜙(ℎ) is an increasing function of ℎ and it 

may hinge on the parameters appearing in the differential equations. The discretization of nonlinear terms using NSFD 

can be done as following examples ; 

 

𝑥2 → 𝑥𝑛+1𝑥𝑛 , 

 

𝑥2 →
𝑥𝑛+1+𝑥𝑛+𝑥𝑛−1

3
𝑥𝑛 , 

 

𝑥3 →
𝑥𝑛+1+𝑥𝑛−1

2
𝑥𝑛

2 . 

 

The decay equation is an example for NFSD discretization process and its application. 

 

 

𝑑𝑥

𝑑𝑡
= −𝛼𝑥                                                                                                                                                          (7) 

 

 

here  𝛼 is a constant. The discretization scheme is [31], 

 

 

𝑥𝑛+1−𝑥𝑛

𝜙
= −𝛼𝑥𝑛,    𝜙(ℎ, 𝛼) =

1−𝑒−𝛼ℎ

𝛼
.                                                                                                              (8) 

 

 

In another basic example,  

 

 

𝑑𝑥

𝑑𝑡
= 𝛼1𝑥 − 𝛼2𝑥2                                                                                                                                              (9) 

 

 

here the NSFD scheme is given  as follows [31], 

 

 

𝑥𝑛+1−𝑥𝑛

𝜙
= −𝛼1𝑥𝑛 − 𝛼2𝑥𝑛+1𝑥𝑛,   𝜙(ℎ, 𝛼1) =

𝑒𝛼1ℎ−1

𝛼1
.                                                                                      (10) 

 



 
Kocabıyık et al.  J Inno Sci Eng 4(2):96-108 

100 

 

3. Discretization of the Computer Virus Model 

 

Let 𝑆(𝑡) + 𝐿(𝑡) + 𝐵(𝑡) = 𝑁(𝑡).  By adding and simplifying the triple system (1) - (3) side by side, we get the following 

equation: 

 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜇 − 𝛿𝑁(𝑡),                                                                                                                                            (11) 

 

implying lim
𝑡→∞

𝑁(𝑡) =
𝜇

𝛿
. This shows that the total number of internal computers approaches the constant 𝑁∗ =

𝜇

𝛿
.  

 

The above equation is a linear nonhomogeneous ordinary differential equation with constant coefficient. To solve 

Equation (11) with Nonstandard Finite Difference Scheme, the following discretization will be done: 

 

𝑑𝑁

𝑑𝑡
→

𝑁𝑖+1−𝑁𝑖

𝜙1
   and   𝑁 →  𝑁𝑖+1 .                                                                                                                     (12) 

 

Using the discretization in Equation (12),  Equation (11) is written as follows: 

 

𝑁𝑖+1 =
𝑁𝑖+𝜙1𝜇

1+𝛿𝜙1
 .                                                                                                                                                 (13) 

 

Instead of 𝑆, 𝑁 − 𝐿 − 𝐵 is written in the systems (2)-(3) and the following discretizations (14)-(15) are done by NSFD,  

 

𝑑𝐿

𝑑𝑡
→

𝐿𝑖+1−𝐿𝑖

𝜙2
                                                                                                                                                       (14) 

 

𝑑𝐵

𝑑𝑡
→

𝐵𝑖+1−𝐵𝑖

𝜙3
.                                                                                                                                                     (15) 

 

And the equation system (16) can be written: 

 

 𝑁𝑖+1 =
𝑁𝑖+𝜙1𝜇

1+𝛿𝜙1
  

 

𝐿𝑖+1 =
𝐿𝑖+𝜙2(𝜇2+(𝑁𝑖−𝐵𝑖)(𝛽1𝐿𝑖+𝛽2𝐵𝑖+𝜃))

1+𝜙2(𝛽1𝐿𝑖+𝛽2𝐵𝑖+𝜃+𝜔1+𝛼+𝛿)
                                                                                                              (16) 

 

 𝐵𝑖+1 =
𝐵𝑖+𝜙3𝛼𝐿𝑖

1+𝜙3(𝜔2+𝛿)
 . 

 

 

The denominator functions of Equation (16) are chosen as, 
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𝜙1 =
𝑒𝛿ℎ−1

𝛿
 , 

 

 

𝜙2 =
𝑒(𝜃+𝜔1+𝛼+𝛿)ℎ−1

𝜃+𝜔1+𝛼+𝛿
,                                                                                                                                         (17) 

 

 

 𝜙3 =
𝑒(𝜔2+𝛿)ℎ−1

𝜔2+𝛿
 . 

 

4. Stability Analysis 

This section gives some useful information about the local asymptotic stability of discrete systems. In particular, the 

following information is important to examine the Schur-Cohn criterion, which deals with the coefficient matrix of the 

linearized system: 

 

1 − 𝑡𝑟𝐽 + 𝑑𝑒𝑡𝐽 > 0, 

 

1 + 𝑡𝑟𝐽 + 𝑑𝑒𝑡𝐽 > 0, 

 

𝑑𝑒𝑡𝐽 > 1 

 

where, J and trJ denote the coefficient matrix and the trace of the matrix of the linearized systems, respectively. These are 

some suggestions about Schur-Cohn criteria and its use [29, 34-42]. 

 

Lemma 1. (Schur-Cohn Criteria) For the quadratic characteristic equation 𝑃(𝜆) = 𝜆2 + 𝑝1𝜆 + 𝑝2 the roots satisfy |𝜆𝑘| ≤

1, 𝑘 = 1,2 but if the following conditions are satisfied [36]: 

 

𝑃(1) = 1 + 𝑝1 + 𝑝2 > 0, 

 

𝑃(−1) = 1 − 𝑝1 + 𝑝2 > 0, 

 

𝑝2 < 1 

 

Lemma 2. (Jury Condition) Suppose the characteristic polynomial 𝑃(𝜆) = 𝜆3 + 𝑝1𝜆2 + 𝑝2𝜆 + 𝑝3  The solutions  𝜆𝑘, 𝑘 =

1,2,3 of  𝑃(𝜆) = 0   satisfy |𝜆𝑘| ≤ 1if and only if the next three conditions are applied [36]: 

 

𝑃(1) = 1 + 𝑝1 + 𝑝2 + 𝑝3 > 0, 
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(−1)3𝑃(−1) = 1 − 𝑝1 + 𝑝2 − 𝑝3 > 0, 

 

1 − (𝑝3)2 > |𝑝2 − 𝑝1𝑝3| 

 

Theorem 1. The discretized system (16) has only one fixed point: 

 

𝐸∗ = (𝑁∗, 𝐿∗, 𝐵∗) = (
𝜇

𝛿
,
−𝑘2 + √(𝑘2)2 − 4𝑘1𝑘3

2𝑘1
,

𝛼𝐿

𝜔2 + 𝛿
) 

 

here, 

 

𝑘1 = −𝛽1, 

 

𝑘2 = 𝛽2𝐵 + 𝜃 + 𝜔1 + 𝛼 + 𝛿 − 𝑁𝛽1 + 𝐵𝛽1                                                                                                                    (18) 

 

Proof. Since we write 𝑁∗ instead of  𝑁𝑖+1 and 𝑁𝑖 in the first equation of system (16), the following equation can be found  

 

 𝑁∗ =
𝑁∗+𝜙1𝜇

1+𝛿𝜙1
 . 

 

With the required multiplication  

 

𝑁∗(1 + 𝛿𝜙1) = 𝑁∗ + 𝜙1𝜇            𝑁∗ + 𝑁∗𝛿𝜙1 = 𝑁∗ + 𝜙1𝜇             𝑁∗𝛿𝜙1 = 𝜙1𝜇  ,           

 

the expression 𝑁∗ is obtained as 
𝜇

𝛿
. 

In the second equation of system (16) if we write 𝐿∗ instead of 𝐿𝑖+1 and 𝐿𝑖 with the same method, the following equation 

can be found: 

 

𝐿∗ =
𝐿∗+𝜙2(𝜇2+(𝑁𝑖−𝐵𝑖)(𝛽1𝐿∗+𝛽2𝐵𝑖+𝜃))

1+𝜙2(𝛽1𝐿∗+𝛽2𝐵𝑖+𝜃+𝜔1+𝛼+𝛿)
 .                                                                                                                (19) 

 

If the equation (19) is rearranged with the help of system (18), Equation (19) can be written as 

 

𝑘1(𝐿∗)2 + 𝑘2𝐿∗ + 𝑘3 = 0,  

 

𝐿∗ =
−𝑘2+√(𝑘2)2−4𝑘1𝑘3

2𝑘1
.  

 

If the same operations are done respectively for 𝐵𝑖+1 the following equation can be found: 
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𝐵∗ =
𝛼𝐿

𝜔2+𝛿
  . 

 

Theorem 2. The fixed point 𝐸∗ is local asymptotic stable. 

 

Proof. The Jacobian matrix of system (16) has given by the form 𝐽 = (𝑐𝑖𝑗)3×3, 

 

[

1

1+𝛿𝜙1
0 0

𝑐21 𝑐22 𝑐23

0 𝑐32 𝑐33

]  

 

here,  

 

𝑐21 =
𝜙2 (𝐵𝛽2+𝐿𝛽1+𝜃)

1+𝜙2 (𝐵𝛽2+𝐿𝛽1+𝜃+𝛼+𝜔1+𝛿)
  

 

𝑐22 =
1+𝜙2 (𝑁−𝐵)𝛽1

1+𝜙2 (𝐵𝛽2+𝐿𝛽1+𝜃+𝛼+𝜔1+𝛿)
−

(𝐿+𝜙2 (𝜇2+(𝑁−𝐵)(𝐵𝛽2+𝐿𝛽1+𝜃)))𝜙2 𝛽1

((1+𝜙2 (𝐵𝛽2+𝐿𝛽1+𝜃+𝛼+𝜔1+𝛿)))2   

 

𝑐23 =
𝜙2 (−𝐵𝛽2−𝐿𝛽1−𝜃+(𝑁−𝐵)𝛽2)

1+𝜙2 (𝐵𝛽2+𝐿𝛽1+𝜃+𝛼+𝜔1+𝛿+𝜔1)
−

(𝐿+𝜙2 (𝜇2+(𝑁−𝐵)(𝐵𝛽2+𝐿𝛽1+𝜃)))𝜙2 𝛽1

((1+𝜙2 (𝐵𝛽2+𝐿𝛽1+𝜃+𝛼+𝜔1+𝛿)))2   

 

𝑐32 =
𝜙3 𝛼

1+𝜙3 (𝜔2+𝛿)
  

 

𝑐33 =
1

1+𝜙3 (𝜔2+𝛿)
.  

 

 

The characteristic equation of Jacobian matrix can be found: 

 

 

(𝜆 −
1

1+𝛿𝜙1
) (𝜆2 + 𝑡1𝜆 + 𝑡2) = 0 ,         𝐽 = [

𝑐22 𝑐23

𝑐32 𝑐33
] . 

 

 

It is sufficient to use the trace and det expressions for 𝑡1 and 𝑡2. In this case 𝑡1 and 𝑡2 can be written as  

 

 

𝑡1 = −𝑇𝑟𝑎𝑐𝑒 𝐽 = −(𝑐22 + 𝑐23) ,      𝑡2 = 𝐷𝑒𝑡 𝐽 = (𝑐22. 𝑐33 − 𝑐23. 𝑐32) . 
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The first eigenvalue is 𝜆1 =
1

1+𝛿𝜙1
 and the other eigenvalues can be found as (𝜆2 + 𝑡1𝜆 + 𝑡2) solving this equation.  Also, 

the following conditions are satisfied for local asymptotic stability of  the fixed point 𝐸∗: 

 

𝒊) 1 + 𝑡1 + 𝑡2 > 0,  

 

𝒊𝒊) 1 − 𝑡1 + 𝑡2 > 0,  

 

𝒊𝒊𝒊) 𝑡2 < 1 . 

 

5. Simulations 

 

In this section, we consider the model (1)-(3) with different parameters. In Figure 1, the numerical solutions are obtained 

by NSFD method with different initial conditions and with the parameters: 

 

𝛽1 = 0.01  𝛽2 = 0.08  𝜔1 = 0.2  𝜔2 = 0.1  𝛼 = 0.2  𝛿 = 0.1   𝜃 = 0.2  𝜇1 = 4  𝜇2 = 2.   

 

Equilibrium point is obtained as (7.73, 26.13, 26.13). 

 

 

Figure 1. Equilibrium point = (7.73, 26.13, 26.13). 

 

 

In Figure 2, we simulate the solutions and the phase portraits with the parameters: 

 

𝛽1 = 0.05  𝛽2 = 0.08  𝜔1 = 0.2  𝜔2 = 0.1  𝛼 = 0.1  𝛿 = 0.2   𝜃 = 0.1  𝜇1 = 5  𝜇2 = 2,  

 

and equilibrium point is obtained as (5.42, 18.42, 6.14). 
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Figure 2. Equilibrium point = (5.42, 18.42, 6.14). 

 

 

In Figure 3, we consider the model with the parameters: 

 

 

𝛽1 = 0.04  𝛽2 = 0.05  𝜔1 = 0.2  𝜔2 = 0.1  𝛼 = 0.2  𝛿 = 0.1   𝜃 = 0.1  𝜇1 = 1.5  𝜇2 = 1.  

 

 

Equilibrium point is obtained as (4.06, 10.46, 10.46). 

 

Figure 3. Equilibrium point = (4.06, 10.46, 10.46). 

 

 

This graphics and simulations are appropriate with [4,5]. 
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6. Conclusion 

 

In this paper, firstly, computer virus model given by Equation (1)-(3) was discretized using NSFD method. Instead of 𝑆, 

𝑁 − 𝐿 − 𝐵 was written in the Equation (2) and Equation (3). Then, stability analysis was done with the help of some 

lemmas and theorems for the discretized system given by Equation (16). Some graphics and simulations of the solutions 

with different parameters were given. Using these solutions, the current study have made significant contribution to the 

relevant research by providing important insights into the spread of computer viruses on the Internet. 
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