Research Article
BibTex RIS Cite

Effect of Thermal And Chemical Disintegratıon on The Enhance of Biogas Production in Waste Activated Sludge

Year 2022, Volume: 27 Issue: 2, 617 - 626, 31.08.2022
https://doi.org/10.17482/uumfd.1137682

Abstract

Sludge disintegration methods are pre-treatment methods applied to eliminate the hydrolysis phase, which is the rate limiting step in the decay process of wastewater sludge, to increase the degree of stabilization and the amount of biogas formed. In this study, the effect of different disintegration methods (thermal and chemical) on the solubility of the sludge was investigated by examining the changes in the dissolved chemical oxygen demand parameter. In the studies conducted within the scope of thermal disintegration, waste activated sludge is subjected to heat treatment in block heaters in closed tubes. In the case of alkali disintegration experiments, NaOH was added such that the waste activated sludge pH was 10 and 11.
As a result of the study, biogas production was found 202.5, 189.8, 104 and 80.5 ml from thermal disintegration, alkaline disintegration, inoculum+raw sludge and inoculum sludge in a result of BMP test, respectively. Both of the chemical disintegration and thermal disintegration methods applied within the scope of the study have positively affected the efficiency of biogas. Thermal disintegration method seems to be more effective method in terms of biogas productivity. 

References

  • 1. Anderson, N., Dixon, J., Harbour, P. J. & Scales, P. J. (2002). Complete characterisation of thermally treated sludges. Water Science and Technology, 46(10): 51-54
  • 2. Angelidaki, I. & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3: 117-129.
  • 3. Anonim (1998). Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF Copyright by American Public Health Association, Washington.
  • 4. Appels L., Degreve J., Bruggen B. Van der, Impe J. Van & Dewil, R. (2010). Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion, Bioresour. Technol., 101, 5743–5748.
  • 5. Barjenbruch, M. & Kopplow, O. (2003). Enzymatic, mechanical and thermal pretreatment of surplus sludge, Advances in Environmental Research, 7,715–720
  • 6. Bougrier, C., Albasi, C., Delgenes, J.P. & Carrere, H. (2006). Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chemical Engineering and Processing, 45: 711–718.
  • 7. Chang, C., Ying-Shih Ma, & Lo, C. (2002). Application of oxidation–reduction potential as a controlling parameter in waste activated sludge hydrolysis, Chemical Engineering Journal, 90, 273–281.
  • 8. Everett, J. G. (1973). Recent developments in heat treatments, J. Water Pollut. Control Fed., 50, 1,73-75
  • 9. Filibeli, A. & Erden K. G. (2006). Arıtma çamuru miktarının azaltılması ve özelliklerinin iyileştirilmesi amacıyla yapılan ön işlemler. itüdergisi/e.
  • 10. Foladori, P., Andreottola G. & Ziglio, G. (2010). Sludge Reduction Technologies in Wastewater Treatment Plants. IWA Publishing, London, UK
  • 11. Jin, L., Zhang, G. & Zheng, X. (2015). Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance, Journal of Environmental Sciences, 28, 22-28.
  • 12. Kim, J., Park C., Kim T.-H., Lee M., Kim S., Kim S.W. & Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, J. Biosci. Bioeng. 95 (3), 271–275.
  • 13. Mudhoo, A. & Sharma S. K. (2011) Microwave irradiation technology in waste sludge and wastewater treatment research, Crit. Rev. Environ. Sci. Technol., 41, 999–1066.
  • 14. Müller, J. A. (2003). Conditioning, thickening and dewatering of mechanically disintegrated excess sludge. Seperation Science and Technology, 38, 4, 889-902.
  • 15. Müller, J. A., Winter, A. & Strünkmann, G. (2004). Investigating and assesment of sludge pretreatment processes. Water Science and Technology, 49 (10): 97-104
  • 16. Myszograj, S., Jędrczak, A., Suchowska-Kisielewicz, M. & Sadecka, Z. (2013) Thermal and chemical disintegration of excessive sewage sludge, The 1st Global Virtual Conference, Goce Delchev University Macedonia & Thomson Ltd., Slovakia.
  • 17. Odegaard, H., Paulsrud, B. & Karlsson, I. (2002). Wastewater sludge as a resource: Sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater Sludge. Water Science and Technology, 46(10): 295-303
  • 18. Prorot, A., Laurent, J., Dagot, C. & Leprat, P. (2011). Sludge disintegration during heat treatment at low temperature: a better understanding of involved mechanisms with a multiparametric approach, Biochem. Eng. J., 54, 178–184.
  • 19. Rajan, R. V., Lin, J.G. & Ray, B. T. (1989). Low level chemical pretreatment for enhanced sludge solubilization, Res. J. Water Pollut. Control Fed. 61, 1678–1683.
  • 20. Ray, B. T., Rajan, R. V. & Lin, J.G. (1990). Lowlevel alkaline solubilization for enhanced anaerobic digestion, Res. J. Water Pollut. Control Fed., 62, 81-87.
  • 21. Tyagi, V.K. & Lo, S.L. (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review, Rev. Environ. Sci. Biotechnol., 10, 215–242.
  • 22. Valo, A., Carrere, H. & Delgenes, J.P. (2004). Thermal, chemical andthermo-chemical pre-treatment of waste activated sludge foranaerobic digestion. J. Chem. Technol. Biotechnol. 79, 1197–1203.
  • 23. Vranitzky R. & Lahnsteiner, J. (2005). Sewage sludge disintegration using ozone – A method of enhancing the anaerobic stabilization of sewage sludge, VA TECH WABAH, R&D Process Engineering, Siemensstrasse 89, A- 1211 Vienna, Austria
  • 24. Wett, B., Phothilangka, P. & Eladawy, A. (2010) Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Manag. 30, 1057–1062.
  • 25. Wilson, C.A. & Novak, J.T. (2009). Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment, Water Research, 43(18), 4489-4498. doi:10.1016/j.watres.2009.07.022
  • 26. Yeşil, E. (2011). Atık Çamur Dezentegrasyonu Yöntemlerinin Çamur Minimizasyonu Açısından Değerlendirilmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • 27. Zhang, Y.X., Zhang, P.Y., Zhang, G.M., Ma, W.F., Wu, H. & Ma, B.Q. (2012). Sewage sludge disintegration by combined treatment of alkaline+high pressure homogenization. Bioresour. Technol. 123, 514– 519.

ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ

Year 2022, Volume: 27 Issue: 2, 617 - 626, 31.08.2022
https://doi.org/10.17482/uumfd.1137682

Abstract

Çamur dezentegrasyon yöntemleri, atıksu çamurunun çürüme sürecinde hız sınırlayıcı adım olan hidroliz fazını ortadan kaldırmak, oluşan biyogaz miktarını ve stabilizasyon derecesini artırmak için uygulanan ön işlem yöntemleridir. Bu çalışmada, çözünmüş kimyasal oksijen ihtiyacı parametresindeki değişimler incelenerek farklı dezentegrasyon yöntemlerinin (termal ve kimyasal) çamurun çözünürlüğüne etkisi araştırılmıştır. Termal dezentegrasyon kapsamında yapılan çalışmalarda atık aktif çamur, kapalı tüplerdeki blok ısıtıcılarda ısıl işleme tabi tutulmuştur. Kimyasal(alkali) dezentegrasyon için, atık aktif çamurun pH'ı 10 ve 11 olacak şekilde NaOH ilave edilmiştir.
Çalışma sonucunda, BMP testi ile termal dezentegrasyon, alkali dezentegrasyon, aşı+ham çamur ve aşı çamurundan biyogaz üretimi sırasıyla 202.5, 189.8, 104 ve 80.5 ml olarak bulunmuştur. Çalışma kapsamında uygulanan kimyasal ve termal dezentegrasyon yöntemlerinin her ikisi de biyogazın verimini olumlu yönde etkilemiştir. Biyogaz verimliliği açısından termal dezentegrasyon yöntemi daha etkili bir yöntem gibi görünmektedir.

References

  • 1. Anderson, N., Dixon, J., Harbour, P. J. & Scales, P. J. (2002). Complete characterisation of thermally treated sludges. Water Science and Technology, 46(10): 51-54
  • 2. Angelidaki, I. & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3: 117-129.
  • 3. Anonim (1998). Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF Copyright by American Public Health Association, Washington.
  • 4. Appels L., Degreve J., Bruggen B. Van der, Impe J. Van & Dewil, R. (2010). Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion, Bioresour. Technol., 101, 5743–5748.
  • 5. Barjenbruch, M. & Kopplow, O. (2003). Enzymatic, mechanical and thermal pretreatment of surplus sludge, Advances in Environmental Research, 7,715–720
  • 6. Bougrier, C., Albasi, C., Delgenes, J.P. & Carrere, H. (2006). Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chemical Engineering and Processing, 45: 711–718.
  • 7. Chang, C., Ying-Shih Ma, & Lo, C. (2002). Application of oxidation–reduction potential as a controlling parameter in waste activated sludge hydrolysis, Chemical Engineering Journal, 90, 273–281.
  • 8. Everett, J. G. (1973). Recent developments in heat treatments, J. Water Pollut. Control Fed., 50, 1,73-75
  • 9. Filibeli, A. & Erden K. G. (2006). Arıtma çamuru miktarının azaltılması ve özelliklerinin iyileştirilmesi amacıyla yapılan ön işlemler. itüdergisi/e.
  • 10. Foladori, P., Andreottola G. & Ziglio, G. (2010). Sludge Reduction Technologies in Wastewater Treatment Plants. IWA Publishing, London, UK
  • 11. Jin, L., Zhang, G. & Zheng, X. (2015). Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance, Journal of Environmental Sciences, 28, 22-28.
  • 12. Kim, J., Park C., Kim T.-H., Lee M., Kim S., Kim S.W. & Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, J. Biosci. Bioeng. 95 (3), 271–275.
  • 13. Mudhoo, A. & Sharma S. K. (2011) Microwave irradiation technology in waste sludge and wastewater treatment research, Crit. Rev. Environ. Sci. Technol., 41, 999–1066.
  • 14. Müller, J. A. (2003). Conditioning, thickening and dewatering of mechanically disintegrated excess sludge. Seperation Science and Technology, 38, 4, 889-902.
  • 15. Müller, J. A., Winter, A. & Strünkmann, G. (2004). Investigating and assesment of sludge pretreatment processes. Water Science and Technology, 49 (10): 97-104
  • 16. Myszograj, S., Jędrczak, A., Suchowska-Kisielewicz, M. & Sadecka, Z. (2013) Thermal and chemical disintegration of excessive sewage sludge, The 1st Global Virtual Conference, Goce Delchev University Macedonia & Thomson Ltd., Slovakia.
  • 17. Odegaard, H., Paulsrud, B. & Karlsson, I. (2002). Wastewater sludge as a resource: Sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater Sludge. Water Science and Technology, 46(10): 295-303
  • 18. Prorot, A., Laurent, J., Dagot, C. & Leprat, P. (2011). Sludge disintegration during heat treatment at low temperature: a better understanding of involved mechanisms with a multiparametric approach, Biochem. Eng. J., 54, 178–184.
  • 19. Rajan, R. V., Lin, J.G. & Ray, B. T. (1989). Low level chemical pretreatment for enhanced sludge solubilization, Res. J. Water Pollut. Control Fed. 61, 1678–1683.
  • 20. Ray, B. T., Rajan, R. V. & Lin, J.G. (1990). Lowlevel alkaline solubilization for enhanced anaerobic digestion, Res. J. Water Pollut. Control Fed., 62, 81-87.
  • 21. Tyagi, V.K. & Lo, S.L. (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review, Rev. Environ. Sci. Biotechnol., 10, 215–242.
  • 22. Valo, A., Carrere, H. & Delgenes, J.P. (2004). Thermal, chemical andthermo-chemical pre-treatment of waste activated sludge foranaerobic digestion. J. Chem. Technol. Biotechnol. 79, 1197–1203.
  • 23. Vranitzky R. & Lahnsteiner, J. (2005). Sewage sludge disintegration using ozone – A method of enhancing the anaerobic stabilization of sewage sludge, VA TECH WABAH, R&D Process Engineering, Siemensstrasse 89, A- 1211 Vienna, Austria
  • 24. Wett, B., Phothilangka, P. & Eladawy, A. (2010) Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Manag. 30, 1057–1062.
  • 25. Wilson, C.A. & Novak, J.T. (2009). Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment, Water Research, 43(18), 4489-4498. doi:10.1016/j.watres.2009.07.022
  • 26. Yeşil, E. (2011). Atık Çamur Dezentegrasyonu Yöntemlerinin Çamur Minimizasyonu Açısından Değerlendirilmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • 27. Zhang, Y.X., Zhang, P.Y., Zhang, G.M., Ma, W.F., Wu, H. & Ma, B.Q. (2012). Sewage sludge disintegration by combined treatment of alkaline+high pressure homogenization. Bioresour. Technol. 123, 514– 519.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Efsun Dindar 0000-0002-4572-2512

N. Aleyna Yılmaz This is me 0000-0003-3051-3598

Publication Date August 31, 2022
Submission Date June 29, 2022
Acceptance Date July 27, 2022
Published in Issue Year 2022 Volume: 27 Issue: 2

Cite

APA Dindar, E., & Yılmaz, N. A. (2022). ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(2), 617-626. https://doi.org/10.17482/uumfd.1137682
AMA Dindar E, Yılmaz NA. ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ. UUJFE. August 2022;27(2):617-626. doi:10.17482/uumfd.1137682
Chicago Dindar, Efsun, and N. Aleyna Yılmaz. “ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 2 (August 2022): 617-26. https://doi.org/10.17482/uumfd.1137682.
EndNote Dindar E, Yılmaz NA (August 1, 2022) ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 2 617–626.
IEEE E. Dindar and N. A. Yılmaz, “ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ”, UUJFE, vol. 27, no. 2, pp. 617–626, 2022, doi: 10.17482/uumfd.1137682.
ISNAD Dindar, Efsun - Yılmaz, N. Aleyna. “ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/2 (August 2022), 617-626. https://doi.org/10.17482/uumfd.1137682.
JAMA Dindar E, Yılmaz NA. ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ. UUJFE. 2022;27:617–626.
MLA Dindar, Efsun and N. Aleyna Yılmaz. “ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 2, 2022, pp. 617-26, doi:10.17482/uumfd.1137682.
Vancouver Dindar E, Yılmaz NA. ATIK AKTİF ÇAMURDA BİYOGAZ ÜRETİMİNİN ARTIRILMASINA TERMAL VE KİMYASAL DEZENTEGRASYONUN ETKİSİ. UUJFE. 2022;27(2):617-26.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.