Research Article
BibTex RIS Cite

Simulation of Vertical Type Ground Source Heat Pump

Year 2018, Volume: 23 Issue: 3, 155 - 168, 31.12.2018
https://doi.org/10.17482/uumfd.467169

Abstract

In this study, vertical type ground source heat
pump (GSHP) was used to heat a restaurant located in Istanbul province and to
meet the usage hot water requirement. The designed system is simulated with the
help of the TRNSYS (time dependent system simulation) program then its
performance and energy consumption are examined. While room temperature was
kept constant at 22 ºC in winter with the help of the GSHP system, 300 l/h of
water at 55ºC was drawn to use for 15 minutes during the whole year (at 06:00
a.m., 08:00 a.m., 20:00 p.m. and 22:00 p.m.). The rated heating capacity of the
heat pump used is 78228 kJ/ h and the rated power consumption is 18193 kJ/h. As
a result of the analysis, the total annual power consumption of the GSHP system
is
3922.88 kW,
the annual average performance coefficients of the heat pump and the whole
system are calculated as 3.33 and 1.81 respectively. Of the energy consumption
were obtained as
54.36% by
the heat pump,
26.78 % by electrical heaters, 13.64% by
pumps
and 5.22% by fan.

References

  • Emmi, G., Zarrella, A., Carli M.D., Galgaro A. (2015) An analysis of solar assisted ground source heat pumps in cold climates, Energy Conversion and Management, 106: 660–675, doi.org/10.1016/j.enconman.2015.10.016
  • Gao, J., Li, A., Xu, X., Gang, W., Yan, T. (2018) Ground heat exchanger: Applications, technology integration and potentials for zero energy buildings, Renewable Energy, 128: 337-349, doi: 10.1016/j.renene.2018.05.089
  • Han, Z., Zheng, M., Kong, F., Wang, F., Li, Z., Bai, T. (2008) Numerical simulation of solar assisted ground-source heat pump heating system with latent heat energy storage in severely cold area, Applied Thermal Engineering, 28: 1427–1436. doi:10.1016/j.applthermaleng.2007.09.013
  • Januševičius, K. and Streckiene, G. (2013) Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries, Environmental and climate technologies, 48-56, doi: 10.2478/rtuect-2013-0007
  • Ji,Y., Duanmu, L., Li,X., Airaksinen, M.,Wang, Z. (2017) Simplified method to determine the collector area of solar-assisted ground-source heat pump system, Procedia Engineering, 205: 1138–1145, doi: 10.1016/j.proeng.2017.10.420
  • Jonas, D, Frey, G., Thesis, D. (2017) Simulation and performance analysis of combined parallel solar thermal and ground or air source heat pump systems, Solar Energy, 150: 500-511, doi:: 10.1016/j.solener.2017.04.070
  • Li, Y. H. and W.C. Kao (2017) Performance analysis and economic assessment of solar thermal and heat pump combi systems for subtropical and tropical region, Solar Energy, 153: 301-316, doi : 10.1016/j.solener.2017.05.067
  • Li, H., Xu, W., Yu, Z., Wu, J., & Yu, Z. (2017b). Discussion of a combined solar thermal and ground source heat pump system operation strategy for office heating. Energy and Buildings, 162(2018), 42-53. doi: 10.1016/j.enbuild.2017.12.021
  • Miglani, S., Orehounig, K., Carmeliet, J. (2017) Design and optimization of a hybrid solar ground source heat pump with seasonal regeneration, Energy Procedia, 122: 1015–1020, doi: 10.1016/j.egypro.2017.07.468
  • Rad, F. M., Fung, A. S., Leong, W. H. (2013) Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada, Energy and Buildings, 61: 224–232, doi: 10.1016/j.enbuild.2013.02.036
  • Thygesen, R., Karlsson, B. (2013) Economic and energy analysis of three solar assisted heat pump systems in near zero energy buildings, Energy and Buildings, 66: 77–87, doi: 10.1016/j.enbuild.2013.07.042
  • Wang, E., Fung, A. S.,Qia, C., Leong, W. H. (2012) Performance prediction of a hybrid solar ground-source heat pump system, Energy and Buildings, 47: 600–611, doi: 10.1016/j.enbuild.2011.12.035
  • Youssef, W. And Tassou, S.A. (2017) Effects of latent heat storage and controls on stability and performance of a solar assisted heat pump system for domestic hot water production, Solar Energy, 150: 394-407, doi: 10.1016/j.solener.2017.04.065
  • Zhai, X.Q., Cheng, X.W., Wang, R.Z., (2017) Heating and cooling performance of a minitype ground source heat pump system. Applied Thermal Engineering, 111: 1366–1370, doi:10.1016/j.applthermaleng.2016.03.117
  • Zhang, S., Zang, L., Zhang, X. (2017) Performance evaluation of existed ground source heat pump systems in buildings using auxiliary energy efficiency index: Cases study in Jiangsu, China, Energy and Buildings, 147: 90-100, doi: 10.1016/j.enbuild.2017.04.052
  • Zhang, J., Su,S., Liu, L., Zhou, C., Shi L (2015) TRNSYS Simulation of Hybrid Ground Source Heat Pump System Based on Cooling Conditions, International Forum on Energy, Environment Science and Materials, (IFEESM 2015), doi: 10.2991/ifeesm-15.2015.87
  • Zhou, S., Cui, W., Zhao, S., Zhu, S., (2016) Operation analysis and performance prediction for a GSHP system compounded with domestic hot water (DHW) system. Energy and Buildings, 119: 153–163, doi:10.1016/j.enbuild.2016.03.024
  • Zogou, O. and Stamatelos, A. (2009) Energy and Buildings: Efficiency, Air Quality, and Conservation, Chapter 11: Application of Building Energy Simulation in the Sizing and Design Optimization of an Office Building and its HVAC Equipment, Nova Science Publisher, 279-324.

DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU

Year 2018, Volume: 23 Issue: 3, 155 - 168, 31.12.2018
https://doi.org/10.17482/uumfd.467169

Abstract

Bu çalışmada İstanbul ilinde yer alan bir restoranın
ısıtılması ve kullanım sıcak su ihtiyacının karşılanmasında dikey tip bir toprak
kaynaklı ısı pompası (TKIP) kullanılmıştır.
Tasarlanan sistem TRNSYS (Zamana bağlı sistem simülasyonu) programı yardımıyla
simüle edilmiş ve sistemin performansı enerji tüketimi açısından incelenmiştir.
Ele alınan mahallin sıcaklığı, TKIP sistemi yardımıyla kış aylarında 22 ºC’de
sabit tutulurken, tüm yıl boyunca günde dört kere (6:00, 8:00, 20:00 ve 22:00)
saatlerinde 15 dakika süreyle 55 ºC sıcaklıkta 300 l/h su kullanımı
gerçekleşmektedir. Kullanılan TKIP ünitesi nominal ısıtma kapasitesi 78228
kJ/h, nominal güç tüketimi 18193 kJ/h’dır. Analiz sonucunda TKIP sisteminin
yıllık toplam güç tüketimi
3922,88 kW, ısı pompası ve tüm sistemin yıllık ortalama
performans katsayıları sırasıyla 3,33 ve 1,81 olarak hesaplamıştır. Tüketilen
enerjinin %
54,36’ü ısı
pompası, %26,78 ısıtıcılar, %13,64’ü pompalar, %5,22’i ise fan tarafından
tüketilmektedir.

References

  • Emmi, G., Zarrella, A., Carli M.D., Galgaro A. (2015) An analysis of solar assisted ground source heat pumps in cold climates, Energy Conversion and Management, 106: 660–675, doi.org/10.1016/j.enconman.2015.10.016
  • Gao, J., Li, A., Xu, X., Gang, W., Yan, T. (2018) Ground heat exchanger: Applications, technology integration and potentials for zero energy buildings, Renewable Energy, 128: 337-349, doi: 10.1016/j.renene.2018.05.089
  • Han, Z., Zheng, M., Kong, F., Wang, F., Li, Z., Bai, T. (2008) Numerical simulation of solar assisted ground-source heat pump heating system with latent heat energy storage in severely cold area, Applied Thermal Engineering, 28: 1427–1436. doi:10.1016/j.applthermaleng.2007.09.013
  • Januševičius, K. and Streckiene, G. (2013) Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries, Environmental and climate technologies, 48-56, doi: 10.2478/rtuect-2013-0007
  • Ji,Y., Duanmu, L., Li,X., Airaksinen, M.,Wang, Z. (2017) Simplified method to determine the collector area of solar-assisted ground-source heat pump system, Procedia Engineering, 205: 1138–1145, doi: 10.1016/j.proeng.2017.10.420
  • Jonas, D, Frey, G., Thesis, D. (2017) Simulation and performance analysis of combined parallel solar thermal and ground or air source heat pump systems, Solar Energy, 150: 500-511, doi:: 10.1016/j.solener.2017.04.070
  • Li, Y. H. and W.C. Kao (2017) Performance analysis and economic assessment of solar thermal and heat pump combi systems for subtropical and tropical region, Solar Energy, 153: 301-316, doi : 10.1016/j.solener.2017.05.067
  • Li, H., Xu, W., Yu, Z., Wu, J., & Yu, Z. (2017b). Discussion of a combined solar thermal and ground source heat pump system operation strategy for office heating. Energy and Buildings, 162(2018), 42-53. doi: 10.1016/j.enbuild.2017.12.021
  • Miglani, S., Orehounig, K., Carmeliet, J. (2017) Design and optimization of a hybrid solar ground source heat pump with seasonal regeneration, Energy Procedia, 122: 1015–1020, doi: 10.1016/j.egypro.2017.07.468
  • Rad, F. M., Fung, A. S., Leong, W. H. (2013) Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada, Energy and Buildings, 61: 224–232, doi: 10.1016/j.enbuild.2013.02.036
  • Thygesen, R., Karlsson, B. (2013) Economic and energy analysis of three solar assisted heat pump systems in near zero energy buildings, Energy and Buildings, 66: 77–87, doi: 10.1016/j.enbuild.2013.07.042
  • Wang, E., Fung, A. S.,Qia, C., Leong, W. H. (2012) Performance prediction of a hybrid solar ground-source heat pump system, Energy and Buildings, 47: 600–611, doi: 10.1016/j.enbuild.2011.12.035
  • Youssef, W. And Tassou, S.A. (2017) Effects of latent heat storage and controls on stability and performance of a solar assisted heat pump system for domestic hot water production, Solar Energy, 150: 394-407, doi: 10.1016/j.solener.2017.04.065
  • Zhai, X.Q., Cheng, X.W., Wang, R.Z., (2017) Heating and cooling performance of a minitype ground source heat pump system. Applied Thermal Engineering, 111: 1366–1370, doi:10.1016/j.applthermaleng.2016.03.117
  • Zhang, S., Zang, L., Zhang, X. (2017) Performance evaluation of existed ground source heat pump systems in buildings using auxiliary energy efficiency index: Cases study in Jiangsu, China, Energy and Buildings, 147: 90-100, doi: 10.1016/j.enbuild.2017.04.052
  • Zhang, J., Su,S., Liu, L., Zhou, C., Shi L (2015) TRNSYS Simulation of Hybrid Ground Source Heat Pump System Based on Cooling Conditions, International Forum on Energy, Environment Science and Materials, (IFEESM 2015), doi: 10.2991/ifeesm-15.2015.87
  • Zhou, S., Cui, W., Zhao, S., Zhu, S., (2016) Operation analysis and performance prediction for a GSHP system compounded with domestic hot water (DHW) system. Energy and Buildings, 119: 153–163, doi:10.1016/j.enbuild.2016.03.024
  • Zogou, O. and Stamatelos, A. (2009) Energy and Buildings: Efficiency, Air Quality, and Conservation, Chapter 11: Application of Building Energy Simulation in the Sizing and Design Optimization of an Office Building and its HVAC Equipment, Nova Science Publisher, 279-324.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Salih Coşkun

Fatih Güler This is me

Muhammed Abdullah Fazliç This is me

Enes Hüseyin Ergün This is me

Publication Date December 31, 2018
Submission Date October 4, 2018
Acceptance Date November 7, 2018
Published in Issue Year 2018 Volume: 23 Issue: 3

Cite

APA Coşkun, S., Güler, F., Fazliç, M. A., Ergün, E. H. (2018). DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(3), 155-168. https://doi.org/10.17482/uumfd.467169
AMA Coşkun S, Güler F, Fazliç MA, Ergün EH. DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU. UUJFE. December 2018;23(3):155-168. doi:10.17482/uumfd.467169
Chicago Coşkun, Salih, Fatih Güler, Muhammed Abdullah Fazliç, and Enes Hüseyin Ergün. “DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, no. 3 (December 2018): 155-68. https://doi.org/10.17482/uumfd.467169.
EndNote Coşkun S, Güler F, Fazliç MA, Ergün EH (December 1, 2018) DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 3 155–168.
IEEE S. Coşkun, F. Güler, M. A. Fazliç, and E. H. Ergün, “DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU”, UUJFE, vol. 23, no. 3, pp. 155–168, 2018, doi: 10.17482/uumfd.467169.
ISNAD Coşkun, Salih et al. “DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/3 (December 2018), 155-168. https://doi.org/10.17482/uumfd.467169.
JAMA Coşkun S, Güler F, Fazliç MA, Ergün EH. DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU. UUJFE. 2018;23:155–168.
MLA Coşkun, Salih et al. “DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 23, no. 3, 2018, pp. 155-68, doi:10.17482/uumfd.467169.
Vancouver Coşkun S, Güler F, Fazliç MA, Ergün EH. DİKEY TİP TOPRAK KAYNAKLI BİR ISI POMPASININ SİMÜLASYONU. UUJFE. 2018;23(3):155-68.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.