BibTex RIS Cite

Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri

Year 2014, Volume: 19 Issue: 1, 37 - 46, 01.04.2014
https://doi.org/10.17482/uujfe.12626

Abstract

Dijital yayın sistemlerinde daha güvenilir yayın yapmak için kapsama alanı ve alıcı üzerindeki alan şiddetinin kestiriminde yayılım modelleri kullanılmaktadır. Yayılım modelleri temelde nümerik ve ışın izleme tekniğine dayanan modeller olmak üzere iki ana grupta incelenebilir. Elektromanyetik dalga yayılım modellerinde hesaplama zamanı ve kestirilen alan şiddetinin kesinliği arasında bir ödünleşme vardır. Nümerik modeller kesin sonuçlar vermesine karşın, hesaplama zamanı yüksektir, ışın izleme tekniğine dayanan modeller ise kesinliği az olmakla beraber hesaplama zamanı düşüktür. Hesaplama zamanı ve kesinlik açısından optimum olan modellere ihtiyaç duyulmuştur. Bunun için birçok model geliştirilmiştir

References

  • Andersen, J. B. (1994). “Transition zone diffraction by multiple edges”, IEEE Proceedings Microwave Antennas and Propagation, UK.
  • Andersen, J. B. (1997). “UTD multiple-edge transition zone diffraction”, IEEE Transactions on Antennas and Propagation, Cilt 45, 1093–1097.
  • Balanis, C.A. (1989). Advanced Engineering Electromagnetics, John Wiley & Sons, New York, USA.
  • Bertoni,H.L. (2000). Radio Propagation for Modern Wireless Systems, Prentice-Hall, New Jersey, USA.
  • Borovikov, V.A. and Kinber, B.E. (1994). Geometrical Theory of Diffraction, Institution of Electrical Engineers, London, UK.
  • Causebrook, J.H. and Davies, B. (1971). “Tropospheric radio wave propagation over irregular terrain: The computation of fielld strength for UHF broadcasting”, BCC Research Department Report RD 1971/43.
  • Chung, H. K. and Bertoni, H. L. (2002). “Range-dependent path-loss model in residential areas for the VHF and UHF bands”, IEEE Transaction on Antennas and Propagation, Cilt 50, No 1, 1-11.
  • Chung, H.K. (2000). Radio Channel Studies from 30 MHz to 5 GHz, Ph.D. Thesis. Graduated School Polytechnic Institute of New York University.
  • Chung, H. K and Bertoni, H. L. (2003). “Application of isolated diffraction edge method for urban microwave path loss prediction”, IEEE Vehicular Technology Conference, USA.
  • Clarkowski, A., Boersma, J. and Mittra, R. (1984). “Plane-Wave Diffraction by a Wedge-A spectral Domain Approach”, IEEE Trans. on Antenna. Propagat., Cilt 32, No 1, 20-29.
  • Deygout, J. (1966). “Multiple knife-edge diffraction of microwaves”, IEEE Trans. Antennas Prorpagat, Cilt 14, 480-489, 1966.
  • Deygout, J. (1991). “Correction factor for multiple knife-edge diffraction”, IEEE Trans. Antennas Prorpagat, Cilt 39, 1256-1258.
  • Giovaneli, C.L. (1984). “An analysis of simplified solutions for multiple knife-edge diffraction”, IEEE Trans. on Antenna. Propagat., Cilt 32, 297-301, 1984.
  • Graeme, L.J. (1976). Geometrical Theory of Diffraction for Electromagnetic Waves, Institution of Electrical Engineers, London, UK, 1976.
  • Harrington, R.F. (1966). Field Computation by Moment Methods. IEEE Press Series, New Jersey, USA.
  • Holm, P. D. (1996). “UTD-Diffraction Coefficients for Higher Order Wedge Diffracted Fields”, IEEE Transactions on Antennas and Propagation, Cilt 4, No 6, 879-888.
  • Holm, P. D. (2000). “A new heuristic UTD Diffraction Coefficients for nonperfectly conducting wedges”, IEEE Transactions on Antennas and Propagation, Cilt 48, 1211-1219.
  • Holm, P. D. (2004). “Calculation of Higher Order Diffracted Fields for Multiple-Edge Transition Zone Diffraction”, IEEE Transactions on Antennas and Propagation, Cilt 52, No 5, 1350-1355.
  • Karousos, A. and Tzaras, C. (2008). “Multi Time-Domain Diffraction for UWB Signals”, IEEE Transactions on Antennas and Propagation, Cilt 56, No 5, 1420-1427.
  • Keller, J.B. (1962). “Geometrical Theory of Diffraction”, J. Opt. Soc. Amer., Cilt 52, No 2, 116-130, 1962.
  • Koutitas, G. and Tzaras, C. (2006). “A Slope UTD Solution for a Cascade of Multishaped Canonical objects”, IEEE Transactions on Antennas and Propagation, Cilt 54, No 10, 2969- 2976.
  • Kouyoumjian, R. G. and Pathak, P. H. (1974). “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface”, Proceedings of the IEEE, Cilt 62, 1448–1461.
  • Lee, M.B.R., Saunders, S.R., Tzaras, C., Montiel, E. and Scrivens, J. (2002). “The Digiplan project: Coverage prediction for digital broadcast services”, BBC White Paper 047.
  • Luebbers, R.J., (1984). “Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss”, IEEE Trans. Antennas Propagat, Cilt 32, 70-76.
  • Macdonald, H.M. (1912). “The effect produced by an obstacle on a train of electric waves”, Phil. Trans.Royal Soc. London, Series A, Math. Phys. Sc., Cilt 212, 299-337, 1912.
  • Maliuzhinets, G.D. (1958). “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Sov. Phys. Dokl., Cilt 3, No 4, 752-755.
  • Martínez-Inglés, M.T., Rodríguez, J.V., Molina-Garcia-Pardo, J.M., Pascual-García, J. and Juan-Llácer, L. (2013). “Comparison of a UTD-PO Formulation for Multiple-Plateau Diffraction with Measurements at 62 GHz”, Cilt 61, No 2, 1000-1003.
  • Rahmat-Sami, Y. and Mittra, R. (1976). “On the investigation of diffracted fields at the shadow boundaries of staggered parallel paltes-A spectral domain approach”, Radio Science, Cilt 12, No 5, 659-670.
  • Rizk, K., Valenzuela, R., Chizhik, D. and Gardiol, F. (1998). “Application of the slope diffraction method for urban microwave propagation prediction”, IEEE Vehicular Technology Conference, Canada.
  • Rodriguez, J.V., Molina-Garcia-Pardo, J.M. and Leandro, J.L. (2005). “An Improved Solution Expressed in Terms of UTD Coefficients for Multiple Building Diffraction of Plane Waves”, IEEE Antennas and Wireless Propagation Letters, Cilt 4, 16-19.
  • Rodriguez, J.V., Molina-Garcia-Pardo, J.M. and Leandro, J.L. (2008). “A Hybrid UTD-PO Solution for Multiple-Cylinder Diffraction Analysis Assuming Spherical-Wave Incidence”, IEEE Transactions on Antennas and Propagation, Cilt 56, No 9, 3078-3081.
  • Rodriguez, J.V., Molina-Garcia-Pardo, J.M. and Leandro, J.L. (2009). “UTD-PO Formulation for the Multiple-Diffraction of Spherical Waves by an Array of Multimodeled Obstacles”, IEEE Antennas and Wireless Propagation Letters, Cilt 8, 379-382.
  • Schneider, M. and Luebbers, R.J. (1989). “A Uniform double diffraction coefficient”, Antennas and Propagation Society International Symposium (AP-S), 3, 1270-1273, Digest.
  • Tabakcioglu, M. B. and A. Kara (2009). “Comparison of improved slope UTD method with UTD based methods and physical optic solution for multiple building diffractions”, Electromagnetics, Cilt 29, No 4, 303–320.
  • Tabakcioglu, M. B. and A. Kara (2010). “Improvements on Slope Diffraction for Multiple Wedges”, Electromagnetics, Cilt 30, No 3, 285-296.
  • Tabakcioglu, M. B. and A. Cansiz (2013). “Application of S-UTD-CH Model into Multiple Diffraction Scenarios”, International Journal of Antennas and Propagation, Cilt 2013,1-5.
  • Tajvidy, A., Ghorbani, A. (2008). “A New Uniform Theory-of-Diffraction-Based Model for the Multiple Building Diffraction of Spherical Waves in Microcell Environments”, Electromagnetics, Cilt 28, No 5, 75-387.
  • Tiberio, R. and Kouyoumjian, R.G. (1982). “An analysis of diffraction at edges illuminated by transition region fields”, Radio Science, Cilt 17, No 2, 323-336.
  • Torabi, E., Ghorbani, R. and Tajvidy, A. (2009). “A Modified Diffraction Coefficient for Imperfect Conducting Wedges and Buildings With Finite Dimensions”, IEEE Transactions on Antennas and Propagation, Cilt 57, No 4, 1197-1207.
  • Tzaras, C. and Saunders, S.R. (2000). “Comparison of multiple-diffraction models for digital broadcasting coverage prediction”, IEEE Trans. Broadcast., Cilt 46, No 3, 221-226.
  • Tzaras, C. and Saunders, S. R. (2001). “An improved heuristic UTD solution for multiple- edge transition zone diffraction”, IEEE Transactions on Antennas and Propagation,Cilt 49, No 12, 1678–1682.
  • Ufimtsev, P.Y. (2007). Fundamentals of the Physical Theory of Diffraction, John Wiley & Sons, New Jersey, USA.
  • Umul, Z. (2004). “Modified theory of physical optics”, Optics Express, Cilt 12, No 20, 4959- 4972.
  • Walfisch, J. and Bertoni, H.L. (1988). “A theoretical model of UHF propagation in urban environment”, IEEE Trans. on Antenna. Propagat., Cilt 36, No 12, 1788-1796.
  • Wang, H. (2005). “Modeling and Wideband characterization of Radio wave propagation”, Ph.D. Thesis, The University of Texas at Austin.
  • Vogler, L. (1982). “An attenuation function for multiple knife-edge diffraction”, Radio Science, Cilt 17, 1541–1546.
  • Yalcin, U. (2009). “Uniform Scattered Fields of the Extended Theory of Boundary Diffraction Wave for PEC Surfaces”, Progress In Electromagnetics Research M, Cilt 7, 29- 39.
  • Makale 25.06.2012 tarihinde alınmış, 10.07.2013 tarihinde düzeltilmiş, 25.02.2014 tarihinde kabul edilmiştir.

Electromagnetic Wave Propagation Models for Multiple-Diffraction Scenarios

Year 2014, Volume: 19 Issue: 1, 37 - 46, 01.04.2014
https://doi.org/10.17482/uujfe.12626

Abstract

Electromagnetic wave propagation models have been used for coverage estimation and field prediction at the receiver to make more reliable and efficient digital broadcasting systems. Propagation models can be classified into two groups as numerical and ray tracing based models. There is a tradeoff between computation time and accuracy of field prediction among electromagnetic wave propagation models. Although numerical models predict accurately, it requires more computation times. Ray tracing based models predicts the field strength less accurately with lower computation time. Many propagation models have been developed to provide optimum solution for accuracy and computation time

References

  • Andersen, J. B. (1994). “Transition zone diffraction by multiple edges”, IEEE Proceedings Microwave Antennas and Propagation, UK.
  • Andersen, J. B. (1997). “UTD multiple-edge transition zone diffraction”, IEEE Transactions on Antennas and Propagation, Cilt 45, 1093–1097.
  • Balanis, C.A. (1989). Advanced Engineering Electromagnetics, John Wiley & Sons, New York, USA.
  • Bertoni,H.L. (2000). Radio Propagation for Modern Wireless Systems, Prentice-Hall, New Jersey, USA.
  • Borovikov, V.A. and Kinber, B.E. (1994). Geometrical Theory of Diffraction, Institution of Electrical Engineers, London, UK.
  • Causebrook, J.H. and Davies, B. (1971). “Tropospheric radio wave propagation over irregular terrain: The computation of fielld strength for UHF broadcasting”, BCC Research Department Report RD 1971/43.
  • Chung, H. K. and Bertoni, H. L. (2002). “Range-dependent path-loss model in residential areas for the VHF and UHF bands”, IEEE Transaction on Antennas and Propagation, Cilt 50, No 1, 1-11.
  • Chung, H.K. (2000). Radio Channel Studies from 30 MHz to 5 GHz, Ph.D. Thesis. Graduated School Polytechnic Institute of New York University.
  • Chung, H. K and Bertoni, H. L. (2003). “Application of isolated diffraction edge method for urban microwave path loss prediction”, IEEE Vehicular Technology Conference, USA.
  • Clarkowski, A., Boersma, J. and Mittra, R. (1984). “Plane-Wave Diffraction by a Wedge-A spectral Domain Approach”, IEEE Trans. on Antenna. Propagat., Cilt 32, No 1, 20-29.
  • Deygout, J. (1966). “Multiple knife-edge diffraction of microwaves”, IEEE Trans. Antennas Prorpagat, Cilt 14, 480-489, 1966.
  • Deygout, J. (1991). “Correction factor for multiple knife-edge diffraction”, IEEE Trans. Antennas Prorpagat, Cilt 39, 1256-1258.
  • Giovaneli, C.L. (1984). “An analysis of simplified solutions for multiple knife-edge diffraction”, IEEE Trans. on Antenna. Propagat., Cilt 32, 297-301, 1984.
  • Graeme, L.J. (1976). Geometrical Theory of Diffraction for Electromagnetic Waves, Institution of Electrical Engineers, London, UK, 1976.
  • Harrington, R.F. (1966). Field Computation by Moment Methods. IEEE Press Series, New Jersey, USA.
  • Holm, P. D. (1996). “UTD-Diffraction Coefficients for Higher Order Wedge Diffracted Fields”, IEEE Transactions on Antennas and Propagation, Cilt 4, No 6, 879-888.
  • Holm, P. D. (2000). “A new heuristic UTD Diffraction Coefficients for nonperfectly conducting wedges”, IEEE Transactions on Antennas and Propagation, Cilt 48, 1211-1219.
  • Holm, P. D. (2004). “Calculation of Higher Order Diffracted Fields for Multiple-Edge Transition Zone Diffraction”, IEEE Transactions on Antennas and Propagation, Cilt 52, No 5, 1350-1355.
  • Karousos, A. and Tzaras, C. (2008). “Multi Time-Domain Diffraction for UWB Signals”, IEEE Transactions on Antennas and Propagation, Cilt 56, No 5, 1420-1427.
  • Keller, J.B. (1962). “Geometrical Theory of Diffraction”, J. Opt. Soc. Amer., Cilt 52, No 2, 116-130, 1962.
  • Koutitas, G. and Tzaras, C. (2006). “A Slope UTD Solution for a Cascade of Multishaped Canonical objects”, IEEE Transactions on Antennas and Propagation, Cilt 54, No 10, 2969- 2976.
  • Kouyoumjian, R. G. and Pathak, P. H. (1974). “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface”, Proceedings of the IEEE, Cilt 62, 1448–1461.
  • Lee, M.B.R., Saunders, S.R., Tzaras, C., Montiel, E. and Scrivens, J. (2002). “The Digiplan project: Coverage prediction for digital broadcast services”, BBC White Paper 047.
  • Luebbers, R.J., (1984). “Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss”, IEEE Trans. Antennas Propagat, Cilt 32, 70-76.
  • Macdonald, H.M. (1912). “The effect produced by an obstacle on a train of electric waves”, Phil. Trans.Royal Soc. London, Series A, Math. Phys. Sc., Cilt 212, 299-337, 1912.
  • Maliuzhinets, G.D. (1958). “Excitation, reflection and emission of surface waves from a wedge with given face impedances”, Sov. Phys. Dokl., Cilt 3, No 4, 752-755.
  • Martínez-Inglés, M.T., Rodríguez, J.V., Molina-Garcia-Pardo, J.M., Pascual-García, J. and Juan-Llácer, L. (2013). “Comparison of a UTD-PO Formulation for Multiple-Plateau Diffraction with Measurements at 62 GHz”, Cilt 61, No 2, 1000-1003.
  • Rahmat-Sami, Y. and Mittra, R. (1976). “On the investigation of diffracted fields at the shadow boundaries of staggered parallel paltes-A spectral domain approach”, Radio Science, Cilt 12, No 5, 659-670.
  • Rizk, K., Valenzuela, R., Chizhik, D. and Gardiol, F. (1998). “Application of the slope diffraction method for urban microwave propagation prediction”, IEEE Vehicular Technology Conference, Canada.
  • Rodriguez, J.V., Molina-Garcia-Pardo, J.M. and Leandro, J.L. (2005). “An Improved Solution Expressed in Terms of UTD Coefficients for Multiple Building Diffraction of Plane Waves”, IEEE Antennas and Wireless Propagation Letters, Cilt 4, 16-19.
  • Rodriguez, J.V., Molina-Garcia-Pardo, J.M. and Leandro, J.L. (2008). “A Hybrid UTD-PO Solution for Multiple-Cylinder Diffraction Analysis Assuming Spherical-Wave Incidence”, IEEE Transactions on Antennas and Propagation, Cilt 56, No 9, 3078-3081.
  • Rodriguez, J.V., Molina-Garcia-Pardo, J.M. and Leandro, J.L. (2009). “UTD-PO Formulation for the Multiple-Diffraction of Spherical Waves by an Array of Multimodeled Obstacles”, IEEE Antennas and Wireless Propagation Letters, Cilt 8, 379-382.
  • Schneider, M. and Luebbers, R.J. (1989). “A Uniform double diffraction coefficient”, Antennas and Propagation Society International Symposium (AP-S), 3, 1270-1273, Digest.
  • Tabakcioglu, M. B. and A. Kara (2009). “Comparison of improved slope UTD method with UTD based methods and physical optic solution for multiple building diffractions”, Electromagnetics, Cilt 29, No 4, 303–320.
  • Tabakcioglu, M. B. and A. Kara (2010). “Improvements on Slope Diffraction for Multiple Wedges”, Electromagnetics, Cilt 30, No 3, 285-296.
  • Tabakcioglu, M. B. and A. Cansiz (2013). “Application of S-UTD-CH Model into Multiple Diffraction Scenarios”, International Journal of Antennas and Propagation, Cilt 2013,1-5.
  • Tajvidy, A., Ghorbani, A. (2008). “A New Uniform Theory-of-Diffraction-Based Model for the Multiple Building Diffraction of Spherical Waves in Microcell Environments”, Electromagnetics, Cilt 28, No 5, 75-387.
  • Tiberio, R. and Kouyoumjian, R.G. (1982). “An analysis of diffraction at edges illuminated by transition region fields”, Radio Science, Cilt 17, No 2, 323-336.
  • Torabi, E., Ghorbani, R. and Tajvidy, A. (2009). “A Modified Diffraction Coefficient for Imperfect Conducting Wedges and Buildings With Finite Dimensions”, IEEE Transactions on Antennas and Propagation, Cilt 57, No 4, 1197-1207.
  • Tzaras, C. and Saunders, S.R. (2000). “Comparison of multiple-diffraction models for digital broadcasting coverage prediction”, IEEE Trans. Broadcast., Cilt 46, No 3, 221-226.
  • Tzaras, C. and Saunders, S. R. (2001). “An improved heuristic UTD solution for multiple- edge transition zone diffraction”, IEEE Transactions on Antennas and Propagation,Cilt 49, No 12, 1678–1682.
  • Ufimtsev, P.Y. (2007). Fundamentals of the Physical Theory of Diffraction, John Wiley & Sons, New Jersey, USA.
  • Umul, Z. (2004). “Modified theory of physical optics”, Optics Express, Cilt 12, No 20, 4959- 4972.
  • Walfisch, J. and Bertoni, H.L. (1988). “A theoretical model of UHF propagation in urban environment”, IEEE Trans. on Antenna. Propagat., Cilt 36, No 12, 1788-1796.
  • Wang, H. (2005). “Modeling and Wideband characterization of Radio wave propagation”, Ph.D. Thesis, The University of Texas at Austin.
  • Vogler, L. (1982). “An attenuation function for multiple knife-edge diffraction”, Radio Science, Cilt 17, 1541–1546.
  • Yalcin, U. (2009). “Uniform Scattered Fields of the Extended Theory of Boundary Diffraction Wave for PEC Surfaces”, Progress In Electromagnetics Research M, Cilt 7, 29- 39.
  • Makale 25.06.2012 tarihinde alınmış, 10.07.2013 tarihinde düzeltilmiş, 25.02.2014 tarihinde kabul edilmiştir.
There are 48 citations in total.

Details

Primary Language Turkish
Journal Section Survey Articles
Authors

Mehmet Barış Tabakcıoğlu

Ahmet Cansız This is me

Publication Date April 1, 2014
Submission Date December 19, 2014
Published in Issue Year 2014 Volume: 19 Issue: 1

Cite

APA Tabakcıoğlu, M. B., & Cansız, A. (2014). Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 19(1), 37-46. https://doi.org/10.17482/uujfe.12626
AMA Tabakcıoğlu MB, Cansız A. Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri. UUJFE. April 2014;19(1):37-46. doi:10.17482/uujfe.12626
Chicago Tabakcıoğlu, Mehmet Barış, and Ahmet Cansız. “Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 19, no. 1 (April 2014): 37-46. https://doi.org/10.17482/uujfe.12626.
EndNote Tabakcıoğlu MB, Cansız A (April 1, 2014) Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 19 1 37–46.
IEEE M. B. Tabakcıoğlu and A. Cansız, “Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri”, UUJFE, vol. 19, no. 1, pp. 37–46, 2014, doi: 10.17482/uujfe.12626.
ISNAD Tabakcıoğlu, Mehmet Barış - Cansız, Ahmet. “Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 19/1 (April 2014), 37-46. https://doi.org/10.17482/uujfe.12626.
JAMA Tabakcıoğlu MB, Cansız A. Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri. UUJFE. 2014;19:37–46.
MLA Tabakcıoğlu, Mehmet Barış and Ahmet Cansız. “Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 19, no. 1, 2014, pp. 37-46, doi:10.17482/uujfe.12626.
Vancouver Tabakcıoğlu MB, Cansız A. Çoklu Kırınımlar İçeren Senaryolar için Elektromanyetik Dalga Yayılım Modelleri. UUJFE. 2014;19(1):37-46.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.