Research Article
BibTex RIS Cite

Production of Bacterial Cellulose Based On Bio Nonwoven / Nonwoven Composites for Medical Textile Applications

Year 2023, Volume: 33 Issue: 4, 357 - 365, 31.12.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1094783

Abstract

Bacterial cellulose (BC) is a popular biomaterial which is used in innovative research in many fields thanks to its unique properties. In this study, BC as bio nonwoven structures are produced in Kombucha culture using ‘acetobacter xylinum’ bacteria in a static culture setting. Bio nonwoven surfaces are produced with the sandwich composite model. They use 15-25-60% cotton/ viscose/ polypropylene nonwoven surface fabric and 80-20% polypropylene /viscose nonwoven surface fabric while creating bio nonwoven surfaces. Water retention, porosity, dust retention, FTIR (Fourier Transform Infrared Spectrophotometer), SEM (Scanning Electron Microscope), and TGA (Thermogravimetric Analysis) analysis of the obtained BC structures are investigated. As a result of the analysis, it is determined that the BC and BC composite structures, which have undergone hydrogen peroxide and sodium hydroxide applications, have properties that can be used for medical purposes.

Supporting Institution

Scientific Research Fund of the Suleyman Demirel University

Project Number

Project Number: FYL-2018-6842

Thanks

“This study was supported by Scientific Research Fund of the Suleyman Demirel University (Project Number: FYL-2018-6842”) and was based on the first author's Master thesis under the supervision of the second author (Kılınç, N. (Supervisor: Özdemir Küçükçapraz D.), 2019.Bacterial Cellulose Based Medical Textile Material Production, Graduate School of Natural and Applied Sciences, Department of Textile Engineering, M.Sc. Thesis, Süleyman Demirel University, 102 p., Isparta, Türkiye)

References

  • Referans1. Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., and Roy, I. 2021. Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623.
  • Referans2. Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W., and Radecka, I. 2021. Recent advances and applications of bacterial cellulose in biomedicine. Polymers, 13(3), 412.
  • Referans3. Portela R., Leal CR., Almeida PL., Sobral RG. 2019. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12:586–610.
  • Referans4. Keshk, S. 2014. Bacterial Cellulose Production and Its Industrial Applications. Journal of Bioprocessing and Biotechniques, 4(2), 1-10.
  • Referans5. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte chemie international edition, 44(22), 3358-3393.Saxena IM, Brown RM Jr. 1997. Identification of Cellulose Synthase(s) in Higher Plants: Sequence Analysis of Processive â-glycosyltransferases with the Common Motif ‘D, D, D35Q(R, Q)XRW. Cellulose, 4, 33–49.
  • Referans6. Park, J.K., Park, Y.H., Jung, J.Y. 2003. Production of Bacterial Cellulose by Gluconacetobacter Hansenii PJK Isolated from Rotten Apple. Biotechnology and Bioprocess Engineering 8(2), 83–88.
  • Referans7. Gorgieva, S., and J. Trček. 2019. Bacterial cellulose: Production, modification, and perspectives in biomedical applications. Nanomaterials 9 (10):1352.
  • Referans8. Fortunati, E., J. M. Kenny, and L. Torre. 2019. Lignocellulosic materials as reinforcements in sustainable packaging systems: Processing, properties, and applications. In Biomass, Biopolymer-Based Materials, and Bioenergy, ed. D. Verma, 87–102. Cambridge: Woodhead Publishing.
  • Referans9. Fernandes, I. D. A. A., Pedro, A. C., Ribeiro, V. R., Bortolini, D. G., Ozaki, M. S. C., Maciel, G. M., & Haminiuk, C. W. I. 2020. Bacterial cellulose: From production optimization to new applications. International Journal of Biological Macromolecules.
  • Referans10. Ashjaran, A., M. E. Yazdanshenas, A. Rashidi, R. Khajavi, and A. Rezaee. 2013. Overview of bio nanofabric from bacterial cellulose. Journal of the Textile Institute 104 (2):121–31. doi:10.1080/00405000.2012.703796.
  • Referans11. Song, J. E., A. Cavaco-Paulo, C. Silva, and H. R. Kim. 2020. Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Research Journal 90 (2):166–78.
  • Referans12. Ul-Islam, M., Ahmad, F., Fatima, A., Shah, N., Yasir, S., Ahmad, M. W., Ullah, M. W. 2021. Ex situ synthesis and characterization of high strength multipurpose bacterial cellulose-aloe vera hydrogels. Frontiers in Bioengineering and Biotechnology, 9.
  • Referans13. Nazeri, M. A. 2012. Optimization of Bacterial Cellulose Production by Using Response Surface Methodology (RSM): Effect of PH, Temperature and Concentration of Fermentation Medium, PhD diss., Universiti Malaysia Pahang.
  • Referans14. Gündüz, G., Aşık N. 2018. Production and Characterization of Bacterial Cellulose with Different Nutrient Source and Surface–Volume Ratios. Drvna Industrija: Znanstveni Casopis Za Pitanja Drvne Tehnologije 69 (2):141–48.
  • Referans15. Hussain, Z., Sajjad, W., Khan, T., Wahid, F. 2019. Production of bacterial cellulose from industrial wastes: a review. Cellulose, 26(5), 2895-2911.
  • Referans16. Wang, J., Tavakoli, J., Tang, Y. 2019. Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate polymers, 219, 63-76.
  • Referans17. Mohammadkazemi, F., Doosthoseini K., Azin M. 2015. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734). Cellulose Chemistry and Technology 49 (5–6):455–62.
  • Referans18. Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. 2018. Understanding Kombucha tea fermentation: a review. J Food Sci 83:580–588.
  • Referans19. Jafari, R., N. S. Naghavi, K. Khosravi-Darani, M. Doudi, and K. Shahanipour. 2020. Kombucha microbial starter with enhanced production of antioxidant compounds and invertase. Biocatalysis and Agricultural Biotechnology 29:101789.
  • Referans20. De Roos, J., and L. De Vuyst. 2018. Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology 49:115–19.
  • Referans21. Dickmann, M., Schneider R.,Armando S., Seehusen K., Hager P., Strauss M. J., and Mann F. M. 2017. Analysis of the role of acidity and tea substrate on the inhibition of α-amylase by Kombucha. J Nutr Food Technol 0 (0):1–5.
  • Referans22. Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa-Jr, A., Chaud, M. V., 2016. Bacterial Nanocellulose Production and Application: a 10-year Overview. Applied Microbiology and Biotechnology, 100(5), 2063-2072.
  • Referans23. Han, J., Shim, E., Kim, H. R., 2019. Effects of Cultivation, Washing, and Bleaching Conditions on Bacterial Cellulose Fabric Production. Textile Research Journal, 89(6), 1094-1104.
  • Referans24. Andriani, D., Apriyana, A. Y., Karina, M. 2020. The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27, 6747-6766.
  • Referans25. Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., Roy, I. 2021. Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623.
  • Referans26. Pogorelova, N., E. Rogachev, I. Digel, S. Chernigova, and D. Nardin. 2020. Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials 13 (12):2849.
  • Referans27. Feng, X., Ullah, N., Wang, X., Sun, X., Li, C., Bai, Y., Li, Z. 2015. Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. Journal of food science, 80(10), E2217-E2227.
  • Referans28. Numata, Y., Sakata, T., Furukawa, H., Tajima, K., 2015. Bacterial Cellulose Gels with High Mechanical Strength. Material Science and Engineering, 47, 57–62.
  • Referans29. Nemati, E., & Gholami, A. 2021. Nano bacterial cellulose for biomedical applications: A mini review focus on tissue engineering. Advances in Applied NanoBio-Technologies, 92-101.
  • Referans30. Kilinc, M., Ay, E., Kut, D. 2021. Thermal, Chemical and Mechanical Properties of Regenerated Bacterial Cellulose Coated Cotton Fabric. Journal of Natural Fibers, 1-18.
  • Referans31. Curvello, R., Raghuwanshi, V. S., and Garnier, G. 2019. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 267, 47–61. doi: 10.1016/j.cis.2019.03.002.
  • Referans32. Shoukat, A., Wahid, F., Khan, T., Siddique, M., Nasreen, S., Yang, G., et al. 2019. Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. Int. J. Biol. Macromol. 129, 965–971. doi: 10.1016/j. ijbiomac.2019.02.032
  • Referans33. Farooq, U., Ullah, M. W., Yang, Q., Aziz, A., Xu, J., Zhou, L., et al. 2020. Highdensity phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens. Bioelectron. 157:112163. doi: 10.1016/j.bios.2020. 112163
  • Referans34. Dhar, P., Pratto, B., Gonçalves Cruz, A. J., and Bankar, S. 2019. Valorization of sugarcane straw to produce highly conductive bacterial cellulose / graphene nanocomposite films through in situ fermentation: kinetic analysis and property evaluation. J. Clean. Prod. 238:117859. doi: 10.1016/j.jclepro.2019. 117859
  • Referans35. Niyazbekova, Z. T., G. Z. Nagmetova, and A. A. Kurmanbayev. 2018. An Overview of Bacterial Cellulose Applications. Eurasian Journal of Applied Biotechnology 2:17–25.
  • Referans36. Mansikkamäki, P., Lahtinen, M., Rissanen, K. 2007. The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol–water systems: An X-ray powder diffraction study. Carbohydrate Polymers, 68(1), 35-43.
  • Referans37. Dinand, E., Vignon, M., Chanzy, H., Heux, L. 2002. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→ cellulose II. Cellulose, 9(1), 7-18.
  • Referans38. Suryanto, H., Sutrisno, T. A., Muhajir, M., Zakia, N., Yanuhar, U., 2018. Effect of peroxide treatment on the structure and transparency of bacterial cellulose film. In MATEC Web of Conferences (Vol. 204, p. 05015). EDP Sciences.
  • Referans39. AL-Kalifawi, E. J., Hassan, I. A., 2013. Factors Influence on the Yield of Bacterial Cellulose of Kombucha (khubdat humza). Baghdad Science Journal, 11(3), 1420-1428.
  • Referans40. Zeng, M., 2014. Bacterial cellulose: Fabrication, characterization and biocompability studies. Universitat Autònoma de Barcelona, Departament de química, Facultat de Ciències, Doktora Tezi, 126s, Barselona.
  • Referans41. Han, J., E. Shim, and H. R. Kim. 2019. Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal 89 (6):1094–104.
  • Referans42. Zhu, M.F.; Yang, H.H., 2006. Handbook of Fiber Chemistry 3rd Edition; Lewin, M., Ed., CRC Press: Newyork,; Chapter 3, 139- 260.
  • Referans43. Özdemir,D., 2006. Kemiksi Dokuların Polimer Yöntemiyle Üretilmesi. Süleyman Demirel University, Master Thesis, 141p, Turkey.
  • Referans44. Seifert, M., Hesse, S., Kabrelian, V., Klemm, D., 2004. Controlling the Water Content of Never Dried and Reswollen Bacterial Cellulose by the Addition of Water‐Soluble Polymers to the Culture Medium. Journal of Polymer Science Part A: Polymer Chemistry, 42(3), 463-470.
  • Referans45. Arikibea, J. E., Latab, R., & Rohindrab, D. Bacterial Cellulose/Chitosan Hydrogels Synthesized In situ for Biomedical Application. Journal of Applied Biosciences, 162, 16675-16693.
  • Referans46. Langenhove L, V.,2007. Smart Textiles For Medicine and Healtcare: Materials, Systems and Applications”, 27-47.
  • Referans47. Schwanninger, M., Rodrigues, J. C., Pereira, H., Hinterstoisser, B., 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 23-40.
  • Referans48. Yang, H., Yan, R., Chen, H., Lee, D. H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
  • Referans49. Gea, S., 2011. Innovative bio-nanocomposites based on bacterial cellulose. Queen Mary University, School of Engineering and Material Science. Doctoral dissertation, 203s, London.
  • Referans50. Greenriver,2019. IR Absorptions for Representative Functional Groups. Erişim Tarihi:14.04.2019.
  • Referans51. Tsalagkas, D., 2015. Bacterial cellulose thin-films for energy harvesting applications. Unıversity of West Hungary. Wood Sciences and Applied Arts, Doctoral dissertation, 107p, Hungary.
  • Referans52. Küçükçapraz, D. Ö.,2011. Biyo-bozunur modifiye kitin polimeri üretimi. Süleyman Demirel University, Doctoral dissertation, 122p, Turkey.
  • Referans53. Barud, H., Ribeiro, C., Crespi, M., Martines, M., Dexpert-Ghys, J., Marques, R., Ribeiro, S., 2007. Thermal Characterization of Bacterial Cellulose–Phosphate Composite Membranes. Journal of Thermal Analysis and Calorimetry, 87(3), 815-818.
  • Referans54. Esa, F., Tasirin, S. M., Abd Rahman, N. 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119.
  • Referans55. Solway, D.R., Clark, W.A., Levinson, D.J. 2011. A Parallel Open-Label Trial to Evaluate Microbial Cellulose Wound Dressing in the Treatment of Diabetic Foot Ulcers. International Wound Journal. 8(1), 69-73.
  • Referans56. Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B., 2006. In Vivo Biocompatibility of Bacterial Cellulose. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 76(2), 431- 438.
  • Referans57. Petersen, N. and Gatenholm P., 2011. Bacterial Cellulose-Based Materials and Medical Devices: Current State and Perspectives. Applied Microbiology and Biotechnology, 91(5), 1277-1286.
  • Referans58. Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A., 2015. Bacterial Cellulose as a Material for Wound Treatment: Properties and Modifications. A Review. Biotechnology Advances, 33(8), 1547-1571.
Year 2023, Volume: 33 Issue: 4, 357 - 365, 31.12.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1094783

Abstract

Project Number

Project Number: FYL-2018-6842

References

  • Referans1. Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., and Roy, I. 2021. Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623.
  • Referans2. Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W., and Radecka, I. 2021. Recent advances and applications of bacterial cellulose in biomedicine. Polymers, 13(3), 412.
  • Referans3. Portela R., Leal CR., Almeida PL., Sobral RG. 2019. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12:586–610.
  • Referans4. Keshk, S. 2014. Bacterial Cellulose Production and Its Industrial Applications. Journal of Bioprocessing and Biotechniques, 4(2), 1-10.
  • Referans5. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte chemie international edition, 44(22), 3358-3393.Saxena IM, Brown RM Jr. 1997. Identification of Cellulose Synthase(s) in Higher Plants: Sequence Analysis of Processive â-glycosyltransferases with the Common Motif ‘D, D, D35Q(R, Q)XRW. Cellulose, 4, 33–49.
  • Referans6. Park, J.K., Park, Y.H., Jung, J.Y. 2003. Production of Bacterial Cellulose by Gluconacetobacter Hansenii PJK Isolated from Rotten Apple. Biotechnology and Bioprocess Engineering 8(2), 83–88.
  • Referans7. Gorgieva, S., and J. Trček. 2019. Bacterial cellulose: Production, modification, and perspectives in biomedical applications. Nanomaterials 9 (10):1352.
  • Referans8. Fortunati, E., J. M. Kenny, and L. Torre. 2019. Lignocellulosic materials as reinforcements in sustainable packaging systems: Processing, properties, and applications. In Biomass, Biopolymer-Based Materials, and Bioenergy, ed. D. Verma, 87–102. Cambridge: Woodhead Publishing.
  • Referans9. Fernandes, I. D. A. A., Pedro, A. C., Ribeiro, V. R., Bortolini, D. G., Ozaki, M. S. C., Maciel, G. M., & Haminiuk, C. W. I. 2020. Bacterial cellulose: From production optimization to new applications. International Journal of Biological Macromolecules.
  • Referans10. Ashjaran, A., M. E. Yazdanshenas, A. Rashidi, R. Khajavi, and A. Rezaee. 2013. Overview of bio nanofabric from bacterial cellulose. Journal of the Textile Institute 104 (2):121–31. doi:10.1080/00405000.2012.703796.
  • Referans11. Song, J. E., A. Cavaco-Paulo, C. Silva, and H. R. Kim. 2020. Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Research Journal 90 (2):166–78.
  • Referans12. Ul-Islam, M., Ahmad, F., Fatima, A., Shah, N., Yasir, S., Ahmad, M. W., Ullah, M. W. 2021. Ex situ synthesis and characterization of high strength multipurpose bacterial cellulose-aloe vera hydrogels. Frontiers in Bioengineering and Biotechnology, 9.
  • Referans13. Nazeri, M. A. 2012. Optimization of Bacterial Cellulose Production by Using Response Surface Methodology (RSM): Effect of PH, Temperature and Concentration of Fermentation Medium, PhD diss., Universiti Malaysia Pahang.
  • Referans14. Gündüz, G., Aşık N. 2018. Production and Characterization of Bacterial Cellulose with Different Nutrient Source and Surface–Volume Ratios. Drvna Industrija: Znanstveni Casopis Za Pitanja Drvne Tehnologije 69 (2):141–48.
  • Referans15. Hussain, Z., Sajjad, W., Khan, T., Wahid, F. 2019. Production of bacterial cellulose from industrial wastes: a review. Cellulose, 26(5), 2895-2911.
  • Referans16. Wang, J., Tavakoli, J., Tang, Y. 2019. Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate polymers, 219, 63-76.
  • Referans17. Mohammadkazemi, F., Doosthoseini K., Azin M. 2015. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734). Cellulose Chemistry and Technology 49 (5–6):455–62.
  • Referans18. Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. 2018. Understanding Kombucha tea fermentation: a review. J Food Sci 83:580–588.
  • Referans19. Jafari, R., N. S. Naghavi, K. Khosravi-Darani, M. Doudi, and K. Shahanipour. 2020. Kombucha microbial starter with enhanced production of antioxidant compounds and invertase. Biocatalysis and Agricultural Biotechnology 29:101789.
  • Referans20. De Roos, J., and L. De Vuyst. 2018. Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology 49:115–19.
  • Referans21. Dickmann, M., Schneider R.,Armando S., Seehusen K., Hager P., Strauss M. J., and Mann F. M. 2017. Analysis of the role of acidity and tea substrate on the inhibition of α-amylase by Kombucha. J Nutr Food Technol 0 (0):1–5.
  • Referans22. Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa-Jr, A., Chaud, M. V., 2016. Bacterial Nanocellulose Production and Application: a 10-year Overview. Applied Microbiology and Biotechnology, 100(5), 2063-2072.
  • Referans23. Han, J., Shim, E., Kim, H. R., 2019. Effects of Cultivation, Washing, and Bleaching Conditions on Bacterial Cellulose Fabric Production. Textile Research Journal, 89(6), 1094-1104.
  • Referans24. Andriani, D., Apriyana, A. Y., Karina, M. 2020. The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27, 6747-6766.
  • Referans25. Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., Roy, I. 2021. Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623.
  • Referans26. Pogorelova, N., E. Rogachev, I. Digel, S. Chernigova, and D. Nardin. 2020. Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials 13 (12):2849.
  • Referans27. Feng, X., Ullah, N., Wang, X., Sun, X., Li, C., Bai, Y., Li, Z. 2015. Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. Journal of food science, 80(10), E2217-E2227.
  • Referans28. Numata, Y., Sakata, T., Furukawa, H., Tajima, K., 2015. Bacterial Cellulose Gels with High Mechanical Strength. Material Science and Engineering, 47, 57–62.
  • Referans29. Nemati, E., & Gholami, A. 2021. Nano bacterial cellulose for biomedical applications: A mini review focus on tissue engineering. Advances in Applied NanoBio-Technologies, 92-101.
  • Referans30. Kilinc, M., Ay, E., Kut, D. 2021. Thermal, Chemical and Mechanical Properties of Regenerated Bacterial Cellulose Coated Cotton Fabric. Journal of Natural Fibers, 1-18.
  • Referans31. Curvello, R., Raghuwanshi, V. S., and Garnier, G. 2019. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 267, 47–61. doi: 10.1016/j.cis.2019.03.002.
  • Referans32. Shoukat, A., Wahid, F., Khan, T., Siddique, M., Nasreen, S., Yang, G., et al. 2019. Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. Int. J. Biol. Macromol. 129, 965–971. doi: 10.1016/j. ijbiomac.2019.02.032
  • Referans33. Farooq, U., Ullah, M. W., Yang, Q., Aziz, A., Xu, J., Zhou, L., et al. 2020. Highdensity phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens. Bioelectron. 157:112163. doi: 10.1016/j.bios.2020. 112163
  • Referans34. Dhar, P., Pratto, B., Gonçalves Cruz, A. J., and Bankar, S. 2019. Valorization of sugarcane straw to produce highly conductive bacterial cellulose / graphene nanocomposite films through in situ fermentation: kinetic analysis and property evaluation. J. Clean. Prod. 238:117859. doi: 10.1016/j.jclepro.2019. 117859
  • Referans35. Niyazbekova, Z. T., G. Z. Nagmetova, and A. A. Kurmanbayev. 2018. An Overview of Bacterial Cellulose Applications. Eurasian Journal of Applied Biotechnology 2:17–25.
  • Referans36. Mansikkamäki, P., Lahtinen, M., Rissanen, K. 2007. The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol–water systems: An X-ray powder diffraction study. Carbohydrate Polymers, 68(1), 35-43.
  • Referans37. Dinand, E., Vignon, M., Chanzy, H., Heux, L. 2002. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→ cellulose II. Cellulose, 9(1), 7-18.
  • Referans38. Suryanto, H., Sutrisno, T. A., Muhajir, M., Zakia, N., Yanuhar, U., 2018. Effect of peroxide treatment on the structure and transparency of bacterial cellulose film. In MATEC Web of Conferences (Vol. 204, p. 05015). EDP Sciences.
  • Referans39. AL-Kalifawi, E. J., Hassan, I. A., 2013. Factors Influence on the Yield of Bacterial Cellulose of Kombucha (khubdat humza). Baghdad Science Journal, 11(3), 1420-1428.
  • Referans40. Zeng, M., 2014. Bacterial cellulose: Fabrication, characterization and biocompability studies. Universitat Autònoma de Barcelona, Departament de química, Facultat de Ciències, Doktora Tezi, 126s, Barselona.
  • Referans41. Han, J., E. Shim, and H. R. Kim. 2019. Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal 89 (6):1094–104.
  • Referans42. Zhu, M.F.; Yang, H.H., 2006. Handbook of Fiber Chemistry 3rd Edition; Lewin, M., Ed., CRC Press: Newyork,; Chapter 3, 139- 260.
  • Referans43. Özdemir,D., 2006. Kemiksi Dokuların Polimer Yöntemiyle Üretilmesi. Süleyman Demirel University, Master Thesis, 141p, Turkey.
  • Referans44. Seifert, M., Hesse, S., Kabrelian, V., Klemm, D., 2004. Controlling the Water Content of Never Dried and Reswollen Bacterial Cellulose by the Addition of Water‐Soluble Polymers to the Culture Medium. Journal of Polymer Science Part A: Polymer Chemistry, 42(3), 463-470.
  • Referans45. Arikibea, J. E., Latab, R., & Rohindrab, D. Bacterial Cellulose/Chitosan Hydrogels Synthesized In situ for Biomedical Application. Journal of Applied Biosciences, 162, 16675-16693.
  • Referans46. Langenhove L, V.,2007. Smart Textiles For Medicine and Healtcare: Materials, Systems and Applications”, 27-47.
  • Referans47. Schwanninger, M., Rodrigues, J. C., Pereira, H., Hinterstoisser, B., 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 23-40.
  • Referans48. Yang, H., Yan, R., Chen, H., Lee, D. H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
  • Referans49. Gea, S., 2011. Innovative bio-nanocomposites based on bacterial cellulose. Queen Mary University, School of Engineering and Material Science. Doctoral dissertation, 203s, London.
  • Referans50. Greenriver,2019. IR Absorptions for Representative Functional Groups. Erişim Tarihi:14.04.2019.
  • Referans51. Tsalagkas, D., 2015. Bacterial cellulose thin-films for energy harvesting applications. Unıversity of West Hungary. Wood Sciences and Applied Arts, Doctoral dissertation, 107p, Hungary.
  • Referans52. Küçükçapraz, D. Ö.,2011. Biyo-bozunur modifiye kitin polimeri üretimi. Süleyman Demirel University, Doctoral dissertation, 122p, Turkey.
  • Referans53. Barud, H., Ribeiro, C., Crespi, M., Martines, M., Dexpert-Ghys, J., Marques, R., Ribeiro, S., 2007. Thermal Characterization of Bacterial Cellulose–Phosphate Composite Membranes. Journal of Thermal Analysis and Calorimetry, 87(3), 815-818.
  • Referans54. Esa, F., Tasirin, S. M., Abd Rahman, N. 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119.
  • Referans55. Solway, D.R., Clark, W.A., Levinson, D.J. 2011. A Parallel Open-Label Trial to Evaluate Microbial Cellulose Wound Dressing in the Treatment of Diabetic Foot Ulcers. International Wound Journal. 8(1), 69-73.
  • Referans56. Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B., 2006. In Vivo Biocompatibility of Bacterial Cellulose. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 76(2), 431- 438.
  • Referans57. Petersen, N. and Gatenholm P., 2011. Bacterial Cellulose-Based Materials and Medical Devices: Current State and Perspectives. Applied Microbiology and Biotechnology, 91(5), 1277-1286.
  • Referans58. Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A., 2015. Bacterial Cellulose as a Material for Wound Treatment: Properties and Modifications. A Review. Biotechnology Advances, 33(8), 1547-1571.
There are 58 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Nur Kılınç 0000-0003-4494-5084

Dicle Özdemir Küçükçapraz 0000-0003-0209-8323

Project Number Project Number: FYL-2018-6842
Early Pub Date January 1, 2024
Publication Date December 31, 2023
Submission Date March 28, 2022
Acceptance Date October 13, 2022
Published in Issue Year 2023 Volume: 33 Issue: 4

Cite

APA Kılınç, N., & Özdemir Küçükçapraz, D. (2023). Production of Bacterial Cellulose Based On Bio Nonwoven / Nonwoven Composites for Medical Textile Applications. Textile and Apparel, 33(4), 357-365. https://doi.org/10.32710/tekstilvekonfeksiyon.1094783

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.