Research Article
BibTex RIS Cite

A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde

Year 2020, Volume: 4 Issue: 1, 39 - 48, 15.06.2020
https://doi.org/10.33435/tcandtc.691754

Abstract

In this study, Si doped graphene sensor property for indoor volatile contaminants formaldehyde and acetaldehyde has been examined. The B3LYP hybrid method with 6-31G(d,p) basis set has been used for this purpose. The adsorption energy of formaldehyde and acetaldehyde have been found to be -24.5 and -33.3 kcal/mol, respectively. The characteristic C=O bond frequency has been decreased after adsorption of the molecules and the bond peaks frequencies have been decreased in both aldehydes. There was a charge transfer from adsorbent to formaldehyde oppositely from acetaldehyde to adsorbent.

Thanks

This paper was prepared within the graduate course (KIM502) of the Chemical Engineering MSc Program in the Graduate School of Natural and Applied Science.

References

  • [1] Y. Zou, F. Li, Z. H. Zhu, M. W. Zhao , X. G. Xu, & X. Y. Su, An ab initio study on gas sensing properties of gşraphene and Si-doped graphene, The European Physical Journal B, 81.4 (2011) 475-479.
  • [2] Y. Tang, Z. Liu, X. Dai, Z. Yang, W. Chen, D. Ma, & Z. Lu, Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation, Applied surface science, 308 (2014) 402-407.
  • [3] S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review, Sensors and Actuators B: Chemical, 221 (2015): 1170-1181.
  • [4] S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, S., & A. Abdala, Recent advances in graphene based gas sensors, Sensors and Actuators B: Chemical, 218 (2015) 160-183.
  • [5] V. E. C. Padilla, M. T. R. de la Cruz, Y. E. Á. Alvarado, R. G. Díaz, C. E. R. García, & G. H. Cocoletzi, Studies of hydrogen sulfide and ammonia adsorption on P-and Si-doped graphene: density functional theory calculations, Journal of molecular modeling, 25.4 (2019) 94.
  • [6] Y. Chen, B. Gao, J. X. Zhao, Q. H. Cai, H. G. Fu, Si-doped graphene: an ideal sensor for NO-or NO2-detection and metal-free catalyst for N2O-reduction, Journal of molecular modeling, 18.5 (2012) 2043-2054.
  • [7] F. Niu, J. M. Liu, L. M. Tao, W. Wang, & W. G. Song, Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing, Journal of Materials Chemistry A, 1.20 (2013) 6130-6133.
  • [8] Y. Chen, X. C. Yang, Y. J. Liu, J. X. Zhao, Q. H. Cai, & X. Z.Wang, Can Si-doped graphene activate or dissociate O2 molecule?, Journal of Molecular Graphics and Modelling, 39 (2013) 126-132.
  • [9] T. Tunsaringkarn, T. Prueksasit, D. Morknoy, W. Siriwong, N. Kanjanasiranont, S. Semathong, S., K. Zapaung, Health risk assessment and urinary biomarkers of VOCs exposures among outdoor workers in urban area, Bangkok, Thailand, Int. J. Environ. Pollut. Solut 2 (2014) 32-46.
  • [10] C. Elosua, I. R. Matias, I. C. Bariain, & F. J. Arregui, Volatile organic compound optical fiber sensors: A review, Sensors 6.11 (2006) 1440-1465.
  • [11] S. Guo, C. Mei, 13 C isotope evidence for photochemical production of atmospheric formaldehyde, acetaldehyde, and acetone pollutants in Guangzhou, Environmental chemistry letters, 11.1 (2013) 77-82.
  • [12] H. Duan, W. Deng, Z. Gan, D. Li, & D. Li, SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction, Microchimica Acta, 186.3 (2019) 175.
  • [13] R. Majidi, and A. R. Karami, Adsorption of formaldehyde on graphene and graphyne. ,
  • [14] X. Y. Liu, and J. M. Zhang, Formaldehyde molecule adsorbed on doped graphene: a first-principles study, Applied surface science, 293 (2014) 216-219.
  • [15] Beheshtian, J., Ahmadi P., and M. Noei, Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensors and Actuators B: Chemical, 181 (2013) 829-834.
  • [16] Q. Zhou, L. Yuan, X. Yang, Z. Fu, Y. Tang, C. Wang, & H. Zhang, DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S. Chemical Physics, 440 (2014) 80-86.
  • [17] J. Ye, X. Zhu, B. Cheng, J. Yu & C. Jiang, Few-layered graphene-like boron nitride: a highly efficient adsorbent for indoor formaldehyde removal, Environmental Science & Technology Letters, 4.1 (2017) 20-25.
  • [18] D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, J. Yang, Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide, Sensors and Actuators B: Chemical, 250 (2017) 533-542.
  • [19] Y. Wang, M. Zhu, L. Kang, & B. Dai, Density functional theory study of side-chain alkylation of toluene with formaldehyde over alkali-exchanged zeolite, Microporous and mesoporous materials, 196 (2014) 129-135.
  • [20] X. Chu, T. Hu, F. Gao, Y. Dong, W. Sun, L. Bai, Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method, Materials Science and Engineering: B, 193 (2015) 97-104.
  • [21] Q. Meng, Y. Shen, J. Xu, X. Ma, & J. Gong, Mechanistic understanding of hydrogenation of acetaldehyde on Au (111): a DFT investigation, Surface Science, 606.21-22 (2012) 1608-1617.
  • [22] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects, Physical Review Journal Archive 140 (1965) A1133–A1138.
  • [23] A. T. Bilgiçli, H. G. Bilgiçli, A. Günsel, H. Pişkin, B. Tüzün, M. N. Yarasir, & M. Zengin, The new ball-type zinc phthalocyanine with SS bridge; Synthesis, computational and photophysicochemical properties, Journal of Photochemistry and Photobiology A: Chemistry, 389 (2020) 112287.
  • [24] J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G., Gaussian, Inc.,Wallingford CT, 2013.
  • [25] A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648.
  • [26] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.
  • [27] J. Tirado-Rives and W. L. Jorgensen, Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules , J. Chem. Theory Comput., (2008) 4, 297-306.
  • [28] S. Thakur, S.M. Borah, N.C. Adhikary, A DFT study of structural, electronic and optical properties of heteroatom doped monolayer graphene, Optik 168 (2018) 228–236.
  • [29] A.S. Rad, First principles study of Al-doped graphene as nanostructureadsorbent for NO2and N2O: DFT calculations, Applied Surface Science 357 (2015) 1217–1224.
  • [30] A.S. Rad, Adsorption of mercaptopyridine on the surface of Al- and B-doped graphenes: Theoretical study, Journal of Alloys and Compounds 682 (2016) 345-351.
  • [31] D. G. Sangiovanni, G. K. Gueorguiev and A. Kakanakova-Georgieva, Ab initio molecular dynamics of atomic-scale surface reactions: insights into metal organic chemical vapor deposition of AlN on graphene, Phys. Chem. Chem. Phys. 20 (2018) 17751-17761.
  • [32] X. Rozanska, R.A. van Santen, F. Hutschka, J. Hafner, A periodic DFT study of intramolecular isomerization reactions of toluene and xylenes catalyzed by acidic mordenite, J. Am. Chem. Soc. 123 (2001) 7655–7667.
  • [33] A.M. Vos, X. Rozanska, R.A. Schoonheydt, R.A. van Santen, F. Hutschka, J. Hafner, A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite, J. Am. Chem. Soc. 123 (2001) 2799–2809.
  • [34] C. Ricca, F. Labat, C. Zavala, N. Russo, C. Adamo, G. Merino, & E. Sicilia, B,N-Codoped Graphene as Catalyst for the Oxygen Reduction Reaction: Insights from Periodic and Cluster DFT Calculations, Journal of Computational Chemistry, 39.11 (2018): 637-647.
  • [35] M. F. Fellah, Direct decarbonylation of furfural to furan: A density functional theory stüdy on Pt-graphene Applied Surface Science 405 (2017) 395–404.
  • [36] C.S. Tautermann and D.C. Clary, Comparative study of cluster- and supercell-approaches for investigating heterogeneous catalysis by electronic structure methods: Tunneling in the reaction N + H - NH on Ru(0001), Phys. Chem. Chem. Phys., 8 (2006) 1437–1444.
  • [37] A.S. Rad, D. Zareyee, Adsorption properties of SO2 and O3 molecules on Pt-decorated graphene: A theoretical study, Vacuum, 130 (2016) 113-118.
  • [38] C. Tabtimsai, W. Rakrai, B. Wanno, Hydrogen adsorption on graphene sheets doped with group 8B transition metal: A DFT investigation, Vacuum, 139 (2017) 101-108.
  • [39] Y. Qin, H.H. Wu, L.A. Zhang, X. Zhou, Y. Bu, W. Zhang, F. Chu, Y. Li, Y. Kong, Q. Zhang, D. Ding, Y. Tao, Y. Li, M. Liu, and X.C. Zeng, Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction, ACS Catalysis, 9 (2019) 610-619.
  • [40] C. Tabtimsai, W. Rakrai, B. Wanno, Hydrogen adsorption on graphene sheets doped with group 8B transition metal: A DFT investigation, Vacuum, 139 (2017) 101-108.
  • [41] M. Malček, L. Bučinský, F. Teixeira, M. Natália, D. S. Cordeiro, Detection of simple inorganic and organic molecules over Cu-decorated circumcoronene: a combined DFT and QTAIM study, Phys. Chem. Chem. Phys., 20 (2018) 16021-16032.
  • [42] J.B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc., Pittsburgh, PA, (1996) 68–69.
  • [43] R.G. Pearson, Chemical hardness and density functional theory, J. Chem. Sci., 117 (2005) 369–377.
  • [44] R.G. Pearson, The electronic chemical potential and chemical hardness, Journal of Molecular Structure THEOCHEM, 255 (1992) 261–270
  • [45] B. Tüzün, Investi̇gati̇on of pyrazoly derivatives schi̇ff base li̇gands and thei̇r metal complexes used as anti-cancer drug., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227 (2020) 117663.
  • [46] V. Nagarajan, & R. Chandiramouli, DFT investigation of formaldehyde adsorption characteristics on MgO nanotube. Journal of Inorganic and Organometallic Polymers and Materials, 24.6 (2014) 1038-1047.
  • [47] M. Noei, & A. A. Peyghan, A DFT study on the sensing behavior of a BC 2 N nanotube toward formaldehyde, Journal of molecular modeling, 19.9 (2013) 3843-3850.
  • [48] Y. Kurosaki, & K. Yokoyama, (2002). Photodissociation of acetaldehyde, CH3CHO→ CH4+ CO: direct ab initio dynamics study, The Journal of Physical Chemistry A 106.47 (2002) 11415-11421.
  • [49] R. Gholizadeh, & Y. X. Yu, N2O+ CO reaction over Si-and Se-doped graphenes: an ab initio DFT study, Applied Surface Science 357 (2015) 1187-1195.
  • [50] S. F. Rastegar, A. A. Peyghan, & N. L Hadipour, Response of Si-and Al-doped graphenes toward HCN: a computational study, Applied surface science 265 (2013) 412-417.
  • [51] M. D. Esrafili, N. Saeidi, & P. Nematollahi, Si-doped graphene: A promising metal-free catalyst for oxidation of SO2, Chemical Physics Letters, 649 (2016)37-43.
  • [52] M. D. Esrafili, N. Saeidi, & P. Nematollahi, A DFT study on SO3 capture and activation over Si-or Al-doped graphene, Chemical Physics Letters, 658 (2016) 146-151.
  • [53] Z. Mohsenpour, E. Shakerzadeh, & M. Zare, Quantum chemical description of formaldehyde (HCHO), acetaldehyde (CH3CHO) and propanal (CH3CH2CHO) pollutants adsorption behaviors onto the bowl-shaped B 36 nanosheet, Adsorption, 23.7-8 (2017) 1041-1053.
  • [54] A. Ahmadi, N. L. Hadipour, M. Kamfiroozi, & Z. Bagheri, Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde, Sensors and Actuators B: Chemical 161.1 (2012) 1025-1029.
  • [55] Y. Yong, H. Jiang, X. Lv, J. Cao, The cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection, Physical Chemistry Chemical Physics, 18 (2016) 21431-21441.
  • [56] N. L. Hadipour, H. Soleymanabadi, A. A. Peyghan, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors, The Journal of Physical Chemistry C, 119 (2015) 6398-6404.
  • [57] E.D. Glendering, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin, Madison.
Year 2020, Volume: 4 Issue: 1, 39 - 48, 15.06.2020
https://doi.org/10.33435/tcandtc.691754

Abstract

References

  • [1] Y. Zou, F. Li, Z. H. Zhu, M. W. Zhao , X. G. Xu, & X. Y. Su, An ab initio study on gas sensing properties of gşraphene and Si-doped graphene, The European Physical Journal B, 81.4 (2011) 475-479.
  • [2] Y. Tang, Z. Liu, X. Dai, Z. Yang, W. Chen, D. Ma, & Z. Lu, Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation, Applied surface science, 308 (2014) 402-407.
  • [3] S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review, Sensors and Actuators B: Chemical, 221 (2015): 1170-1181.
  • [4] S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, S., & A. Abdala, Recent advances in graphene based gas sensors, Sensors and Actuators B: Chemical, 218 (2015) 160-183.
  • [5] V. E. C. Padilla, M. T. R. de la Cruz, Y. E. Á. Alvarado, R. G. Díaz, C. E. R. García, & G. H. Cocoletzi, Studies of hydrogen sulfide and ammonia adsorption on P-and Si-doped graphene: density functional theory calculations, Journal of molecular modeling, 25.4 (2019) 94.
  • [6] Y. Chen, B. Gao, J. X. Zhao, Q. H. Cai, H. G. Fu, Si-doped graphene: an ideal sensor for NO-or NO2-detection and metal-free catalyst for N2O-reduction, Journal of molecular modeling, 18.5 (2012) 2043-2054.
  • [7] F. Niu, J. M. Liu, L. M. Tao, W. Wang, & W. G. Song, Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing, Journal of Materials Chemistry A, 1.20 (2013) 6130-6133.
  • [8] Y. Chen, X. C. Yang, Y. J. Liu, J. X. Zhao, Q. H. Cai, & X. Z.Wang, Can Si-doped graphene activate or dissociate O2 molecule?, Journal of Molecular Graphics and Modelling, 39 (2013) 126-132.
  • [9] T. Tunsaringkarn, T. Prueksasit, D. Morknoy, W. Siriwong, N. Kanjanasiranont, S. Semathong, S., K. Zapaung, Health risk assessment and urinary biomarkers of VOCs exposures among outdoor workers in urban area, Bangkok, Thailand, Int. J. Environ. Pollut. Solut 2 (2014) 32-46.
  • [10] C. Elosua, I. R. Matias, I. C. Bariain, & F. J. Arregui, Volatile organic compound optical fiber sensors: A review, Sensors 6.11 (2006) 1440-1465.
  • [11] S. Guo, C. Mei, 13 C isotope evidence for photochemical production of atmospheric formaldehyde, acetaldehyde, and acetone pollutants in Guangzhou, Environmental chemistry letters, 11.1 (2013) 77-82.
  • [12] H. Duan, W. Deng, Z. Gan, D. Li, & D. Li, SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction, Microchimica Acta, 186.3 (2019) 175.
  • [13] R. Majidi, and A. R. Karami, Adsorption of formaldehyde on graphene and graphyne. ,
  • [14] X. Y. Liu, and J. M. Zhang, Formaldehyde molecule adsorbed on doped graphene: a first-principles study, Applied surface science, 293 (2014) 216-219.
  • [15] Beheshtian, J., Ahmadi P., and M. Noei, Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensors and Actuators B: Chemical, 181 (2013) 829-834.
  • [16] Q. Zhou, L. Yuan, X. Yang, Z. Fu, Y. Tang, C. Wang, & H. Zhang, DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S. Chemical Physics, 440 (2014) 80-86.
  • [17] J. Ye, X. Zhu, B. Cheng, J. Yu & C. Jiang, Few-layered graphene-like boron nitride: a highly efficient adsorbent for indoor formaldehyde removal, Environmental Science & Technology Letters, 4.1 (2017) 20-25.
  • [18] D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, J. Yang, Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide, Sensors and Actuators B: Chemical, 250 (2017) 533-542.
  • [19] Y. Wang, M. Zhu, L. Kang, & B. Dai, Density functional theory study of side-chain alkylation of toluene with formaldehyde over alkali-exchanged zeolite, Microporous and mesoporous materials, 196 (2014) 129-135.
  • [20] X. Chu, T. Hu, F. Gao, Y. Dong, W. Sun, L. Bai, Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method, Materials Science and Engineering: B, 193 (2015) 97-104.
  • [21] Q. Meng, Y. Shen, J. Xu, X. Ma, & J. Gong, Mechanistic understanding of hydrogenation of acetaldehyde on Au (111): a DFT investigation, Surface Science, 606.21-22 (2012) 1608-1617.
  • [22] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects, Physical Review Journal Archive 140 (1965) A1133–A1138.
  • [23] A. T. Bilgiçli, H. G. Bilgiçli, A. Günsel, H. Pişkin, B. Tüzün, M. N. Yarasir, & M. Zengin, The new ball-type zinc phthalocyanine with SS bridge; Synthesis, computational and photophysicochemical properties, Journal of Photochemistry and Photobiology A: Chemistry, 389 (2020) 112287.
  • [24] J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G., Gaussian, Inc.,Wallingford CT, 2013.
  • [25] A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648.
  • [26] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.
  • [27] J. Tirado-Rives and W. L. Jorgensen, Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules , J. Chem. Theory Comput., (2008) 4, 297-306.
  • [28] S. Thakur, S.M. Borah, N.C. Adhikary, A DFT study of structural, electronic and optical properties of heteroatom doped monolayer graphene, Optik 168 (2018) 228–236.
  • [29] A.S. Rad, First principles study of Al-doped graphene as nanostructureadsorbent for NO2and N2O: DFT calculations, Applied Surface Science 357 (2015) 1217–1224.
  • [30] A.S. Rad, Adsorption of mercaptopyridine on the surface of Al- and B-doped graphenes: Theoretical study, Journal of Alloys and Compounds 682 (2016) 345-351.
  • [31] D. G. Sangiovanni, G. K. Gueorguiev and A. Kakanakova-Georgieva, Ab initio molecular dynamics of atomic-scale surface reactions: insights into metal organic chemical vapor deposition of AlN on graphene, Phys. Chem. Chem. Phys. 20 (2018) 17751-17761.
  • [32] X. Rozanska, R.A. van Santen, F. Hutschka, J. Hafner, A periodic DFT study of intramolecular isomerization reactions of toluene and xylenes catalyzed by acidic mordenite, J. Am. Chem. Soc. 123 (2001) 7655–7667.
  • [33] A.M. Vos, X. Rozanska, R.A. Schoonheydt, R.A. van Santen, F. Hutschka, J. Hafner, A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite, J. Am. Chem. Soc. 123 (2001) 2799–2809.
  • [34] C. Ricca, F. Labat, C. Zavala, N. Russo, C. Adamo, G. Merino, & E. Sicilia, B,N-Codoped Graphene as Catalyst for the Oxygen Reduction Reaction: Insights from Periodic and Cluster DFT Calculations, Journal of Computational Chemistry, 39.11 (2018): 637-647.
  • [35] M. F. Fellah, Direct decarbonylation of furfural to furan: A density functional theory stüdy on Pt-graphene Applied Surface Science 405 (2017) 395–404.
  • [36] C.S. Tautermann and D.C. Clary, Comparative study of cluster- and supercell-approaches for investigating heterogeneous catalysis by electronic structure methods: Tunneling in the reaction N + H - NH on Ru(0001), Phys. Chem. Chem. Phys., 8 (2006) 1437–1444.
  • [37] A.S. Rad, D. Zareyee, Adsorption properties of SO2 and O3 molecules on Pt-decorated graphene: A theoretical study, Vacuum, 130 (2016) 113-118.
  • [38] C. Tabtimsai, W. Rakrai, B. Wanno, Hydrogen adsorption on graphene sheets doped with group 8B transition metal: A DFT investigation, Vacuum, 139 (2017) 101-108.
  • [39] Y. Qin, H.H. Wu, L.A. Zhang, X. Zhou, Y. Bu, W. Zhang, F. Chu, Y. Li, Y. Kong, Q. Zhang, D. Ding, Y. Tao, Y. Li, M. Liu, and X.C. Zeng, Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction, ACS Catalysis, 9 (2019) 610-619.
  • [40] C. Tabtimsai, W. Rakrai, B. Wanno, Hydrogen adsorption on graphene sheets doped with group 8B transition metal: A DFT investigation, Vacuum, 139 (2017) 101-108.
  • [41] M. Malček, L. Bučinský, F. Teixeira, M. Natália, D. S. Cordeiro, Detection of simple inorganic and organic molecules over Cu-decorated circumcoronene: a combined DFT and QTAIM study, Phys. Chem. Chem. Phys., 20 (2018) 16021-16032.
  • [42] J.B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc., Pittsburgh, PA, (1996) 68–69.
  • [43] R.G. Pearson, Chemical hardness and density functional theory, J. Chem. Sci., 117 (2005) 369–377.
  • [44] R.G. Pearson, The electronic chemical potential and chemical hardness, Journal of Molecular Structure THEOCHEM, 255 (1992) 261–270
  • [45] B. Tüzün, Investi̇gati̇on of pyrazoly derivatives schi̇ff base li̇gands and thei̇r metal complexes used as anti-cancer drug., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227 (2020) 117663.
  • [46] V. Nagarajan, & R. Chandiramouli, DFT investigation of formaldehyde adsorption characteristics on MgO nanotube. Journal of Inorganic and Organometallic Polymers and Materials, 24.6 (2014) 1038-1047.
  • [47] M. Noei, & A. A. Peyghan, A DFT study on the sensing behavior of a BC 2 N nanotube toward formaldehyde, Journal of molecular modeling, 19.9 (2013) 3843-3850.
  • [48] Y. Kurosaki, & K. Yokoyama, (2002). Photodissociation of acetaldehyde, CH3CHO→ CH4+ CO: direct ab initio dynamics study, The Journal of Physical Chemistry A 106.47 (2002) 11415-11421.
  • [49] R. Gholizadeh, & Y. X. Yu, N2O+ CO reaction over Si-and Se-doped graphenes: an ab initio DFT study, Applied Surface Science 357 (2015) 1187-1195.
  • [50] S. F. Rastegar, A. A. Peyghan, & N. L Hadipour, Response of Si-and Al-doped graphenes toward HCN: a computational study, Applied surface science 265 (2013) 412-417.
  • [51] M. D. Esrafili, N. Saeidi, & P. Nematollahi, Si-doped graphene: A promising metal-free catalyst for oxidation of SO2, Chemical Physics Letters, 649 (2016)37-43.
  • [52] M. D. Esrafili, N. Saeidi, & P. Nematollahi, A DFT study on SO3 capture and activation over Si-or Al-doped graphene, Chemical Physics Letters, 658 (2016) 146-151.
  • [53] Z. Mohsenpour, E. Shakerzadeh, & M. Zare, Quantum chemical description of formaldehyde (HCHO), acetaldehyde (CH3CHO) and propanal (CH3CH2CHO) pollutants adsorption behaviors onto the bowl-shaped B 36 nanosheet, Adsorption, 23.7-8 (2017) 1041-1053.
  • [54] A. Ahmadi, N. L. Hadipour, M. Kamfiroozi, & Z. Bagheri, Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde, Sensors and Actuators B: Chemical 161.1 (2012) 1025-1029.
  • [55] Y. Yong, H. Jiang, X. Lv, J. Cao, The cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection, Physical Chemistry Chemical Physics, 18 (2016) 21431-21441.
  • [56] N. L. Hadipour, H. Soleymanabadi, A. A. Peyghan, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors, The Journal of Physical Chemistry C, 119 (2015) 6398-6404.
  • [57] E.D. Glendering, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin, Madison.
There are 57 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Özge Akyavaşoğlu This is me

Mehmet Ferdi Fellah

Publication Date June 15, 2020
Submission Date February 20, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Akyavaşoğlu, Ö., & Fellah, M. F. (2020). A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde. Turkish Computational and Theoretical Chemistry, 4(1), 39-48. https://doi.org/10.33435/tcandtc.691754
AMA Akyavaşoğlu Ö, Fellah MF. A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde. Turkish Comp Theo Chem (TC&TC). June 2020;4(1):39-48. doi:10.33435/tcandtc.691754
Chicago Akyavaşoğlu, Özge, and Mehmet Ferdi Fellah. “A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde”. Turkish Computational and Theoretical Chemistry 4, no. 1 (June 2020): 39-48. https://doi.org/10.33435/tcandtc.691754.
EndNote Akyavaşoğlu Ö, Fellah MF (June 1, 2020) A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde. Turkish Computational and Theoretical Chemistry 4 1 39–48.
IEEE Ö. Akyavaşoğlu and M. F. Fellah, “A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde”, Turkish Comp Theo Chem (TC&TC), vol. 4, no. 1, pp. 39–48, 2020, doi: 10.33435/tcandtc.691754.
ISNAD Akyavaşoğlu, Özge - Fellah, Mehmet Ferdi. “A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde”. Turkish Computational and Theoretical Chemistry 4/1 (June 2020), 39-48. https://doi.org/10.33435/tcandtc.691754.
JAMA Akyavaşoğlu Ö, Fellah MF. A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde. Turkish Comp Theo Chem (TC&TC). 2020;4:39–48.
MLA Akyavaşoğlu, Özge and Mehmet Ferdi Fellah. “A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde”. Turkish Computational and Theoretical Chemistry, vol. 4, no. 1, 2020, pp. 39-48, doi:10.33435/tcandtc.691754.
Vancouver Akyavaşoğlu Ö, Fellah MF. A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde. Turkish Comp Theo Chem (TC&TC). 2020;4(1):39-48.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)