Research Article
BibTex RIS Cite

The Role of MEG3 in the Activation of Toll Like Receptor 3 in Prostate Cancer Cells

Year 2021, Volume: 11 Issue: 3, 625 - 630, 22.09.2021
https://doi.org/10.31832/smj.874417

Abstract

Objective: Prostate cancer accounts for approximately 10% of new cases diagnosed in men worldwide. Toll like receptors (TLRs) play a crucial role in the progression of cancer. Furthermore, the expression level of TLRs is mediated by different transcription factors and non-coding RNAs. Therefore, the aim of this study was to investigate the potential regulatory role of MEG3 and the interaction of TLR3 with MEG3 in the prostate cancer cells.
Materials and Methods: In this study, PC-3, LNCaP and HUVEC cells were used. To stimulate TLR3 expression, Poly I:C was used for a ligand of TLR3 and the less cytotoxic concentration of Poly I:C was determined by WST-1 analysis. The relative gene expression levels of TLR3 and MEG3 were analyzed by RT-PCR.
Results: According to the results, 5 µM of Poly I:C was chosen as a less cytotoxic concentration for the stimulation of TLR3 activity. The mRNA level of MEG3 (3.19-, 1.90-, and 1.90-fold) and TLR3 (6.17-, 5.75- and 2.27-fold) was significantly increased in PC-3, LNCaP and HUVEC cells, respectively after Poly I:C stimulation (p<0.05). Additionally, the expression level of MEG3 was 2.33- and 10.93-fold for PC-3 and LNCaP cells respectively, compared to HUVEC cells (p<0.05).
Conclusion: In conclusion, the activation of the TLR3 signaling pathway through Poly I:C promoted the level of MEG3 expression especially in castration-resistant prostate cancer cells. Thus, our preliminary data suggests that MEG3 could modulate TLR3 signaling pathway in prostate cancer cells.

Supporting Institution

Scientific and Technological Research Council of Turkey (TÜBİTAK)-2209-A-Research Project Support Programme for Undergraduate Students

Project Number

1919B011900829

Thanks

This work was supported by the Scientific and Technological Research Council of Turkey, [TUBITAK] under 2209-A-Research Project Support Programme for Undergraduate Students Grant [number 1919B011900829].

References

  • 1. Dianat SS, Margreiter M, Eckersberger E, Finkelstein J, Kuehas F, Herwig R, et al. Gene polymorphisms and prostate cancer: the evidence. BJU Int 2009;104:1560-1572.
  • 2. Jemal A, Bray F, Center M M, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Cli 2011;61:69-90.
  • 3. Fu W, Yao J, Huang Y, Li Q, Li W, Chen Z, et al. LXR agonist regulates the carcinogenesis of PCa via the SOCS3 pathway. Cell Physiol Biochem 2014;33:195-204.
  • 4. Arbyn M, Castellsague X, de Sanjose S, Bruni L, Saraiya M, Bray F, et al. Worldwide burden of cervical cancer in 2008. Ann Oncol 2011;22;2675-2686.
  • 5. Chang ET, Boffetta P, Adami HO, Cole P, Mandel JS. A critical review of the epidemiology of Agent Orange/ TCDD and prostate cancer. Eur J Epidemiol 2014;29:667-723.
  • 6. Westdorp H, Skold AE, Snijer BA, Franik S, Mulder SF, Major PP, et al. Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Front Immunol 2014;5:191.
  • 7. Takeda K, Kaisho T, Akira S. Toll-like receptors. Ann Rev Immunol 2003;21:335–76.
  • 8. Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 2013;341(6147):789-92.
  • 9. Zhao S, Zhang Y, Zhang Q, Wang F, Zhang D. Toll-like receptors and prostate cancer. Front Immunol 2014;5:352.
  • 10. Gonzalez-Reyes S, Fernandez JM, Gonzalez LO, Aguirre A, Suárez A, González JM, et al. Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol Immunother 2011;60: 217–26.
  • 11. Harashima N, Inao T, Imamura R, Okano S, Suda T, Harada M. Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother 2012;61(5):667-76.
  • 12. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010;464:1071-1076.
  • 13. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012;9:703-719.
  • 14. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011;477:295-300.
  • 15. Wang Y, Gao S, Liu G, Jia R, Fan D, Feng X. Microarray expression profile analysis of long non-coding RNAs in human gastric cardiac adenocarcinoma. Cell Physiol Biochem 2014;33:1225-1238.
  • 16. Liu H, Song G, Zhou L, Hu X, Liu M, Nie J, et al. Compared analysis of LncRNA expression profiling in PDK1 gene knockout mice at two time points. Cell Physiol Biochem 2013;32;1497-1508.
  • 17. Xu W, Chang J, Du X, Hou J. Long non-coding RNA PCAT-1 contributes to tumorigenesis by regulating FSCN1 via mir-145-5p in prostate cancer. Biomed Pharmacother 2017;95:1112-1118.
  • 18. Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, et al. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS Med 2012;7:e49462.
  • 19. Greife A, Knievel J, Ribarska T, Niegisch G, Schulz WA. Concomitant downregulation of the imprinted genes DLK1 and MEG3 at 14q32.2 by epigenetic mechanisms in urothelial carcinoma. Clin Epigenetics 2014;6:29.
  • 20. Misawa A, Takayama KI, Inoue S. Long non-coding RNAs and prostate cancer. Cancer Sci 2017;108(11):2107-2114.
  • 21. Li J, Zhang Z, Xiong L, Guo C, Jiang T, Zeng L, Li G, Wang J. SNHG1 LncRNA negatively regulates mir199a-3p to enhance CDK7 expression and promote cell proliferation in prostate cancer. Biochem Biophys Res Commun 2017;487:146-152.
  • 22. Wei GH, Wang X. LncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci 2017;21:3850-3856.
  • 23. Luo G, Wang M, Wu X, Tao D, Xiao X, Wang L, et al. Long Non-Coding RNA MEG3 Inhibits Cell Proliferation and Induces Apoptosis in Prostate Cancer. Cell Physiol Biochem 2015;37(6):2209-20.
  • 24.Zhang Y, Wu J, Jing H, Huang G, Sun Z, Xu S. Long noncoding RNA MEG3 inhibits breast cancer growth via upregulating endoplasmic reticulum stress and activating NF-κB and p53. J Cell Biochem 2019;120(4):6789-6797.
  • 25. Wu M, Huang Y, Chen T, Wang W, Yang S, Ye Z, et al. LncRNA MEG3 inhibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis. J Cell Mol Med 2019;23(1):29-38.
  • 26. Sun M, Geng D, Li S, Chen Z, Zhao W. LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem2018;399(4):387-395.
  • 27. El-Shal AS, Matboli M, Abdelaziz AM, Morsy AA, Abdelbary EH. Role of a novel circulatory RNA-based biomarker panel expression in ovarian cancer. IUBMB Life 2019;71(12):2031-2047.
  • 28. Zhou W, Chen X, Hu Q, Chen X, Chen Y, Huang L. Galectin-3 activates TLR4/NF-κB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression. BMC Cancer 2018;18(1):580.
  • 29. Gómez-Gómez E, Jiménez-Vacas JM, Pedraza-Arévalo S. Oncogenic Role of Secreted Engrailed Homeobox 2 (EN2) in Prostate Cancer. J Clin Med 2019;8;(9):1400.
  • 30. Zhou Y, Yang H, Xia W, Cui L, Xu R, Lu H, et al. LncRNA MEG3 inhibits the progression of prostate cancer by facilitating H3K27 trimethylation of EN2 through binding to EZH2. J Biochem 2019;167;(3):295-301.
  • 31. Ding L, Ren J, Zhang D, Li Y, Huang X, Ji J, Hu Q, et al. The TLR3 Agonist Inhibit Drug Efflux and Sequentially Consolidates Low-Dose Cisplatin-Based Chemoimmunotherapy while Reducing Side Effects. Mol Cancer Ther 2017;16(6):1068-1079.
  • 32. Li R, Fang L, Pu Q, Bu H, Zhu P, Chen Z, et al. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 2018;11(536):eaao2387.
  • 33. Tao XW, Zeng LK, Wang HZ, Liu HC. LncRNA MEG3 ameliorates respiratory syncytial virus infection by suppressing TLR4 signaling. Mol Med Rep 2018;17(3):4138-4144.
  • 34. Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 2011;71:(15).
  • 35. Lee D, Oh W, Sartor O. High Androgen Receptor Levels Are Predictive of Decreased Survival in Prostate Cancer. Clin Prostate Cancer 2003;2(1):13–14.

MEG3’ün Prostat Kanseri Hücrelerindeki Toll Benzeri Reseptör 3 Aktivasyonundaki Rolü

Year 2021, Volume: 11 Issue: 3, 625 - 630, 22.09.2021
https://doi.org/10.31832/smj.874417

Abstract

Amaç: Dünya genelinde erkeklerdeki yeni kanser tanılarının yaklaşık %10'unu prostat kanseri oluşturmaktadır. Toll-benzeri reseptörler (TLR), prostat kanseri gelişiminde önemli rol oynamaktadır. Ayrıca TLR’lerin ekspresyon seviyesi çeşitli transkripsiyon faktörleri ve kodlanmayan RNA’lar ile düzenlenmektedir. Bu nedenle bu çalışmada MEG3’ün potansiyel düzenleyici rolünün ve TLR3-MEG3 ilişkisinin belirlenmesi amaçlanmaktadır.
Gereç ve Yöntemler: Bu çalışmada PC-3, LNCaP ve HUVEC hücreleri kullanılmıştır. Poli I:C; bir TLR3 ligandı olarak TLR3 ekspresyonunu uyarmak için kullanılmıştır. Poli I:C' nin toksik olmayan konsantrasyonu WST-1 analizi ile belirlenmiştir. TLR3 ve MEG3'ün relatif gen ekspresyon seviyeleri RT-PCR ile analiz edilmiştir.
Bulgular: Sonuçlara göre, 5 µM Poli I:C TLR3’ü aktive edilmesi için toksik olmayan konsantrasyon olarak seçilmiştir. MEG3 (3.19-, 1.90- ve 1.90-kat) ve TLR3 (6.17-, 5.75- ve 2.27-kat) mRNA seviyelerinin Poli I:C uygulamasından sonra sırasıyla PC-3, LNCaP ve HUVEC hücrelerinde anlamlı bir şekilde arttığı belirlenmiştir (p<0.05). Ayrıca, MEG3'ün mRNA seviyesi, HUVEC hücrelerine kıyasla PC-3 ve LNCaP hücrelerinde sırasıyla 2.33- ve 10.93- kat olarak tespit edilmiştir (p<0.05).
Sonuç: Sonuç olarak, Poli I:C aracılığıyla uyarılan TLR3 sinyal yolunun aktivitesi özellikle kastrasyon dirençli prostat kanseri hücrelerinde, MEG3 ekspresyon seviyesini arttırmıştır. Ön verilerimiz prostat kanserinde MEG3’ün TLR3 sinyal yolağını düzenleyebildiğini göstermektedir.

Project Number

1919B011900829

References

  • 1. Dianat SS, Margreiter M, Eckersberger E, Finkelstein J, Kuehas F, Herwig R, et al. Gene polymorphisms and prostate cancer: the evidence. BJU Int 2009;104:1560-1572.
  • 2. Jemal A, Bray F, Center M M, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Cli 2011;61:69-90.
  • 3. Fu W, Yao J, Huang Y, Li Q, Li W, Chen Z, et al. LXR agonist regulates the carcinogenesis of PCa via the SOCS3 pathway. Cell Physiol Biochem 2014;33:195-204.
  • 4. Arbyn M, Castellsague X, de Sanjose S, Bruni L, Saraiya M, Bray F, et al. Worldwide burden of cervical cancer in 2008. Ann Oncol 2011;22;2675-2686.
  • 5. Chang ET, Boffetta P, Adami HO, Cole P, Mandel JS. A critical review of the epidemiology of Agent Orange/ TCDD and prostate cancer. Eur J Epidemiol 2014;29:667-723.
  • 6. Westdorp H, Skold AE, Snijer BA, Franik S, Mulder SF, Major PP, et al. Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Front Immunol 2014;5:191.
  • 7. Takeda K, Kaisho T, Akira S. Toll-like receptors. Ann Rev Immunol 2003;21:335–76.
  • 8. Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 2013;341(6147):789-92.
  • 9. Zhao S, Zhang Y, Zhang Q, Wang F, Zhang D. Toll-like receptors and prostate cancer. Front Immunol 2014;5:352.
  • 10. Gonzalez-Reyes S, Fernandez JM, Gonzalez LO, Aguirre A, Suárez A, González JM, et al. Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol Immunother 2011;60: 217–26.
  • 11. Harashima N, Inao T, Imamura R, Okano S, Suda T, Harada M. Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother 2012;61(5):667-76.
  • 12. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010;464:1071-1076.
  • 13. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012;9:703-719.
  • 14. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011;477:295-300.
  • 15. Wang Y, Gao S, Liu G, Jia R, Fan D, Feng X. Microarray expression profile analysis of long non-coding RNAs in human gastric cardiac adenocarcinoma. Cell Physiol Biochem 2014;33:1225-1238.
  • 16. Liu H, Song G, Zhou L, Hu X, Liu M, Nie J, et al. Compared analysis of LncRNA expression profiling in PDK1 gene knockout mice at two time points. Cell Physiol Biochem 2013;32;1497-1508.
  • 17. Xu W, Chang J, Du X, Hou J. Long non-coding RNA PCAT-1 contributes to tumorigenesis by regulating FSCN1 via mir-145-5p in prostate cancer. Biomed Pharmacother 2017;95:1112-1118.
  • 18. Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, et al. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS Med 2012;7:e49462.
  • 19. Greife A, Knievel J, Ribarska T, Niegisch G, Schulz WA. Concomitant downregulation of the imprinted genes DLK1 and MEG3 at 14q32.2 by epigenetic mechanisms in urothelial carcinoma. Clin Epigenetics 2014;6:29.
  • 20. Misawa A, Takayama KI, Inoue S. Long non-coding RNAs and prostate cancer. Cancer Sci 2017;108(11):2107-2114.
  • 21. Li J, Zhang Z, Xiong L, Guo C, Jiang T, Zeng L, Li G, Wang J. SNHG1 LncRNA negatively regulates mir199a-3p to enhance CDK7 expression and promote cell proliferation in prostate cancer. Biochem Biophys Res Commun 2017;487:146-152.
  • 22. Wei GH, Wang X. LncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci 2017;21:3850-3856.
  • 23. Luo G, Wang M, Wu X, Tao D, Xiao X, Wang L, et al. Long Non-Coding RNA MEG3 Inhibits Cell Proliferation and Induces Apoptosis in Prostate Cancer. Cell Physiol Biochem 2015;37(6):2209-20.
  • 24.Zhang Y, Wu J, Jing H, Huang G, Sun Z, Xu S. Long noncoding RNA MEG3 inhibits breast cancer growth via upregulating endoplasmic reticulum stress and activating NF-κB and p53. J Cell Biochem 2019;120(4):6789-6797.
  • 25. Wu M, Huang Y, Chen T, Wang W, Yang S, Ye Z, et al. LncRNA MEG3 inhibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis. J Cell Mol Med 2019;23(1):29-38.
  • 26. Sun M, Geng D, Li S, Chen Z, Zhao W. LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem2018;399(4):387-395.
  • 27. El-Shal AS, Matboli M, Abdelaziz AM, Morsy AA, Abdelbary EH. Role of a novel circulatory RNA-based biomarker panel expression in ovarian cancer. IUBMB Life 2019;71(12):2031-2047.
  • 28. Zhou W, Chen X, Hu Q, Chen X, Chen Y, Huang L. Galectin-3 activates TLR4/NF-κB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression. BMC Cancer 2018;18(1):580.
  • 29. Gómez-Gómez E, Jiménez-Vacas JM, Pedraza-Arévalo S. Oncogenic Role of Secreted Engrailed Homeobox 2 (EN2) in Prostate Cancer. J Clin Med 2019;8;(9):1400.
  • 30. Zhou Y, Yang H, Xia W, Cui L, Xu R, Lu H, et al. LncRNA MEG3 inhibits the progression of prostate cancer by facilitating H3K27 trimethylation of EN2 through binding to EZH2. J Biochem 2019;167;(3):295-301.
  • 31. Ding L, Ren J, Zhang D, Li Y, Huang X, Ji J, Hu Q, et al. The TLR3 Agonist Inhibit Drug Efflux and Sequentially Consolidates Low-Dose Cisplatin-Based Chemoimmunotherapy while Reducing Side Effects. Mol Cancer Ther 2017;16(6):1068-1079.
  • 32. Li R, Fang L, Pu Q, Bu H, Zhu P, Chen Z, et al. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 2018;11(536):eaao2387.
  • 33. Tao XW, Zeng LK, Wang HZ, Liu HC. LncRNA MEG3 ameliorates respiratory syncytial virus infection by suppressing TLR4 signaling. Mol Med Rep 2018;17(3):4138-4144.
  • 34. Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 2011;71:(15).
  • 35. Lee D, Oh W, Sartor O. High Androgen Receptor Levels Are Predictive of Decreased Survival in Prostate Cancer. Clin Prostate Cancer 2003;2(1):13–14.
There are 35 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Merve Nur İnce 0000-0003-2884-5542

Asuman Deveci Özkan 0000-0002-3248-4279

Erhan Bezdegümeli 0000-0002-5798-2186

Ahmet Yasir Men 0000-0002-1981-4587

Bilge Nur Küçükakça 0000-0002-7648-3083

Gamze Güney Eskiler 0000-0002-2088-9914

Project Number 1919B011900829
Publication Date September 22, 2021
Submission Date February 4, 2021
Published in Issue Year 2021 Volume: 11 Issue: 3

Cite

AMA İnce MN, Deveci Özkan A, Bezdegümeli E, Men AY, Küçükakça BN, Güney Eskiler G. The Role of MEG3 in the Activation of Toll Like Receptor 3 in Prostate Cancer Cells. Sakarya Tıp Dergisi. September 2021;11(3):625-630. doi:10.31832/smj.874417

30703

The published articles in SMJ are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.