Research Article
BibTex RIS Cite

Numerical Analysis of Heat and Flow Characteristics of Decaying Flow in Different Geometries Created Externally in a Horizontal Pipe

Year 2022, Volume: 12 Issue: 1, 414 - 424, 15.06.2022
https://doi.org/10.31466/kfbd.1085259

Abstract

In this study, a numerical model was designed to examine turbulent flow induced by the use of three different swirl generators (Triangular-Circular-Square) attached at the pipe inlet. In this respect, numerical analyses on a horizontal pipe with a constant heat flux of 1000 W/m2 were done at three different Reynolds numbers: 5000, 10000, and 15000 in the CFD environment. According to the results of the study, the flow through the triangular swirl generator showed the best cooling performance, although it caused relatively high pressure drop. The highest Nusselt number for triangular swirl generator was determined to be approximately 51.88 at 15000 Reynolds numbers.

References

  • Algifri, A.ve ark.,. (1988). Heat transfer in turbulent decaying swirl flow in a circular pipe. International Journal of Heat and Mass Transfer, 31(8), 1563-1568.
  • Aydin, O.ve ark.,. (2014). An experimental study on the decaying swirl flow in a tube. International Communications in Heat and Mass Transfer, 55, 22-28.
  • Bali, T.ve ark.,. (2014). Experimental investigation of decaying swirl flow through a circular pipe for binary combination of vortex generators. International Communications in Heat and Mass Transfer, 53, 174-179.
  • Bergles, A. (1997). Heat transfer enhancement—the encouragement and accommodation of high heat fluxes.
  • Bilen, K.ve ark.,. (2022). Thermo-hydraulic performance of tube with decaying swirl flow generators. Applied thermal engineering, 200, 117643.
  • Chen, B.ve ark.,. (2016). Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe Part 2: Fluid flow. International Journal of Heat and Mass Transfer, 97, 1012-1028.
  • Eiamsa-Ard, S.ve ark.,. (2012). Decaying swirl flow in round tubes with short-length twisted tapes. International Communications in Heat and Mass Transfer, 39(5), 649-656.
  • Farias, N.ve ark.,. (2001). Finite element simulation of mass transfer in laminar swirling decaying flow induced by means of a tangential inlet in an annulus. Computer methods in applied mechanics and engineering, 190(35-36), 4713-4731.
  • Liu, S.ve ark.,. (2013). A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renewable and Sustainable Energy Reviews, 19, 64-81.
  • Saqr, K. M.ve ark.,. (2014). Effects of swirl intensity on heat transfer and entropy generation in turbulent decaying swirl flow. Applied thermal engineering, 70(1), 486-493.
  • Siddique, H.ve ark.,. (2016). Effect of swirl flow on heat transfer characteristics in a circular pipe. Paper presented at the AIP Conference Proceedings.
  • Widmann, J. F.ve ark.,. (2000). Aerodynamic study of a vane-cascade swirl generator. Chemical Engineering Science, 55(22), 5311-5320.
  • Yeşildal, F. (2021). Numerical Optimization of Heat Transfer Parameters in a Pipe with Decaying Swirl Flow Generators Using Response Surface Methodology. International Journal of Innovative Research and Reviews, 5(2), 9-14.
  • Yilmaz, M.ve ark.,. (1999). Enhancement of heat transfer by turbulent decaying swirl flow. Energy conversion and management, 40(13), 1365-1376.
  • Zhang, J.ve ark.,. (2003). Simulation of swirling turbulent flows and heat transfer in an annular duct. Numerical Heat Transfer: Part A: Applications, 44(6), 591-609.

Yatay Bir Boruda Dışarıdan Oluşturulan Farklı Geometrilerdeki Dönel Akışın Isı ve Akış Karakteristiklerinin Sayısal Analizi

Year 2022, Volume: 12 Issue: 1, 414 - 424, 15.06.2022
https://doi.org/10.31466/kfbd.1085259

Abstract

Bu çalışmada, boru girişine bağlı üç farklı girdap üretecinin (Üçgen-Dairesel-Kare) kullanılmasıyla indüklenen türbülanslı akışı incelemek için sayısal bir model tasarlanmıştır. Bu doğrultuda 1000 W/m2 sabit ısı akışına sahip yatay bir boru üzerinde sayısal analizler HAD ortamında 5000, 10000 ve 15000 olmak üzere üç farklı Reynolds sayısında yapılmıştır. Çalışmanın sonuçlarına göre, nispeten yüksek basınç düşüşüne neden olmasına rağmen, üçgen girdap üretecinden geçen akış en iyi soğutma performansını gösterdi. Üçgen girdap üreteci için en yüksek Nusselt sayısı 15000 Reynolds sayısında yaklaşık 51.88 olarak tespit edilmiştir. 

References

  • Algifri, A.ve ark.,. (1988). Heat transfer in turbulent decaying swirl flow in a circular pipe. International Journal of Heat and Mass Transfer, 31(8), 1563-1568.
  • Aydin, O.ve ark.,. (2014). An experimental study on the decaying swirl flow in a tube. International Communications in Heat and Mass Transfer, 55, 22-28.
  • Bali, T.ve ark.,. (2014). Experimental investigation of decaying swirl flow through a circular pipe for binary combination of vortex generators. International Communications in Heat and Mass Transfer, 53, 174-179.
  • Bergles, A. (1997). Heat transfer enhancement—the encouragement and accommodation of high heat fluxes.
  • Bilen, K.ve ark.,. (2022). Thermo-hydraulic performance of tube with decaying swirl flow generators. Applied thermal engineering, 200, 117643.
  • Chen, B.ve ark.,. (2016). Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe Part 2: Fluid flow. International Journal of Heat and Mass Transfer, 97, 1012-1028.
  • Eiamsa-Ard, S.ve ark.,. (2012). Decaying swirl flow in round tubes with short-length twisted tapes. International Communications in Heat and Mass Transfer, 39(5), 649-656.
  • Farias, N.ve ark.,. (2001). Finite element simulation of mass transfer in laminar swirling decaying flow induced by means of a tangential inlet in an annulus. Computer methods in applied mechanics and engineering, 190(35-36), 4713-4731.
  • Liu, S.ve ark.,. (2013). A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renewable and Sustainable Energy Reviews, 19, 64-81.
  • Saqr, K. M.ve ark.,. (2014). Effects of swirl intensity on heat transfer and entropy generation in turbulent decaying swirl flow. Applied thermal engineering, 70(1), 486-493.
  • Siddique, H.ve ark.,. (2016). Effect of swirl flow on heat transfer characteristics in a circular pipe. Paper presented at the AIP Conference Proceedings.
  • Widmann, J. F.ve ark.,. (2000). Aerodynamic study of a vane-cascade swirl generator. Chemical Engineering Science, 55(22), 5311-5320.
  • Yeşildal, F. (2021). Numerical Optimization of Heat Transfer Parameters in a Pipe with Decaying Swirl Flow Generators Using Response Surface Methodology. International Journal of Innovative Research and Reviews, 5(2), 9-14.
  • Yilmaz, M.ve ark.,. (1999). Enhancement of heat transfer by turbulent decaying swirl flow. Energy conversion and management, 40(13), 1365-1376.
  • Zhang, J.ve ark.,. (2003). Simulation of swirling turbulent flows and heat transfer in an annular duct. Numerical Heat Transfer: Part A: Applications, 44(6), 591-609.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ahmet Numan Özakın 0000-0002-2083-8703

İlhan Volkan Öner 0000-0003-3065-0189

Early Pub Date June 15, 2022
Publication Date June 15, 2022
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Özakın, A. N., & Öner, İ. V. (2022). Yatay Bir Boruda Dışarıdan Oluşturulan Farklı Geometrilerdeki Dönel Akışın Isı ve Akış Karakteristiklerinin Sayısal Analizi. Karadeniz Fen Bilimleri Dergisi, 12(1), 414-424. https://doi.org/10.31466/kfbd.1085259