Research Article
BibTex RIS Cite

In Vitro Inhibitory Effects of Some Antiviral, Antidiabetic, and Non-Steroidal Anti-Inflammatory Drug Active Compounds on α-Glucosidase and Myeloperoxidase Activities

Year 2024, Volume: 11 Issue: 2, 691 - 698
https://doi.org/10.18596/jotcsa.1404431

Abstract

In recent decades, interest in enzyme inhibition, such as myeloperoxidase (MPO) and glycosidases, has dramatically increased, mainly because these enzymes play a vital role in many biological processes. Based on the biological potential associated with these enzymes, instead of several glycosidase and myeloperoxidase (MPO) inhibitors that have been developed, there are not enough studies on the inhibition effects of widely used types of antivirals (aciclovir, tenofovir), oral antidiabetics (glibenclamide, glibornuride, glurenorm, met-formin), and non-steroidal anti-inflammatory drugs (NSAIDs) active substances (benzydamine HCl, diclofenac, indomethacin, ketorolac tromethamine, paracetamol, salicylic acid) today. For that reason, the aim of our study is to investigate the inhibition effects of these 12 different drug active substances on α-glucosidase and MPO activities. According to the obtained results, the screened drug active substances acyclovir, glibornuride, and paracetamol inhibited α-glucosidase with the lowest IC50 value, while similarly low values for MPO were found by tenofavir, glurenorm, and indomethacin. In our study, we can suggest that these active pharmaceu-tical ingredients may contribute to the pharmaceutical industry due to their inhibitory effects on α-glucosidase and MPO in vitro.

Ethical Statement

No

Supporting Institution

No

Project Number

No

References

  • 1. Rempel BP, Withers SG. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology [Internet]. 2008 May 14;18(8):570–86. Available from: <URL>.
  • 2. Wolfenden R, Lu X, Young G. Spontaneous Hydrolysis of Glycosides. J Am Chem Soc [Internet]. 1998 Jun 13;120(27):6814–5. Available from: <URL>.
  • 3. Compain P. Multivalent Effect in Glycosidase Inhibition: The End of the Beginning. Chem Rec [Internet]. 2020 Jan 17;20(1):10–22. Available from: <URL>.
  • 4. Gloster TM, Davies GJ. Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem [Internet]. 2010 Dec 23;8(2):305–20. Available from: <URL>.
  • 5. Wadood A, Ghufran M, Khan A, Azam SS, Jelani M, Uddin R. Selective glycosidase inhibitors: A patent review (2012–present). Int J Biol Macromol [Internet]. 2018 May;111:82–91. Available from: <URL>.
  • 6. Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol [Internet]. 2020 May 19;11:528444. Available from: <URL>.
  • 7. Peng Y, Wu X, Zhang S, Deng C, Zhao L, Wang M, et al. The potential roles of type I interferon activated neutrophils and neutrophil extracellular traps (NETs) in the pathogenesis of primary Sjögren’s syndrome. Arthritis Res Ther [Internet]. 2022 Dec 19;24(1):170. Available from: <URL>.
  • 8. Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. Daiber A, editor. Oxid Med Cell Longev [Internet]. 2021 Feb 23;2021:6687096. Available from: <URL>.
  • 9. Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med [Internet]. 2021 Aug 20;172:633–51. Available from: <URL>.
  • 10. Carr AC, Myzak MC, Stocker R, McCall MR, Frei B. Myeloperoxidase binds to low‐density lipoprotein: potential implications for atherosclerosis. FEBS Lett [Internet]. 2000 Dec 29;487(2):176–80. Available from: <URL>.
  • 11. Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest [Internet]. 2004 Aug 16;114(4):529–41. Available from: <URL>.
  • 12. Tiruppathi C, Naqvi T, Wu Y, Vogel SM, Minshall RD, Malik AB. Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci [Internet]. 2004 May 18;101(20):7699–704. Available from: <URL>.
  • 13. Astern JM, Pendergraft WF, Falk RJ, Jennette JC, Schmaier AH, Mahdi F, et al. Myeloperoxidase Interacts with Endothelial Cell-Surface Cytokeratin 1 and Modulates Bradykinin Production by the Plasma Kallikrein-Kinin System. Am J Pathol [Internet]. 2007 Jul 1;171(1):349–60. Available from: <URL>.
  • 14. Bouriche H, Salavei P, Lessig J, Arnhold J. Differential effects of flavonols on inactivation of α1-antitrypsin induced by hypohalous acids and the myeloperoxidase–hydrogen peroxide–halide system. Arch Biochem Biophys [Internet]. 2007 Mar 1;459(1):137–42. Available from: <URL>.
  • 15. Segelmark M, Persson B, Hellmark T, Wieslander J. Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin Exp Immunol [Internet]. 2003 Oct 29;108(1):167–74. Available from: <URL>.
  • 16. Ndrepepa G. Myeloperoxidase – A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta [Internet]. 2019 Jun 1;493:36–51. Available from: <URL>.
  • 17. Wang J, Li J, Cui Z, Zhao M. Deglycosylation influences the oxidation activity and antigenicity of myeloperoxidase. Nephrology [Internet]. 2018 Jan 17;23(1):46–52. Available from: <URL>.
  • 18. Tao Y, Zhang Y, Cheng Y, Wang Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed Chromatogr [Internet]. 2013 Feb 5;27(2):148–55. Available from: <URL>.
  • 19. Wei H, Frenkel K. In Vivo Formation of Oxidized DNA Bases in Tumor Promoter-treated Mouse Skin. Cancer Res [Internet]. 1991;51(16):4443–9. Available from: <URL>.
  • 20. Gloster TM, Davies GJ. Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem [Internet]. 2010;8(2):305–20. Available from: <URL>.
  • 21. Shen Q, Shao J, Peng Q, Zhang W, Ma L, Chan ASC, et al. Hydroxycoumarin Derivatives: Novel and Potent α-Glucosidase Inhibitors. J Med Chem [Internet]. 2010 Dec 9;53(23):8252–9. Available from: <URL>.
  • 22. Nakao Y, Maki T, Matsunaga S, Van Soest RWM, Fusetani N. Penasulfate A, a New α-Glucosidase Inhibitor from a Marine Sponge Penares sp. J Nat Prod [Internet]. 2004 Aug 1;67(8):1346–50. Available from: <URL>.
  • 23. Zhang X, Li G, Wu D, Yu Y, Hu N, Wang H, et al. Emerging strategies for the activity assay and inhibitor screening of alpha-glucosidase. Food Funct [Internet]. 2020 Jan 29;11(1):66–82. Available from: <URL>.
  • 24. Ferjancic Z, Bihelovic F, Vulovic B, Matovic R, Trmcic M, Jankovic A, et al. Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies. J Enzyme Inhib Med Chem [Internet]. 2024 Dec 31;39(1):2289007. Available from: <URL>.
  • 25. Tunalı S, Yaşar Boztaş F, Yanardağ R. The inhibitory effects of plant extracts, vitamins and amino acids on myeloperoxidase activity. İstanbul J Pharm [Internet]. 2020 Aug 30;50(2):125–30. Available from: <URL>.
  • 26. Zhang L, Tu Z cai, Xie X, Wang H, Wang H, Wang Z xing, et al. Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a -glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chem [Internet]. 2017 Nov 1;234:303–13. Available from: <URL>.
  • 27. Park D, Barka GD, Yang EY, Cho MC, Yoon JB, Lee J. Identification of QTLs Controlling α-Glucosidase Inhibitory Activity in Pepper (Capsicum annuum L.) Leaf and Fruit Using Genotyping-by-Sequencing Analysis. Genes (Basel) [Internet]. 2020 Sep 23;11(10):1116. Available from: <URL>.
  • 28. Assefa ST, Yang EY, Chae SY, Song M, Lee J, Cho MC, et al. Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables. Plants [Internet]. 2019 Dec 18;9(1):2. Available from: <URL>.
  • 29. Williams SJ, Goddard-Borger ED. α-glucosidase inhibitors as host-directed antiviral agents with potential for the treatment of COVID-19. Biochem Soc Trans [Internet]. 2020 Jun 30;48(3):1287–95. Available from: <URL>.
  • 30. Rajasekharan S, Milan Bonotto R, Nascimento Alves L, Kazungu Y, Poggianella M, Martinez-Orellana P, et al. Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2. Viruses [Internet]. 2021 Apr 30;13(5):808. Available from: <URL>.
  • 31. Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, et al. Tenofovir-Based Preexposure Prophylaxis for HIV Infection among African Women. N Engl J Med [Internet]. 2015 Feb 5;372(6):509–18. Available from: <URL>.
  • 32. Olojede SO, Lawal SK, Dare A, Naidu ECS, Rennie CO, Azu OO. Evaluation of tenofovir disoproxil fumarate loaded silver nanoparticle on testicular morphology in experimental type-2 diabetic rats. Artif Cells, Nanomedicine, Biotechnol [Internet]. 2022 Dec 31;50(1):71–80. Available from: <URL>.
  • 33. Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother [Internet]. 2019 Dec 12;20(18):2229–35. Available from: <URL>.
  • 34. Mikada A, Narita T, Yokoyama H, Yamashita R, Horikawa Y, Tsukiyama K, et al. Effects of miglitol, sitagliptin, and initial combination therapy with both on plasma incretin responses to a mixed meal and visceral fat in over-weight Japanese patients with type 2 diabetes. “The MASTER randomized, controlled trial.” Diabetes Res Clin Pract [Internet]. 2014 Dec 1;106(3):538–47. Available from: <URL>.
  • 35. Bui TT, Tran VL, Ngo DQ, Tran VC, Tran VS, Tran TPT. Synthesis and evaluation of α-glucosidase inhibitory activity of sulfonylurea derivatives. Zeitschrift für Naturforsch B [Internet]. 2021 Apr 27;76(3–4):163–71. Available from: <URL>.
  • 36. Nessler K, Grzybczak R, Nessler M, Zalewski J, Gajos G, Windak A. Associations between myeloperoxidase and paraoxonase-1 and type 2 diabetes in patients with ischemic heart disease. BMC Cardiovasc Disord [Internet]. 2022 Dec 3;22(1):521. Available from: <URL>.
  • 37. Unubol M, Yavasoglu I, Kacar F, Guney E, Omurlu IK, Ture M, et al. Relationship between glycemic control and histochemical myeloperoxidase activity in neutrophils in patients with type 2 diabetes. Diabetol Metab Syndr [Internet]. 2015 Dec 30;7(1):119. Available from: <URL>.
  • 38. Ozel AB, Dagsuyu E, Aydın PK, Bugan I, Bulan OK, Yanardag R, et al. Brain Boron Level, DNA Content, and Myeloperoxidase Activity of Metformin-Treated Rats in Diabetes and Prostate Cancer Model. Biol Trace Elem Res [Internet]. 2022 Mar 15;200(3):1164–70. Available from: <URL>.
  • 39. Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther [Internet]. 2022 Aug 1;236:108052. Available from: <URL>.
  • 40. Abdel-Azeem AZ, Abdel-Hafez AA, El-Karamany GS, Farag HH. Chlorzoxazone esters of some non-steroidal anti-inflammatory (NSAI) carboxylic acids as mutual prodrugs: Design, synthesis, pharmacological investigations and docking studies. Bioorg Med Chem [Internet]. 2009 May 15;17(10):3665–70. Available from: <URL>.
  • 41. Nève J, Parij N, Moguilevsky N. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs investigated with a human recombinant enzyme. Eur J Pharmacol [Internet]. 2001 Apr 6;417(1–2):37–43. Available from: <URL>.
  • 42. Shacter E, Lopez RL, Pati S. Inhibition of the myeloperoxidase-H2O2-Cl− system of neutrophils by indomethacin and other non-steroidal anti-inflammatory drugs. Biochem Pharmacol [Internet]. 1991 Mar 15;41(6–7):975–84. Available from: <URL>.
  • 43. Zuurbier KWM, Bakkenist ARJ, Fokkens RH, Nibbering NMM, Wever R, Muijsers AO. Interaction of myeloperoxidase with diclofenac. Biochem Pharmacol [Internet]. 1990 Oct 15;40(8):1801–8. Available from: <URL>.
Year 2024, Volume: 11 Issue: 2, 691 - 698
https://doi.org/10.18596/jotcsa.1404431

Abstract

Project Number

No

References

  • 1. Rempel BP, Withers SG. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology [Internet]. 2008 May 14;18(8):570–86. Available from: <URL>.
  • 2. Wolfenden R, Lu X, Young G. Spontaneous Hydrolysis of Glycosides. J Am Chem Soc [Internet]. 1998 Jun 13;120(27):6814–5. Available from: <URL>.
  • 3. Compain P. Multivalent Effect in Glycosidase Inhibition: The End of the Beginning. Chem Rec [Internet]. 2020 Jan 17;20(1):10–22. Available from: <URL>.
  • 4. Gloster TM, Davies GJ. Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem [Internet]. 2010 Dec 23;8(2):305–20. Available from: <URL>.
  • 5. Wadood A, Ghufran M, Khan A, Azam SS, Jelani M, Uddin R. Selective glycosidase inhibitors: A patent review (2012–present). Int J Biol Macromol [Internet]. 2018 May;111:82–91. Available from: <URL>.
  • 6. Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol [Internet]. 2020 May 19;11:528444. Available from: <URL>.
  • 7. Peng Y, Wu X, Zhang S, Deng C, Zhao L, Wang M, et al. The potential roles of type I interferon activated neutrophils and neutrophil extracellular traps (NETs) in the pathogenesis of primary Sjögren’s syndrome. Arthritis Res Ther [Internet]. 2022 Dec 19;24(1):170. Available from: <URL>.
  • 8. Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. Daiber A, editor. Oxid Med Cell Longev [Internet]. 2021 Feb 23;2021:6687096. Available from: <URL>.
  • 9. Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med [Internet]. 2021 Aug 20;172:633–51. Available from: <URL>.
  • 10. Carr AC, Myzak MC, Stocker R, McCall MR, Frei B. Myeloperoxidase binds to low‐density lipoprotein: potential implications for atherosclerosis. FEBS Lett [Internet]. 2000 Dec 29;487(2):176–80. Available from: <URL>.
  • 11. Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest [Internet]. 2004 Aug 16;114(4):529–41. Available from: <URL>.
  • 12. Tiruppathi C, Naqvi T, Wu Y, Vogel SM, Minshall RD, Malik AB. Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci [Internet]. 2004 May 18;101(20):7699–704. Available from: <URL>.
  • 13. Astern JM, Pendergraft WF, Falk RJ, Jennette JC, Schmaier AH, Mahdi F, et al. Myeloperoxidase Interacts with Endothelial Cell-Surface Cytokeratin 1 and Modulates Bradykinin Production by the Plasma Kallikrein-Kinin System. Am J Pathol [Internet]. 2007 Jul 1;171(1):349–60. Available from: <URL>.
  • 14. Bouriche H, Salavei P, Lessig J, Arnhold J. Differential effects of flavonols on inactivation of α1-antitrypsin induced by hypohalous acids and the myeloperoxidase–hydrogen peroxide–halide system. Arch Biochem Biophys [Internet]. 2007 Mar 1;459(1):137–42. Available from: <URL>.
  • 15. Segelmark M, Persson B, Hellmark T, Wieslander J. Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin Exp Immunol [Internet]. 2003 Oct 29;108(1):167–74. Available from: <URL>.
  • 16. Ndrepepa G. Myeloperoxidase – A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta [Internet]. 2019 Jun 1;493:36–51. Available from: <URL>.
  • 17. Wang J, Li J, Cui Z, Zhao M. Deglycosylation influences the oxidation activity and antigenicity of myeloperoxidase. Nephrology [Internet]. 2018 Jan 17;23(1):46–52. Available from: <URL>.
  • 18. Tao Y, Zhang Y, Cheng Y, Wang Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed Chromatogr [Internet]. 2013 Feb 5;27(2):148–55. Available from: <URL>.
  • 19. Wei H, Frenkel K. In Vivo Formation of Oxidized DNA Bases in Tumor Promoter-treated Mouse Skin. Cancer Res [Internet]. 1991;51(16):4443–9. Available from: <URL>.
  • 20. Gloster TM, Davies GJ. Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem [Internet]. 2010;8(2):305–20. Available from: <URL>.
  • 21. Shen Q, Shao J, Peng Q, Zhang W, Ma L, Chan ASC, et al. Hydroxycoumarin Derivatives: Novel and Potent α-Glucosidase Inhibitors. J Med Chem [Internet]. 2010 Dec 9;53(23):8252–9. Available from: <URL>.
  • 22. Nakao Y, Maki T, Matsunaga S, Van Soest RWM, Fusetani N. Penasulfate A, a New α-Glucosidase Inhibitor from a Marine Sponge Penares sp. J Nat Prod [Internet]. 2004 Aug 1;67(8):1346–50. Available from: <URL>.
  • 23. Zhang X, Li G, Wu D, Yu Y, Hu N, Wang H, et al. Emerging strategies for the activity assay and inhibitor screening of alpha-glucosidase. Food Funct [Internet]. 2020 Jan 29;11(1):66–82. Available from: <URL>.
  • 24. Ferjancic Z, Bihelovic F, Vulovic B, Matovic R, Trmcic M, Jankovic A, et al. Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies. J Enzyme Inhib Med Chem [Internet]. 2024 Dec 31;39(1):2289007. Available from: <URL>.
  • 25. Tunalı S, Yaşar Boztaş F, Yanardağ R. The inhibitory effects of plant extracts, vitamins and amino acids on myeloperoxidase activity. İstanbul J Pharm [Internet]. 2020 Aug 30;50(2):125–30. Available from: <URL>.
  • 26. Zhang L, Tu Z cai, Xie X, Wang H, Wang H, Wang Z xing, et al. Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a -glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chem [Internet]. 2017 Nov 1;234:303–13. Available from: <URL>.
  • 27. Park D, Barka GD, Yang EY, Cho MC, Yoon JB, Lee J. Identification of QTLs Controlling α-Glucosidase Inhibitory Activity in Pepper (Capsicum annuum L.) Leaf and Fruit Using Genotyping-by-Sequencing Analysis. Genes (Basel) [Internet]. 2020 Sep 23;11(10):1116. Available from: <URL>.
  • 28. Assefa ST, Yang EY, Chae SY, Song M, Lee J, Cho MC, et al. Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables. Plants [Internet]. 2019 Dec 18;9(1):2. Available from: <URL>.
  • 29. Williams SJ, Goddard-Borger ED. α-glucosidase inhibitors as host-directed antiviral agents with potential for the treatment of COVID-19. Biochem Soc Trans [Internet]. 2020 Jun 30;48(3):1287–95. Available from: <URL>.
  • 30. Rajasekharan S, Milan Bonotto R, Nascimento Alves L, Kazungu Y, Poggianella M, Martinez-Orellana P, et al. Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2. Viruses [Internet]. 2021 Apr 30;13(5):808. Available from: <URL>.
  • 31. Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, et al. Tenofovir-Based Preexposure Prophylaxis for HIV Infection among African Women. N Engl J Med [Internet]. 2015 Feb 5;372(6):509–18. Available from: <URL>.
  • 32. Olojede SO, Lawal SK, Dare A, Naidu ECS, Rennie CO, Azu OO. Evaluation of tenofovir disoproxil fumarate loaded silver nanoparticle on testicular morphology in experimental type-2 diabetic rats. Artif Cells, Nanomedicine, Biotechnol [Internet]. 2022 Dec 31;50(1):71–80. Available from: <URL>.
  • 33. Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother [Internet]. 2019 Dec 12;20(18):2229–35. Available from: <URL>.
  • 34. Mikada A, Narita T, Yokoyama H, Yamashita R, Horikawa Y, Tsukiyama K, et al. Effects of miglitol, sitagliptin, and initial combination therapy with both on plasma incretin responses to a mixed meal and visceral fat in over-weight Japanese patients with type 2 diabetes. “The MASTER randomized, controlled trial.” Diabetes Res Clin Pract [Internet]. 2014 Dec 1;106(3):538–47. Available from: <URL>.
  • 35. Bui TT, Tran VL, Ngo DQ, Tran VC, Tran VS, Tran TPT. Synthesis and evaluation of α-glucosidase inhibitory activity of sulfonylurea derivatives. Zeitschrift für Naturforsch B [Internet]. 2021 Apr 27;76(3–4):163–71. Available from: <URL>.
  • 36. Nessler K, Grzybczak R, Nessler M, Zalewski J, Gajos G, Windak A. Associations between myeloperoxidase and paraoxonase-1 and type 2 diabetes in patients with ischemic heart disease. BMC Cardiovasc Disord [Internet]. 2022 Dec 3;22(1):521. Available from: <URL>.
  • 37. Unubol M, Yavasoglu I, Kacar F, Guney E, Omurlu IK, Ture M, et al. Relationship between glycemic control and histochemical myeloperoxidase activity in neutrophils in patients with type 2 diabetes. Diabetol Metab Syndr [Internet]. 2015 Dec 30;7(1):119. Available from: <URL>.
  • 38. Ozel AB, Dagsuyu E, Aydın PK, Bugan I, Bulan OK, Yanardag R, et al. Brain Boron Level, DNA Content, and Myeloperoxidase Activity of Metformin-Treated Rats in Diabetes and Prostate Cancer Model. Biol Trace Elem Res [Internet]. 2022 Mar 15;200(3):1164–70. Available from: <URL>.
  • 39. Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther [Internet]. 2022 Aug 1;236:108052. Available from: <URL>.
  • 40. Abdel-Azeem AZ, Abdel-Hafez AA, El-Karamany GS, Farag HH. Chlorzoxazone esters of some non-steroidal anti-inflammatory (NSAI) carboxylic acids as mutual prodrugs: Design, synthesis, pharmacological investigations and docking studies. Bioorg Med Chem [Internet]. 2009 May 15;17(10):3665–70. Available from: <URL>.
  • 41. Nève J, Parij N, Moguilevsky N. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs investigated with a human recombinant enzyme. Eur J Pharmacol [Internet]. 2001 Apr 6;417(1–2):37–43. Available from: <URL>.
  • 42. Shacter E, Lopez RL, Pati S. Inhibition of the myeloperoxidase-H2O2-Cl− system of neutrophils by indomethacin and other non-steroidal anti-inflammatory drugs. Biochem Pharmacol [Internet]. 1991 Mar 15;41(6–7):975–84. Available from: <URL>.
  • 43. Zuurbier KWM, Bakkenist ARJ, Fokkens RH, Nibbering NMM, Wever R, Muijsers AO. Interaction of myeloperoxidase with diclofenac. Biochem Pharmacol [Internet]. 1990 Oct 15;40(8):1801–8. Available from: <URL>.
There are 43 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section RESEARCH ARTICLES
Authors

Fatma Yaşar Boztaş 0000-0002-9538-8030

Sevim Tunalı 0000-0003-3363-1290

Project Number No
Publication Date
Submission Date December 13, 2023
Acceptance Date February 5, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

Vancouver Yaşar Boztaş F, Tunalı S. In Vitro Inhibitory Effects of Some Antiviral, Antidiabetic, and Non-Steroidal Anti-Inflammatory Drug Active Compounds on α-Glucosidase and Myeloperoxidase Activities. JOTCSA. 11(2):691-8.