Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 1, 103 - 114, 07.06.2024
https://doi.org/10.38088/jise.1411497

Abstract

Project Number

210D005

References

  • [1] Nguyen, T.; Montemor, M. F. (2017). Redox active materials for metal compound based hybrid electrochemical energy storage: a perspective view, Applied Surface Science, Vol. 422, 492–497. doi:10.1016/j.apsusc.2017.06.008
  • [2] Lee, S.; Hong, J.; Kang, K. (2020). Redox-Active Organic Compounds for Future Sustainable Energy Storage System, Advanced Energy Materials, Vol. 10, No. 30, 2001445. doi:10.1002/aenm.202001445
  • [3] Hernández, G.; Işik, M.; Mantione, D.; Pendashteh, A.; Navalpotro, P.; Shanmukaraj, D.; Marcilla, R.; Mecerreyes, D. (2017). Redox-active poly(ionic liquid)s as active materials for energy storage applications, Journal of Materials Chemistry A, Vol. 5, No. 31, 16231–16240. doi:10.1039/C6TA10056B
  • [4] Burgess, M.; Moore, J. S.; Rodríguez-López, J. (2016). Redox Active Polymers as Soluble Nanomaterials for Energy Storage, Accounts of Chemical Research, Vol. 49, No. 11, 2649–2657. doi:10.1021/acs.accounts.6b00341
  • [5] Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. (2017). Redox-Flow Batteries: From Metals to Organic Redox-Active Materials, Angewandte Chemie International Edition, Vol. 56, No. 3, 686–711. doi:10.1002/anie.201604925
  • [6] Lai, Y. Y.; Li, X.; Zhu, Y. (2020). Polymeric Active Materials for Redox Flow Battery Application, ACS Applied Polymer Materials, Vol. 2, No. 2, 113–128. doi:10.1021/acsapm.9b00864
  • [7] Jayeoye, T. J.; Eze, F. N.; Singh, S.; Olatunde, O. O.; Benjakul, S.; Rujiralai, T. (2021). Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications, International Journal of Biological Macromolecules, Vol. 179, 196–205. doi:10.1016/j.ijbiomac.2021.02.199
  • [8] Recksiedler, C. L.; Deore, B. A.; Freund, M. S. (2005). Substitution and Condensation Reactions with Poly(anilineboronic acid):  Reactivity and Characterization of Thin Films, Langmuir, Vol. 21, No. 8, 3670–3674. doi:10.1021/la047195z
  • [9] Huang, F.; Zhu, B.; Zhang, H.; Gao, Y.; Ding, C.; Tan, H.; Li, J. (2019). A glassy carbon electrode modified with molecularly imprinted poly(aniline boronic acid) coated onto carbon nanotubes for potentiometric sensing of sialic acid, Microchimica Acta, Vol. 186, No. 5, 270. doi:10.1007/s00604-019-3387-8
  • [10] Moraes, I. R.; Kalbáč, M.; Dmitrieva, E.; Dunsch, L. (2011). Charging of Self-Doped Poly(Anilineboronic Acid) Films Studied by in Situ ESR/UV/Vis/NIR Spectroelectrochemistry and ex Situ FTIR Spectroscopy, ChemPhysChem, Vol. 12, No. 16, 2920–2924. doi:10.1002/cphc.201100567
  • [11] Deore, B.; Freund, M. S. (2003). Saccharide imprinting of poly(aniline boronic acid) in the presence of fluoride, Analyst, Vol. 128, No. 6, 803–806. doi:10.1039/B300629H
  • [12] Deore, B. A.; Hachey, S.; Freund, M. S. (2004). Electroactivity of Electrochemically Synthesized Poly(Aniline Boronic Acid) as a Function of pH: Role of Self-Doping, Chemistry of Materials, Vol. 16, No. 8, 1427–1432. doi:10.1021/cm035296x
  • [13] Kalkan, Z.; Yence, M.; Turk, F.; Bektas, T. U.; Ozturk, S.; Surdem, S.; Yildirim-Tirgil, N. (2022). Boronic Acid Substituted Polyaniline Based Enzymatic Biosensor System for Catechol Detection, Electroanalysis, Vol. 34, No. 1, 33–42. doi:10.1002/elan.202100271 [14] Yu, I.; Deore, B. A.; Recksiedler, C. L.; Corkery, T. C.; Abd-El-Aziz, A. S.; Freund, M. S. (2005). Thermal Stability of High Molecular Weight Self-Doped Poly(anilineboronic acid), Macromolecules, Vol. 38, No. 24, 10022–10026. doi:10.1021/ma0513158
  • [15] Zhou, Y.; Dong, H.; Liu, L.; Liu, J.; Xu, M. (2014). A novel potentiometric sensor based on a poly(anilineboronic acid)/graphene modified electrode for probing sialic acid through boronic acid-diol recognition, Biosensors and Bioelectronics, Vol. 60, 231–236. doi:10.1016/j.bios.2014.04.012
  • [16] Li, G.; Li, Y.; Peng, H.; Chen, K. (2011). Synthesis of Poly(anilineboronic acid) Nanofibers for Electrochemical Detection of Glucose, Macromolecular Rapid Communications, Vol. 32, No. 15, 1195–1199. doi:10.1002/marc.201100232
  • [17] Li, J.; Zhang, N.; Sun, Q.; Bai, Z.; Zheng, J. (2016). Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element, Talanta, Vol. 159, 379–386. doi:10.1016/j.talanta.2016.06.048
  • [18] Deore, B. A.; Freund, M. S. (2009). Self-Doped Polyaniline Nanoparticle Dispersions Based on Boronic Acid−Phosphate Complexation, Macromolecules, Vol. 42, No. 1, 164–168. doi:10.1021/ma8020344
  • [19] Shoji, E.; Freund, M. S. (2002). Potentiometric Saccharide Detection Based on the pKa Changes of Poly(aniline boronic acid), Journal of the American Chemical Society, Vol. 124, No. 42, 12486–12493. doi:10.1021/ja0267371
  • [20] Gu, L.; Jiang, X.; Liang, Y.; Zhou, T.; Shi, G. (2013). Double recognition of dopamine based on a boronic acid functionalized poly(aniline-co-anthranilic acid)–molecularly imprinted polymer composite, Analyst, Vol. 138, No. 18, 5461–5469. doi:10.1039/C3AN00845B
  • [21] Li, J.; Liu, L.; Wang, P.; Zheng, J. (2014). Potentiometric Detection of Saccharides Based on Highly Ordered Poly(aniline boronic acid) Nanotubes, Electrochimica Acta, Vol. 121, 369–375. doi:10.1016/j.electacta.2013.12.162
  • [22] Ma, Y.; Li, N.; Yang, C.; Yang, X. (2005). One-step synthesis of water-soluble gold nanoparticles/polyaniline composite and its application in glucose sensing, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 269, No. 1, 1–6. doi:10.1016/j.colsurfa.2005.04.030
  • [23] Gumus, O. Y.; Ozkan, S.; Unal, H. I. (2016). A Comparative Study on Electrokinetic Properties of Boronic Acid Derivative Polymers in Aqueous and Nonaqueous Media, Macromolecular Chemistry and Physics, Vol. 217, No. 12, 1411–1421. doi:10.1002/macp.201500524
  • [24] Zhou, W.; Yao, N.; Yao, G.; Deng, C.; Zhang, X.; Yang, P. (2008). Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins, Chemical Communications, No. 43, 5577–5579. doi:10.1039/B808800D
  • [25] Winsberg, J.; Benndorf, S.; Wild, A.; Hager, M. D.; Schubert, U. S. (2018). Synthesis and Characterization of a Phthalimide-Containing Redox-Active Polymer for High-Voltage Polymer-Based Redox-Flow Batteries, Macromolecular Chemistry and Physics, Vol. 219, No. 4, 1700267. doi:10.1002/macp.201700267
  • [26] Patil, R. C.; Patil, S. F.; Mulla, I. S.; Vijayamohanan, K. (2000). Effect of protonation media on chemically and electrochemically synthesized polyaniline, Polymer International, Vol. 49, No. 2, 189–196. doi:10.1002/(SICI)1097-0126(200002)49:2<189::AID-PI325>3.0.CO;2-9
  • [27] Komkova, M. A.; Valeev, R. G.; Kolyagin, Y. G.; Andreev, E. A.; Beltukov, A. N.; Nikitina, V. N.; Yatsimirsky, A. K.; Karyakin, A. A.; Eliseev, A. A. (2022). Solid-state survey of boronate-substituted polyaniline: on the mechanism of conductivity, electroactivity, and interactions with polyols, Materials Today Chemistry, Vol. 26, 101070. doi:10.1016/j.mtchem.2022.101070
  • [28] Aytaç, S.; Kuralay, F.; Boyacı, İ. H.; Unaleroglu, C. (2011). A novel polypyrrole–phenylboronic acid based electrochemical saccharide sensor, Sensors and Actuators B: Chemical, Vol. 160, No. 1, 405–411. doi:10.1016/j.snb.2011.07.069
  • [29] Brooks, W. L. A.; Sumerlin, B. S. (2016). Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine, Chemical Reviews, Vol. 116, No. 3, 1375–1397. doi:10.1021/acs.chemrev.5b00300

Redox Properties of Poly (aniline boronic acid) in Aqueous Environment with Glucose and Table Sugar Addition

Year 2024, Volume: 8 Issue: 1, 103 - 114, 07.06.2024
https://doi.org/10.38088/jise.1411497

Abstract

Polyaniline boronic acid, a conducting polymer with unique properties, has gained attention for its potential applications in batteries, sensors, drug delivery systems, and electrochemical devices. Understanding the redox behavior of this polymer in the presence of sugars is of particular interest due to the potential implications for its functionality in various applications. Cyclic voltammetry is employed to analyze the redox behavior of the polymer in aqueous solutions with glucose and table sugar. Preliminary results suggest that the presence of glucose improves, and table sugar declines the peak values. The diffusion coefficient of the polymer is found as 2.6x10-9 cm2/s. The choice of supporting electrolyte, exemplified by potassium carbonate and potassium chloride, also exhibited an influence on redox behavior of polyaniline boronic acid, and peak potential and peak values are higher in potassium chloride solutions.

Ethical Statement

This article has been submitted by the authors as an original work and has not been published or evaluated elsewhere. It has been prepared in accordance with all relevant ethical and publication guidelines. The authors have disclosed any potential conflicts of interest during the research process and declared any financial or personal connections related to the content of the article. Taha Yasin EKEN Corresponding Author

Supporting Institution

Bursa Technical University

Project Number

210D005

Thanks

This research was facilitated through the support of project code 210D005 from the Bursa Technical University Coordinatorship of Scientific Research Projects. The authors express their appreciation and gratitude.

References

  • [1] Nguyen, T.; Montemor, M. F. (2017). Redox active materials for metal compound based hybrid electrochemical energy storage: a perspective view, Applied Surface Science, Vol. 422, 492–497. doi:10.1016/j.apsusc.2017.06.008
  • [2] Lee, S.; Hong, J.; Kang, K. (2020). Redox-Active Organic Compounds for Future Sustainable Energy Storage System, Advanced Energy Materials, Vol. 10, No. 30, 2001445. doi:10.1002/aenm.202001445
  • [3] Hernández, G.; Işik, M.; Mantione, D.; Pendashteh, A.; Navalpotro, P.; Shanmukaraj, D.; Marcilla, R.; Mecerreyes, D. (2017). Redox-active poly(ionic liquid)s as active materials for energy storage applications, Journal of Materials Chemistry A, Vol. 5, No. 31, 16231–16240. doi:10.1039/C6TA10056B
  • [4] Burgess, M.; Moore, J. S.; Rodríguez-López, J. (2016). Redox Active Polymers as Soluble Nanomaterials for Energy Storage, Accounts of Chemical Research, Vol. 49, No. 11, 2649–2657. doi:10.1021/acs.accounts.6b00341
  • [5] Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. (2017). Redox-Flow Batteries: From Metals to Organic Redox-Active Materials, Angewandte Chemie International Edition, Vol. 56, No. 3, 686–711. doi:10.1002/anie.201604925
  • [6] Lai, Y. Y.; Li, X.; Zhu, Y. (2020). Polymeric Active Materials for Redox Flow Battery Application, ACS Applied Polymer Materials, Vol. 2, No. 2, 113–128. doi:10.1021/acsapm.9b00864
  • [7] Jayeoye, T. J.; Eze, F. N.; Singh, S.; Olatunde, O. O.; Benjakul, S.; Rujiralai, T. (2021). Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications, International Journal of Biological Macromolecules, Vol. 179, 196–205. doi:10.1016/j.ijbiomac.2021.02.199
  • [8] Recksiedler, C. L.; Deore, B. A.; Freund, M. S. (2005). Substitution and Condensation Reactions with Poly(anilineboronic acid):  Reactivity and Characterization of Thin Films, Langmuir, Vol. 21, No. 8, 3670–3674. doi:10.1021/la047195z
  • [9] Huang, F.; Zhu, B.; Zhang, H.; Gao, Y.; Ding, C.; Tan, H.; Li, J. (2019). A glassy carbon electrode modified with molecularly imprinted poly(aniline boronic acid) coated onto carbon nanotubes for potentiometric sensing of sialic acid, Microchimica Acta, Vol. 186, No. 5, 270. doi:10.1007/s00604-019-3387-8
  • [10] Moraes, I. R.; Kalbáč, M.; Dmitrieva, E.; Dunsch, L. (2011). Charging of Self-Doped Poly(Anilineboronic Acid) Films Studied by in Situ ESR/UV/Vis/NIR Spectroelectrochemistry and ex Situ FTIR Spectroscopy, ChemPhysChem, Vol. 12, No. 16, 2920–2924. doi:10.1002/cphc.201100567
  • [11] Deore, B.; Freund, M. S. (2003). Saccharide imprinting of poly(aniline boronic acid) in the presence of fluoride, Analyst, Vol. 128, No. 6, 803–806. doi:10.1039/B300629H
  • [12] Deore, B. A.; Hachey, S.; Freund, M. S. (2004). Electroactivity of Electrochemically Synthesized Poly(Aniline Boronic Acid) as a Function of pH: Role of Self-Doping, Chemistry of Materials, Vol. 16, No. 8, 1427–1432. doi:10.1021/cm035296x
  • [13] Kalkan, Z.; Yence, M.; Turk, F.; Bektas, T. U.; Ozturk, S.; Surdem, S.; Yildirim-Tirgil, N. (2022). Boronic Acid Substituted Polyaniline Based Enzymatic Biosensor System for Catechol Detection, Electroanalysis, Vol. 34, No. 1, 33–42. doi:10.1002/elan.202100271 [14] Yu, I.; Deore, B. A.; Recksiedler, C. L.; Corkery, T. C.; Abd-El-Aziz, A. S.; Freund, M. S. (2005). Thermal Stability of High Molecular Weight Self-Doped Poly(anilineboronic acid), Macromolecules, Vol. 38, No. 24, 10022–10026. doi:10.1021/ma0513158
  • [15] Zhou, Y.; Dong, H.; Liu, L.; Liu, J.; Xu, M. (2014). A novel potentiometric sensor based on a poly(anilineboronic acid)/graphene modified electrode for probing sialic acid through boronic acid-diol recognition, Biosensors and Bioelectronics, Vol. 60, 231–236. doi:10.1016/j.bios.2014.04.012
  • [16] Li, G.; Li, Y.; Peng, H.; Chen, K. (2011). Synthesis of Poly(anilineboronic acid) Nanofibers for Electrochemical Detection of Glucose, Macromolecular Rapid Communications, Vol. 32, No. 15, 1195–1199. doi:10.1002/marc.201100232
  • [17] Li, J.; Zhang, N.; Sun, Q.; Bai, Z.; Zheng, J. (2016). Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element, Talanta, Vol. 159, 379–386. doi:10.1016/j.talanta.2016.06.048
  • [18] Deore, B. A.; Freund, M. S. (2009). Self-Doped Polyaniline Nanoparticle Dispersions Based on Boronic Acid−Phosphate Complexation, Macromolecules, Vol. 42, No. 1, 164–168. doi:10.1021/ma8020344
  • [19] Shoji, E.; Freund, M. S. (2002). Potentiometric Saccharide Detection Based on the pKa Changes of Poly(aniline boronic acid), Journal of the American Chemical Society, Vol. 124, No. 42, 12486–12493. doi:10.1021/ja0267371
  • [20] Gu, L.; Jiang, X.; Liang, Y.; Zhou, T.; Shi, G. (2013). Double recognition of dopamine based on a boronic acid functionalized poly(aniline-co-anthranilic acid)–molecularly imprinted polymer composite, Analyst, Vol. 138, No. 18, 5461–5469. doi:10.1039/C3AN00845B
  • [21] Li, J.; Liu, L.; Wang, P.; Zheng, J. (2014). Potentiometric Detection of Saccharides Based on Highly Ordered Poly(aniline boronic acid) Nanotubes, Electrochimica Acta, Vol. 121, 369–375. doi:10.1016/j.electacta.2013.12.162
  • [22] Ma, Y.; Li, N.; Yang, C.; Yang, X. (2005). One-step synthesis of water-soluble gold nanoparticles/polyaniline composite and its application in glucose sensing, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 269, No. 1, 1–6. doi:10.1016/j.colsurfa.2005.04.030
  • [23] Gumus, O. Y.; Ozkan, S.; Unal, H. I. (2016). A Comparative Study on Electrokinetic Properties of Boronic Acid Derivative Polymers in Aqueous and Nonaqueous Media, Macromolecular Chemistry and Physics, Vol. 217, No. 12, 1411–1421. doi:10.1002/macp.201500524
  • [24] Zhou, W.; Yao, N.; Yao, G.; Deng, C.; Zhang, X.; Yang, P. (2008). Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins, Chemical Communications, No. 43, 5577–5579. doi:10.1039/B808800D
  • [25] Winsberg, J.; Benndorf, S.; Wild, A.; Hager, M. D.; Schubert, U. S. (2018). Synthesis and Characterization of a Phthalimide-Containing Redox-Active Polymer for High-Voltage Polymer-Based Redox-Flow Batteries, Macromolecular Chemistry and Physics, Vol. 219, No. 4, 1700267. doi:10.1002/macp.201700267
  • [26] Patil, R. C.; Patil, S. F.; Mulla, I. S.; Vijayamohanan, K. (2000). Effect of protonation media on chemically and electrochemically synthesized polyaniline, Polymer International, Vol. 49, No. 2, 189–196. doi:10.1002/(SICI)1097-0126(200002)49:2<189::AID-PI325>3.0.CO;2-9
  • [27] Komkova, M. A.; Valeev, R. G.; Kolyagin, Y. G.; Andreev, E. A.; Beltukov, A. N.; Nikitina, V. N.; Yatsimirsky, A. K.; Karyakin, A. A.; Eliseev, A. A. (2022). Solid-state survey of boronate-substituted polyaniline: on the mechanism of conductivity, electroactivity, and interactions with polyols, Materials Today Chemistry, Vol. 26, 101070. doi:10.1016/j.mtchem.2022.101070
  • [28] Aytaç, S.; Kuralay, F.; Boyacı, İ. H.; Unaleroglu, C. (2011). A novel polypyrrole–phenylboronic acid based electrochemical saccharide sensor, Sensors and Actuators B: Chemical, Vol. 160, No. 1, 405–411. doi:10.1016/j.snb.2011.07.069
  • [29] Brooks, W. L. A.; Sumerlin, B. S. (2016). Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine, Chemical Reviews, Vol. 116, No. 3, 1375–1397. doi:10.1021/acs.chemrev.5b00300
There are 28 citations in total.

Details

Primary Language English
Subjects Electrochemical Energy Storage and Conversion, Materials Science and Technologies, Polymer Technologies
Journal Section Research Articles
Authors

Taha Yasin Eken 0000-0001-6693-8091

Ömer Yunus Gümüş 0000-0002-3361-6528

Deniz Uzunsoy 0000-0002-2515-7624

Project Number 210D005
Early Pub Date June 7, 2024
Publication Date June 7, 2024
Submission Date December 29, 2023
Acceptance Date March 29, 2024
Published in Issue Year 2024Volume: 8 Issue: 1

Cite

APA Eken, T. Y., Gümüş, Ö. Y., & Uzunsoy, D. (2024). Redox Properties of Poly (aniline boronic acid) in Aqueous Environment with Glucose and Table Sugar Addition. Journal of Innovative Science and Engineering, 8(1), 103-114. https://doi.org/10.38088/jise.1411497
AMA Eken TY, Gümüş ÖY, Uzunsoy D. Redox Properties of Poly (aniline boronic acid) in Aqueous Environment with Glucose and Table Sugar Addition. JISE. June 2024;8(1):103-114. doi:10.38088/jise.1411497
Chicago Eken, Taha Yasin, Ömer Yunus Gümüş, and Deniz Uzunsoy. “Redox Properties of Poly (aniline Boronic Acid) in Aqueous Environment With Glucose and Table Sugar Addition”. Journal of Innovative Science and Engineering 8, no. 1 (June 2024): 103-14. https://doi.org/10.38088/jise.1411497.
EndNote Eken TY, Gümüş ÖY, Uzunsoy D (June 1, 2024) Redox Properties of Poly (aniline boronic acid) in Aqueous Environment with Glucose and Table Sugar Addition. Journal of Innovative Science and Engineering 8 1 103–114.
IEEE T. Y. Eken, Ö. Y. Gümüş, and D. Uzunsoy, “Redox Properties of Poly (aniline boronic acid) in Aqueous Environment with Glucose and Table Sugar Addition”, JISE, vol. 8, no. 1, pp. 103–114, 2024, doi: 10.38088/jise.1411497.
ISNAD Eken, Taha Yasin et al. “Redox Properties of Poly (aniline Boronic Acid) in Aqueous Environment With Glucose and Table Sugar Addition”. Journal of Innovative Science and Engineering 8/1 (June 2024), 103-114. https://doi.org/10.38088/jise.1411497.
JAMA Eken TY, Gümüş ÖY, Uzunsoy D. Redox Properties of Poly (aniline boronic acid) in Aqueous Environment with Glucose and Table Sugar Addition. JISE. 2024;8:103–114.
MLA Eken, Taha Yasin et al. “Redox Properties of Poly (aniline Boronic Acid) in Aqueous Environment With Glucose and Table Sugar Addition”. Journal of Innovative Science and Engineering, vol. 8, no. 1, 2024, pp. 103-14, doi:10.38088/jise.1411497.
Vancouver Eken TY, Gümüş ÖY, Uzunsoy D. Redox Properties of Poly (aniline boronic acid) in Aqueous Environment with Glucose and Table Sugar Addition. JISE. 2024;8(1):103-14.


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.