Review
PDF Zotero Mendeley EndNote BibTex Cite

Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review

Year 2021, Volume 5, Issue 1, 64 - 75, 30.06.2021
https://doi.org/10.38088/jise.782314

Abstract

Pervaporative desalination is an efficacious method to obtain fresh water from saline water sources. High salt rejection and capacity to cope with high-salt concentration water solutions are important advantages of pervaporation process. To improve pervaporative desalination performance, researches concentrate on novel membrane types. Water stable metal organic frameworks loaded membranes attract substantial attention among novelty membrane applications. This study focuses on pervaporative desalination with MOF loaded polymeric membrane. First of all, the features of MOFs, synthesis methods, usage areas are explained. Then, MOFs loaded mixed matrix membranes, production methods, used MOF types in membranes and applications in pervaporative desalination are examined. At the end of the study, future expectation on the desalination applications of MOF loaded membranes are presented as concluding remarks. Metal organic framework loaded polymeric membranes are seen as promising candidates to obtain drinking water with high separation yield in pervaporative desalination process.

References

  • Yiğit, A. and Atmaca, İ. (2010). Güneş Enerjisi, Alfa-Aktüel Yayınları, Bursa, Turkey, 1st Edition, 216 p. ISBN: 9789752531673.
  • Humplik, T., Lee, J., O’Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R. and Wang, E.N. (2011). Nanostructured materials for water desalination. Nanotechnology, 22:292001.
  • Drioli, E., Stankiewicz, A.I. and Macedonio, F. (2011). Membrane engineering in process intensification an overview. Journal of Membrane Science, 380:1-8.
  • Wang, Q., Li. N., Bolto, B., Hoang, M. and Xie, Z. (2016). Desalination by Pervaporation A review. Desalination, 387:46-60.
  • Huang, R.Y.M. (1991). Pervaporation Membrane Separation Process, Elsevier, Amsterdam, The Netherlands, 1st Edition, 549 p. ISBN:9780444882271.
  • Noble, R.D. and Stern, S.A. (1995). Membrane Separations Technology, Principles and Applications, Elsevier, Amsterdam, The Netherlands, 1st Edition, 738 p. ISBN:9780444816337.
  • Xu, Y.M. and Chung, T.S. (2017). High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 531:16-26.
  • Furukawa, H., Cordova, K.E., O'Keeffe, M. and Yaghi, O.M. (2013). The chemistry and applications of metal-organic frameworks. Science, 342:1230444.
  • Kırhallı, K.S. (2013). An alternative solution for the global warming and the climate change:metal organic frameworks (MOF); synthesis and CO2 capture, MSc Thesis. University of Marmara, İstanbul, Turkey. 76 p.
  • Rowsell, J.L.C. and Yaghi, O.M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73:3-14.
  • Hekimoglu, G.P. (2016). Preperation of metal organic frameworks (MOFs) and polymeric nanocomposite membranes and evaluation of their gas permeability properties, MSc Thesis. University of Yıldız Technical, İstanbul, Turkey. 84 p.
  • Usta, S. (2016). Synthesis, characterization and catalytic application of some new metal-organic frameworks. MSc Thesis. University of Recep Tayyip Erdoğan, Rize, Turkey. 81 p.
  • Cejka, J., Bekkum, H., Corma, A. and Schüth, F. (2007). Zeolite membranes – synthesis, characterization and application, Introduction to Zeolite Science and Practice, Edited by Julbe A. Elsevier, Amsterdam, Netherlands. pp. 181-219. ISBN: 9780080534794.
  • Perez, E.V. (2009). Mixed-Matrix Membranes Containing Metal-Organic Frameworks For Gas Separations, PhD Thesis. University of Texas. Dallas, Richardson, TX, USA.
  • Saracco, G., Neomagus, H.W.J.P., Versteeg, G.F. and Swaaij, W.P.M. (1999). High-temperature membrane reactors: potential and problems. Chemical Engineering Science, 54: 1997-2017.
  • Basu, S., Cano-Odena, A. and Vankelecom, I.F.J. (2010). Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations. Journal of Membrane Science, 362: 478-487.
  • Bushell, A.F., Attfield, M.P., Mason, C.R., et al., (2013). Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. Journal of Membrane Science, 427: 48-62.
  • Cacho-Bailo, F., Seoane, B., Téllez, C. and Coronas, J. (2014). ZIF-8 Continuous Membrane on Porous Polysulfone for Hydrogen Separation. Journal of Membrane Science, 464: 119-126.
  • Dahanayaka, M., Babicheva, R., Chen, Z., Law, A.W.K, Wu, M.S. and Zhou, K. (2020). Atomistic simulation study of GO/HKUST-1 MOF membranes for seawater desalination via pervaporation. Applied Surface Science, 503: 144198.
  • Wan, L., Zhou, C., Xu, K., Feng, B. and Huang, A. (2017). Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous and Mesoporous Materials, 252: 207-213.
  • Jr, M.S.D., Moreton, J.C., Benz, L. and Cohen, S.M. (2016). Metal–organic frameworks for membrane-based separations. Nature Reviews Materials, 1: 16078.
  • Kujawski, W. (2000). Application of Pervaporation and Vapor Permeation in Environmental Protection. Polish Journal of Environmental Studies, 9:13-26.
  • Baker R. W. (2000). Membrane separation, Encyclopedia of Separation Science, Edited by Wilson I. D., Adlard E. D., Cooke M., Poole C. F., Academic Press, Germany, pp. 205-209. 2000. ISBN: 978-0-12-226770-3.
  • Ong, Y.K., Shi, G.M., Le, N.L., Tang, Y.P., Zuo, J., Nunes, S.P. and Chung T.S. (2016). Recent membrane development for pervaporation processes. ‎ Progress in Polymer Science, 57:1-31.
  • Gugliuzza A., Basile A. (2014). Membranes for Clean and Renewable Power Applications, Woodhead Publishing, UK, 1st Edition, 438 p. ISBN:9780857095459.
  • Smitha, B., Suhanya, D., Sridhar, S., Ramakrishna, M. (2004). Separation of organic–organic mixtures by pervaporation a review. Journal of Membrane Science, 241:1-21.
  • Das, S., Banthia, A. K., Adhikari, B. (2007). Improved conversion to ethyl acetate through removal of water of esterification by membrane pervaporation. Indian Journal of Chemical Technology, 14: 552-559.
  • Jee, K.Y., Kim, J.S., Kim, J. and Lee, Y.T. (2015). Effect of hydrophilic Cu3(BTC)2 additives on the performance of PVDF membranes for water flux improvement. Desalination and Water Treatment, 57:1-9.
  • Liang, W., Li, L., Hou, J., Shepherd, N.D., Bennett, T.D., D’Alessandro, D.M. and Chen, V. (2018). Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks. Chemical Science, 9:3508-3516.
  • Liu, X., Demir, N.K., Wu, Z., Li, K. (2015). Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 137: 6999–7002.

Year 2021, Volume 5, Issue 1, 64 - 75, 30.06.2021
https://doi.org/10.38088/jise.782314

Abstract

References

  • Yiğit, A. and Atmaca, İ. (2010). Güneş Enerjisi, Alfa-Aktüel Yayınları, Bursa, Turkey, 1st Edition, 216 p. ISBN: 9789752531673.
  • Humplik, T., Lee, J., O’Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R. and Wang, E.N. (2011). Nanostructured materials for water desalination. Nanotechnology, 22:292001.
  • Drioli, E., Stankiewicz, A.I. and Macedonio, F. (2011). Membrane engineering in process intensification an overview. Journal of Membrane Science, 380:1-8.
  • Wang, Q., Li. N., Bolto, B., Hoang, M. and Xie, Z. (2016). Desalination by Pervaporation A review. Desalination, 387:46-60.
  • Huang, R.Y.M. (1991). Pervaporation Membrane Separation Process, Elsevier, Amsterdam, The Netherlands, 1st Edition, 549 p. ISBN:9780444882271.
  • Noble, R.D. and Stern, S.A. (1995). Membrane Separations Technology, Principles and Applications, Elsevier, Amsterdam, The Netherlands, 1st Edition, 738 p. ISBN:9780444816337.
  • Xu, Y.M. and Chung, T.S. (2017). High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 531:16-26.
  • Furukawa, H., Cordova, K.E., O'Keeffe, M. and Yaghi, O.M. (2013). The chemistry and applications of metal-organic frameworks. Science, 342:1230444.
  • Kırhallı, K.S. (2013). An alternative solution for the global warming and the climate change:metal organic frameworks (MOF); synthesis and CO2 capture, MSc Thesis. University of Marmara, İstanbul, Turkey. 76 p.
  • Rowsell, J.L.C. and Yaghi, O.M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73:3-14.
  • Hekimoglu, G.P. (2016). Preperation of metal organic frameworks (MOFs) and polymeric nanocomposite membranes and evaluation of their gas permeability properties, MSc Thesis. University of Yıldız Technical, İstanbul, Turkey. 84 p.
  • Usta, S. (2016). Synthesis, characterization and catalytic application of some new metal-organic frameworks. MSc Thesis. University of Recep Tayyip Erdoğan, Rize, Turkey. 81 p.
  • Cejka, J., Bekkum, H., Corma, A. and Schüth, F. (2007). Zeolite membranes – synthesis, characterization and application, Introduction to Zeolite Science and Practice, Edited by Julbe A. Elsevier, Amsterdam, Netherlands. pp. 181-219. ISBN: 9780080534794.
  • Perez, E.V. (2009). Mixed-Matrix Membranes Containing Metal-Organic Frameworks For Gas Separations, PhD Thesis. University of Texas. Dallas, Richardson, TX, USA.
  • Saracco, G., Neomagus, H.W.J.P., Versteeg, G.F. and Swaaij, W.P.M. (1999). High-temperature membrane reactors: potential and problems. Chemical Engineering Science, 54: 1997-2017.
  • Basu, S., Cano-Odena, A. and Vankelecom, I.F.J. (2010). Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations. Journal of Membrane Science, 362: 478-487.
  • Bushell, A.F., Attfield, M.P., Mason, C.R., et al., (2013). Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. Journal of Membrane Science, 427: 48-62.
  • Cacho-Bailo, F., Seoane, B., Téllez, C. and Coronas, J. (2014). ZIF-8 Continuous Membrane on Porous Polysulfone for Hydrogen Separation. Journal of Membrane Science, 464: 119-126.
  • Dahanayaka, M., Babicheva, R., Chen, Z., Law, A.W.K, Wu, M.S. and Zhou, K. (2020). Atomistic simulation study of GO/HKUST-1 MOF membranes for seawater desalination via pervaporation. Applied Surface Science, 503: 144198.
  • Wan, L., Zhou, C., Xu, K., Feng, B. and Huang, A. (2017). Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous and Mesoporous Materials, 252: 207-213.
  • Jr, M.S.D., Moreton, J.C., Benz, L. and Cohen, S.M. (2016). Metal–organic frameworks for membrane-based separations. Nature Reviews Materials, 1: 16078.
  • Kujawski, W. (2000). Application of Pervaporation and Vapor Permeation in Environmental Protection. Polish Journal of Environmental Studies, 9:13-26.
  • Baker R. W. (2000). Membrane separation, Encyclopedia of Separation Science, Edited by Wilson I. D., Adlard E. D., Cooke M., Poole C. F., Academic Press, Germany, pp. 205-209. 2000. ISBN: 978-0-12-226770-3.
  • Ong, Y.K., Shi, G.M., Le, N.L., Tang, Y.P., Zuo, J., Nunes, S.P. and Chung T.S. (2016). Recent membrane development for pervaporation processes. ‎ Progress in Polymer Science, 57:1-31.
  • Gugliuzza A., Basile A. (2014). Membranes for Clean and Renewable Power Applications, Woodhead Publishing, UK, 1st Edition, 438 p. ISBN:9780857095459.
  • Smitha, B., Suhanya, D., Sridhar, S., Ramakrishna, M. (2004). Separation of organic–organic mixtures by pervaporation a review. Journal of Membrane Science, 241:1-21.
  • Das, S., Banthia, A. K., Adhikari, B. (2007). Improved conversion to ethyl acetate through removal of water of esterification by membrane pervaporation. Indian Journal of Chemical Technology, 14: 552-559.
  • Jee, K.Y., Kim, J.S., Kim, J. and Lee, Y.T. (2015). Effect of hydrophilic Cu3(BTC)2 additives on the performance of PVDF membranes for water flux improvement. Desalination and Water Treatment, 57:1-9.
  • Liang, W., Li, L., Hou, J., Shepherd, N.D., Bennett, T.D., D’Alessandro, D.M. and Chen, V. (2018). Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks. Chemical Science, 9:3508-3516.
  • Liu, X., Demir, N.K., Wu, Z., Li, K. (2015). Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 137: 6999–7002.

Details

Primary Language English
Subjects Engineering
Published Date June 2021
Journal Section Review Articles
Authors

Derya ÜNLÜ (Primary Author)
BURSA TEKNİK ÜNİVERSİTESİ
0000-0001-5240-5876
Türkiye

Publication Date June 30, 2021
Published in Issue Year 2021, Volume 5, Issue 1

Cite

Bibtex @review { jise782314, journal = {Journal of Innovative Science and Engineering}, issn = {}, eissn = {2602-4217}, address = {ursa Technical University, Mimar Sinan Campus, Mimar Sinan Mah. Mimar Sinan Blv. Eflak Cad. No:177 16310 Yıldırım, Bursa / Turkey}, publisher = {Bursa Technical University}, year = {2021}, volume = {5}, pages = {64 - 75}, doi = {10.38088/jise.782314}, title = {Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review}, key = {cite}, author = {Ünlü, Derya} }
APA Ünlü, D. (2021). Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review . Journal of Innovative Science and Engineering , 5 (1) , 64-75 . DOI: 10.38088/jise.782314
MLA Ünlü, D. "Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review" . Journal of Innovative Science and Engineering 5 (2021 ): 64-75 <http://jise.btu.edu.tr/en/pub/issue/59439/782314>
Chicago Ünlü, D. "Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review". Journal of Innovative Science and Engineering 5 (2021 ): 64-75
RIS TY - JOUR T1 - Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review AU - Derya Ünlü Y1 - 2021 PY - 2021 N1 - doi: 10.38088/jise.782314 DO - 10.38088/jise.782314 T2 - Journal of Innovative Science and Engineering JF - Journal JO - JOR SP - 64 EP - 75 VL - 5 IS - 1 SN - -2602-4217 M3 - doi: 10.38088/jise.782314 UR - https://doi.org/10.38088/jise.782314 Y2 - 2021 ER -
EndNote %0 Journal of Innovative Science and Engineering Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review %A Derya Ünlü %T Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review %D 2021 %J Journal of Innovative Science and Engineering %P -2602-4217 %V 5 %N 1 %R doi: 10.38088/jise.782314 %U 10.38088/jise.782314
ISNAD Ünlü, Derya . "Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review". Journal of Innovative Science and Engineering 5 / 1 (June 2021): 64-75 . https://doi.org/10.38088/jise.782314
AMA Ünlü D. Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review. JISE. 2021; 5(1): 64-75.
Vancouver Ünlü D. Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review. Journal of Innovative Science and Engineering. 2021; 5(1): 64-75.
IEEE D. Ünlü , "Metal Organic Frameworks Loaded Polymeric Membranes in Pervaporative Desalination Applications: A Mini Review", Journal of Innovative Science and Engineering, vol. 5, no. 1, pp. 64-75, Jun. 2021, doi:10.38088/jise.782314


Creative Commons License

The works published in Journal of Innovative Science and Engineering (JISE) are licensed under a  Creative Commons Attribution-NonCommercial 4.0 International License.