Research Article
BibTex RIS Cite

A Study on the Applicability of Energy Efficient Design Approaches in Airport Terminal Buildings

Year 2023, Volume: 11 Issue: 3, 441 - 465, 29.09.2023

Abstract

Studies on energy efficiency and effectiveness, which have come to the agenda with the danger of depletion of natural resources and problems in energy supply, have started to find a response in the rapidly developing aviation sector as in many sectors. Airports consume large amounts of natural resources and energy during construction and operation processes. In this study, terminal buildings, which have the highest energy consumption in the airport complex, are considered. The aim of the study is to determine energy efficient design approaches that can be applied to provide efficiency in energy use in terminal buildings. In this context, through a literature review based on energy-efficient building design parameters, relevant regulations, aviation organizations' energy efficiency approaches, as well as the classification and evaluation of data obtained from sample building analyses, a guide has been developed for the energy efficiency-focused sustainable design of airport terminal buildings. This guide was then used to assess the Kahramanmaraş Airport Terminal Building as a case study. In the course of this research, it was determined that when designing airport terminal buildings with high energy consumption potential, special consideration must be given to the climatic region in which they are located. Design approaches should be shaped accordingly, taking into account factors such as land use, building orientation, building form, building envelope, shading elements design, design of renewable energy sources, location-transportation facilities, indoor environmental quality. Within this context, crucial design considerations pertaining to energy efficiency have been identified, and recommended solution strategies have been put forth.

References

  • [1] Kılkış, B., ve Kılkış, Ş. (2017). New Exergy Metrics for Energy, Environment, and Economy Nexus and Optimum Design Model for Nearly-Zero Exergy Airport (nZEXAP) Systems. Energy, 140, 1329-1349.
  • [2] Oto, N. (2011). Çevresel Sürdürülebilirlik ve Havaalanları: Esenboğa Havalimanı Örneği. Doktora Tezi, Ankara Üniversitesi Sosyal Bilimler Enstitüsü, Ankara, 121-133.
  • [3] Li, B., Zhang, W., Wang, J., Xu, J., ve Su, J. (2017). Research and analysis on energy consumption features of civil airports. Paper presented at the 3rr International Conference on Energy, Environment and Material Science, EEMS 2017, Singapore.
  • [4] Alba, S. O., and Manana, M. (2016). Energy research in airports: A review. Energies, 9(5), 349.
  • [5] Wang Z, Zhao H, Lin B, Zhu Y, Ouyang Q, Yu J. (2015). Investigation of indoor environment quality of Chinese large-hub airport terminal buildings through longitudinal field measurement and subjective survey. Build Environ, 94, 593–605.
  • [6] Ramis, J. E., & Santos, E. A. D. (2013). The impact of thermal comfort in the perceived level of service and energy costs of three Brazilian airports. Journal of Transport Literature, 7, 192-206.
  • [7] Pichatwatana, K., Wang, F., Roaf, S., & Anunnathapong, M. (2017). An integrative approach for indoor environment quality assessment of large glazed air-conditioned airport terminal in the tropics. Energy and Buildings, 148, 37-55.
  • [8] Yıldız, Ö. F., Yılmaz, M., Çelik, A., ve İmik, E. (2020). Havalimanlarında Yenilenebilir Enerji Kaynaklarının Kullanılması. Journal of Aviation, 4(1), 162-174.
  • [9] Anurag, A., Zhang, J., Gwamuri, J., and Pearce, J. M. (2017). General Design Procedures for Airport-Based Solar Photovoltaic Systems. Energies, 10(8), 1194.
  • [10] Akyüz, M. K., Altuntaş, Ö., ve Çay, V. V. (2017). Havalimanı Terminal Binalarında Isı Yalıtımı ve Isıcamın Enerji Performansına Etkisi. Journal of Aviation, 1(1), 1-7.
  • [11] Abdallah, A. S. H., Makram, A., & Nayel, M. A. A. (2021). Energy audit and evaluation of indoor environment condition inside Assiut International Airport terminal building, Egypt. Ain Shams Engineering Journal, 12(3), 3241-3253.
  • [12] Baxter, G., Srisaeng, P., & Wild, G. (2018). An assessment of airport sustainability, part 2—energy management at Copenhagen Airport. Resources, 7(2), 32.
  • [13] Jiang, M., Qi, L., Yu, Z., Wu, D., Si, P., Li, P., ... & Yan, J. (2021). National level assessment of using existing airport infrastructures for photovoltaic deployment. Applied Energy, 298, 117195.
  • [14] Akyüz, M. K., Kafalı, H., and Altuntaş, Ö. (2021). An Analysis on Energy Performance İndicator and GWP at Airports; A Case Study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(19), 2402-2418.
  • [15] Ateş, S. S. (2008). Havaalanı Master Planlaması Yaklaşımları ve Bir Uygulama. Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, 131-133.
  • [16] Uysal, M. P., and Sogut, M. Z. (2017). An Integrated Research for Architecture-Based Energy Management in Sustainable Airports. Energy, 140, 1387-1397.
  • [17] Zhou, Y. (2022). Low-carbon transition in smart city with sustainable airport energy ecosystems and hydrogen-based renewable-grid-storage-flexibility. Energy Reviews, 100001.
  • [18] Akyüz, M. K. (2018). Havalimanlarında Sürdürülebilir Enerji Yönetim Modeli. Doktora Tezi, Anadolu Üniversitesi Fen bilimleri Enstitüsü, Eskişehir, 29-31.
  • [19] Yıldız, Ö. F., Yılmaz, M., and Çelik, A. (2021). Reduction of Energy Consumption and CO2 Emissions of HVAC System in Airport Terminal Buildings. Building and Environment, 208, 108632.
  • [20] Balaras, C., Dascalaki, E., Gaglia, A., and Droutsa, K. (2003). Energy Conservation Potential, HVAC Installations and Operational Issues in Hellenic Airports. Energy and buildings, 35(11), 1105-1120.
  • [21] Yıldız, Ö. F., Yılmaz, M., and Çelik, A. (2021). Reduction of Energy Consumption and CO2 Emissions of HVAC System in Airport Terminal Buildings. Building and Environment, 208, 108632.
  • [22] Çelik, F. (2021). Sürdürülebilir Havalimanı Yolcu Terminal Binaları İçin Ulusal Ölçekte Bir Tasarım Modeli Önerisi. Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 105-108.
  • [23] https://xxi.com.tr/i/golge-deneyimi, Access date: 08.09.2023.
  • [24] https://www.arkitera.com/haber/amanda-levete-orman-golgelerinden-esinlenen-bir-pavyon-tasarladi/, Access date: 08.09.2023.
  • [25] https://www.internationalairportreview.com/article/101813/bengaluru-garden-terminal-sustainability/ ,Access date: 08.09.2023.
  • [26] http://www.artitasarim.com/contents/hizmetlerimiz/217 , Access date: 08.09.2023.
  • [27] https://damsinc.com/exterior-sunshades-vertical-sun-shades/, Access date: 08.09.2023.
Year 2023, Volume: 11 Issue: 3, 441 - 465, 29.09.2023

Abstract

References

  • [1] Kılkış, B., ve Kılkış, Ş. (2017). New Exergy Metrics for Energy, Environment, and Economy Nexus and Optimum Design Model for Nearly-Zero Exergy Airport (nZEXAP) Systems. Energy, 140, 1329-1349.
  • [2] Oto, N. (2011). Çevresel Sürdürülebilirlik ve Havaalanları: Esenboğa Havalimanı Örneği. Doktora Tezi, Ankara Üniversitesi Sosyal Bilimler Enstitüsü, Ankara, 121-133.
  • [3] Li, B., Zhang, W., Wang, J., Xu, J., ve Su, J. (2017). Research and analysis on energy consumption features of civil airports. Paper presented at the 3rr International Conference on Energy, Environment and Material Science, EEMS 2017, Singapore.
  • [4] Alba, S. O., and Manana, M. (2016). Energy research in airports: A review. Energies, 9(5), 349.
  • [5] Wang Z, Zhao H, Lin B, Zhu Y, Ouyang Q, Yu J. (2015). Investigation of indoor environment quality of Chinese large-hub airport terminal buildings through longitudinal field measurement and subjective survey. Build Environ, 94, 593–605.
  • [6] Ramis, J. E., & Santos, E. A. D. (2013). The impact of thermal comfort in the perceived level of service and energy costs of three Brazilian airports. Journal of Transport Literature, 7, 192-206.
  • [7] Pichatwatana, K., Wang, F., Roaf, S., & Anunnathapong, M. (2017). An integrative approach for indoor environment quality assessment of large glazed air-conditioned airport terminal in the tropics. Energy and Buildings, 148, 37-55.
  • [8] Yıldız, Ö. F., Yılmaz, M., Çelik, A., ve İmik, E. (2020). Havalimanlarında Yenilenebilir Enerji Kaynaklarının Kullanılması. Journal of Aviation, 4(1), 162-174.
  • [9] Anurag, A., Zhang, J., Gwamuri, J., and Pearce, J. M. (2017). General Design Procedures for Airport-Based Solar Photovoltaic Systems. Energies, 10(8), 1194.
  • [10] Akyüz, M. K., Altuntaş, Ö., ve Çay, V. V. (2017). Havalimanı Terminal Binalarında Isı Yalıtımı ve Isıcamın Enerji Performansına Etkisi. Journal of Aviation, 1(1), 1-7.
  • [11] Abdallah, A. S. H., Makram, A., & Nayel, M. A. A. (2021). Energy audit and evaluation of indoor environment condition inside Assiut International Airport terminal building, Egypt. Ain Shams Engineering Journal, 12(3), 3241-3253.
  • [12] Baxter, G., Srisaeng, P., & Wild, G. (2018). An assessment of airport sustainability, part 2—energy management at Copenhagen Airport. Resources, 7(2), 32.
  • [13] Jiang, M., Qi, L., Yu, Z., Wu, D., Si, P., Li, P., ... & Yan, J. (2021). National level assessment of using existing airport infrastructures for photovoltaic deployment. Applied Energy, 298, 117195.
  • [14] Akyüz, M. K., Kafalı, H., and Altuntaş, Ö. (2021). An Analysis on Energy Performance İndicator and GWP at Airports; A Case Study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(19), 2402-2418.
  • [15] Ateş, S. S. (2008). Havaalanı Master Planlaması Yaklaşımları ve Bir Uygulama. Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, 131-133.
  • [16] Uysal, M. P., and Sogut, M. Z. (2017). An Integrated Research for Architecture-Based Energy Management in Sustainable Airports. Energy, 140, 1387-1397.
  • [17] Zhou, Y. (2022). Low-carbon transition in smart city with sustainable airport energy ecosystems and hydrogen-based renewable-grid-storage-flexibility. Energy Reviews, 100001.
  • [18] Akyüz, M. K. (2018). Havalimanlarında Sürdürülebilir Enerji Yönetim Modeli. Doktora Tezi, Anadolu Üniversitesi Fen bilimleri Enstitüsü, Eskişehir, 29-31.
  • [19] Yıldız, Ö. F., Yılmaz, M., and Çelik, A. (2021). Reduction of Energy Consumption and CO2 Emissions of HVAC System in Airport Terminal Buildings. Building and Environment, 208, 108632.
  • [20] Balaras, C., Dascalaki, E., Gaglia, A., and Droutsa, K. (2003). Energy Conservation Potential, HVAC Installations and Operational Issues in Hellenic Airports. Energy and buildings, 35(11), 1105-1120.
  • [21] Yıldız, Ö. F., Yılmaz, M., and Çelik, A. (2021). Reduction of Energy Consumption and CO2 Emissions of HVAC System in Airport Terminal Buildings. Building and Environment, 208, 108632.
  • [22] Çelik, F. (2021). Sürdürülebilir Havalimanı Yolcu Terminal Binaları İçin Ulusal Ölçekte Bir Tasarım Modeli Önerisi. Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 105-108.
  • [23] https://xxi.com.tr/i/golge-deneyimi, Access date: 08.09.2023.
  • [24] https://www.arkitera.com/haber/amanda-levete-orman-golgelerinden-esinlenen-bir-pavyon-tasarladi/, Access date: 08.09.2023.
  • [25] https://www.internationalairportreview.com/article/101813/bengaluru-garden-terminal-sustainability/ ,Access date: 08.09.2023.
  • [26] http://www.artitasarim.com/contents/hizmetlerimiz/217 , Access date: 08.09.2023.
  • [27] https://damsinc.com/exterior-sunshades-vertical-sun-shades/, Access date: 08.09.2023.
There are 27 citations in total.

Details

Primary Language English
Subjects Sustainable Architecture
Journal Section Architecture
Authors

Ece Ereser 0000-0001-8115-1369

Figen Beyhan 0000-0002-4287-1037

Publication Date September 29, 2023
Submission Date July 14, 2023
Published in Issue Year 2023 Volume: 11 Issue: 3

Cite

APA Ereser, E., & Beyhan, F. (2023). A Study on the Applicability of Energy Efficient Design Approaches in Airport Terminal Buildings. Gazi University Journal of Science Part B: Art Humanities Design and Planning, 11(3), 441-465.