Research Article
BibTex RIS Cite

IG ve DFIG’lerin Rüzgar Gücü Üretim Sistemleri İçin Karşılaştırılması

Year 2020, Volume: 6 Issue: 3, 230 - 241, 27.12.2020

Abstract

İndiksiyon ve iki beslemeli indiksiyon generatörleri rüzgar gücü sistemlerinde elektrik üretimi için yaygın olarak kullanılır. İndiksiyon generatörlerin ve iki beslemeli indiksiyon generatörlerin tanımları rüzgar enerji sistemleri için bu çalışmada verilmiştir. Farklı bağlantı tipleri ve koşulları iki farklı rüzgar jeneratörü için şebeke ve rüzgar türbinleri için bu çalışmada incelenmiştir. Bir rüzgar çiftliği modeli indiksiyon generatörü ve iki beslemeli indiksiyon generatörü için MATLAB/Simulink de modellenmiştir. İlk olarak simulasyon sonuçları normal çalışma koşulları için sunulmuş ve tartışılmıştır. İkinci olarak ise rüzgar çiftliği modeli hata durumları için simule edilmiştir. Farklı hata koşulları altındakı bu IG ve DFIG sonuçları statik kompanzatörün bir fonksiyonu olarak verilmiş ve tartışılmıştır. Bu sistemin üstünlük ve dezavantajları verilmiş ve değerlendirilmiştir.

Project Number

1059B191700997

References

  • [1] Müller S., Diecke M., De Doncker R. W., "Doubly Fed Induction Generator Systems for Wind Turbines," IEEE Industry Applications Magazine, 27-33,(2002).
  • [2] Zhang F., Yu S., Wang H., Wang Y., Wang D., "Overview of research and development status of brushless doubly-fed machine system", Chinese Journal of Electrical Engineering, 2(2): 1-13, (2016).
  • [3] Induction Generator, "Alternative Energy Tutorials". [Online]. Available: http://www.alternative-energy-tutorials.com/wind-energy/induction-generator.html, [Accesed: 1-March-2019].
  • [4] Patel V., Kashiv A., Aslam K., Verma H. K., "Comparative Analysis between IG and DFIG for Wind Energy Conversion Systems using STATCOM," International Journal of Energy and Power Engineering. Special Issue: Distributed Energy Generation and Smart Grid, 3(6-2): 21-26, (2014).
  • [5] Niiranen J., "About the active and reactive power measurements in unsymmetrical voltage dip ride-through testing," Wind Energy, Vol.11:121–131, (2008).
  • [6] Kjaer P.C., Lærke R., Tarnowski G.C., "Ancillary services provided from wind power plant augmented with energy storage,"15th European Conference on Power Electronics and Applications (EPE), 1-7, (2013).
  • [7] Wind Turbine Doubly-Fed Induction Generator, "Technical Support". [Online]. Available: https://www.mathworks.com. [1 March 2019].
  • [8] Şahin M. E., Sharaf A. M., Okumuş H. İ., "A novel filter compensation scheme for single phase-self-excited induction generator micro wind generation system," Scientific Research and Essays, Vol. 7(34): 3058-72, (2012).
  • [9] Garg A., Singh R. P., "Dynamic Performance Analysis of IG based Wind Farm with STATCOM and SVC in MATLAB/Simulink," International Journal of Computer Applications, Vol.71(23), (2013).
  • [10] Bolik S. M., "Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault," Aalborg Universitet: Institut for Energiteknik, 2004.
  • [11] Madbouly S. O., Sharaf A. M., "A Novel Regulation Inter-Coupled Control Scheme for Doubly Fed Wind Induction System," Turkish Journal of Electromechanics & Energy, Vol.1(2): 8-16, (2016).
  • [12] Courseware S., "Principles of Doubly-Fed Induction Generators," Festo Didactic Ltee/Ltd, Canada, 2011.
  • [13] Pena R., Clare J. C., Asher G. M., “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation," IEEE Proc.-Electr. Power Appl., Vol. 143(3), (1996).
  • [14] Akhmatov V., “Variable-Speed Wind Turbines with Doubly-Fed Induction Generators, Part I: Modelling in Dynamic Simulation Tools," Wind Engineering, Volume 26(2), (2002).
  • [15] Miller N. W., Sanchez-Gasca J. J., Price W. W., Delmerico R. W., “Dynamic Modeling of GE 1.5 and 3.6 MW Wind Turbine-Generators for Stability Simulations,” GE Power Systems Energy Consulting, IEEE WTG Modeling Panel, Session July 2003.
  • [16] Leila M., Mounira M., Amel, Salah O. S., "Modelling and control of wind turbine doubly-fed induction generator with MATLAB Simulink", Global Journal of Computer Sciences: Theory and Research, Vol. 7(2), 77-91, (2017).
  • [17] Şahin M. E. "Comparison of IG and DFIG for Wind Power Generation Systems," 3rd International Conference on AdvancedEngineering Technologies (ICADET 2019), Bayburt, Turkey, 2019.
  • [18] M. Abouheaf, W. Gueaieb, and A. Sharaf, "Model-free adaptive learning control scheme for wind turbines with doubly fed induction generators," IET Renewable Power Generation, vol. 12, no. 14, pp. 1675-1686, 2018. doi: 10.1049/iet-rpg.2018.5353

Comparison of IG and DFIG for Wind Power Generation Systems

Year 2020, Volume: 6 Issue: 3, 230 - 241, 27.12.2020

Abstract

Induction and doubly-fed induction generators are widely used in wind power systems for electricity generation. Description of induction generator (IG) and doubly-fed induction generator (DFIG) for wind power generation systems are given in this paper. Different connection types and conditions for two different types of wind generators with the grids and wind turbines are investigated in this study. A wind farm model is simulated using an induction generator and a doubly-fed induction generator in MATLAB/Simulink. The simulation results under normal operating conditions are presented and discussed firstly. Wind farm models are simulated under fault conditions secondly. The results of the IG and DFIG system under various fault conditions as a function of static compensator (STATCOM) are presented and discussed. The superiority and disadvantages of this system are given and evaluated.

Supporting Institution

TÜBİTAK 2219

Project Number

1059B191700997

Thanks

Aalborg University

References

  • [1] Müller S., Diecke M., De Doncker R. W., "Doubly Fed Induction Generator Systems for Wind Turbines," IEEE Industry Applications Magazine, 27-33,(2002).
  • [2] Zhang F., Yu S., Wang H., Wang Y., Wang D., "Overview of research and development status of brushless doubly-fed machine system", Chinese Journal of Electrical Engineering, 2(2): 1-13, (2016).
  • [3] Induction Generator, "Alternative Energy Tutorials". [Online]. Available: http://www.alternative-energy-tutorials.com/wind-energy/induction-generator.html, [Accesed: 1-March-2019].
  • [4] Patel V., Kashiv A., Aslam K., Verma H. K., "Comparative Analysis between IG and DFIG for Wind Energy Conversion Systems using STATCOM," International Journal of Energy and Power Engineering. Special Issue: Distributed Energy Generation and Smart Grid, 3(6-2): 21-26, (2014).
  • [5] Niiranen J., "About the active and reactive power measurements in unsymmetrical voltage dip ride-through testing," Wind Energy, Vol.11:121–131, (2008).
  • [6] Kjaer P.C., Lærke R., Tarnowski G.C., "Ancillary services provided from wind power plant augmented with energy storage,"15th European Conference on Power Electronics and Applications (EPE), 1-7, (2013).
  • [7] Wind Turbine Doubly-Fed Induction Generator, "Technical Support". [Online]. Available: https://www.mathworks.com. [1 March 2019].
  • [8] Şahin M. E., Sharaf A. M., Okumuş H. İ., "A novel filter compensation scheme for single phase-self-excited induction generator micro wind generation system," Scientific Research and Essays, Vol. 7(34): 3058-72, (2012).
  • [9] Garg A., Singh R. P., "Dynamic Performance Analysis of IG based Wind Farm with STATCOM and SVC in MATLAB/Simulink," International Journal of Computer Applications, Vol.71(23), (2013).
  • [10] Bolik S. M., "Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault," Aalborg Universitet: Institut for Energiteknik, 2004.
  • [11] Madbouly S. O., Sharaf A. M., "A Novel Regulation Inter-Coupled Control Scheme for Doubly Fed Wind Induction System," Turkish Journal of Electromechanics & Energy, Vol.1(2): 8-16, (2016).
  • [12] Courseware S., "Principles of Doubly-Fed Induction Generators," Festo Didactic Ltee/Ltd, Canada, 2011.
  • [13] Pena R., Clare J. C., Asher G. M., “Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation," IEEE Proc.-Electr. Power Appl., Vol. 143(3), (1996).
  • [14] Akhmatov V., “Variable-Speed Wind Turbines with Doubly-Fed Induction Generators, Part I: Modelling in Dynamic Simulation Tools," Wind Engineering, Volume 26(2), (2002).
  • [15] Miller N. W., Sanchez-Gasca J. J., Price W. W., Delmerico R. W., “Dynamic Modeling of GE 1.5 and 3.6 MW Wind Turbine-Generators for Stability Simulations,” GE Power Systems Energy Consulting, IEEE WTG Modeling Panel, Session July 2003.
  • [16] Leila M., Mounira M., Amel, Salah O. S., "Modelling and control of wind turbine doubly-fed induction generator with MATLAB Simulink", Global Journal of Computer Sciences: Theory and Research, Vol. 7(2), 77-91, (2017).
  • [17] Şahin M. E. "Comparison of IG and DFIG for Wind Power Generation Systems," 3rd International Conference on AdvancedEngineering Technologies (ICADET 2019), Bayburt, Turkey, 2019.
  • [18] M. Abouheaf, W. Gueaieb, and A. Sharaf, "Model-free adaptive learning control scheme for wind turbines with doubly fed induction generators," IET Renewable Power Generation, vol. 12, no. 14, pp. 1675-1686, 2018. doi: 10.1049/iet-rpg.2018.5353
There are 18 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Mustafa Ergin Şahin 0000-0002-5121-6173

Project Number 1059B191700997
Publication Date December 27, 2020
Submission Date September 17, 2020
Acceptance Date December 6, 2020
Published in Issue Year 2020 Volume: 6 Issue: 3

Cite

IEEE M. E. Şahin, “Comparison of IG and DFIG for Wind Power Generation Systems”, GJES, vol. 6, no. 3, pp. 230–241, 2020.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg