Research Article
BibTex RIS Cite

Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması ve Karakterizasyonu

Year 2024, Volume: 12 Issue: 2, 869 - 880, 29.04.2024
https://doi.org/10.29130/dubited.1282072

Abstract

Bu çalışmada poliakrilat kauçuk karışımlarının yanmazlık özellikleri arttırılarak florokarbon monomer kauçuğa alternatif malzeme olarak kullanılması amaçlanmıştır. Bunun için, poliakrilat kauçuk formülasyonlarına farklı miktarlarda halojen içermeyen alev geciktirici malzemeler (melamin ve amonyum polifosfat) eklenerek kauçuk hamurları hazırlanmış ve bu hamurların vulkanizasyonu sonucu elde edilen vulkanizatların reolojik, mekanik ve yanmazlık özellikleri incelenmiştir. Önemli reolojik parametreler ile optimum pişme süreleri reometre ile belirlenmiştir. Mekanik özellikleri belirlemek için yapılan çekme testi sonucunda ise hazırlanan poliakrilat kauçuk vulkanizatlarının florokarbon monomer kauçuk karışımına oranla daha iyi kopma dayanımı gösterdiği belirlenmiştir. Yanmazlık özelliklerini incelemek için yapılan sınırlayıcı oksijen indeksi testi sonucunda ise poliakrilat kauçuk formülasyonlarına yanmazlık özelliği sağlayan dolgular olan melamin ve amonyum polifosfat malzemelerinin sırasıyla 8 ve 16 phr olacak şekilde eklenmesiyle LOI değerinin önemli ölçüde geliştiği görülmüştür. Dolayısıyla mekanik dayanımın önemli olduğu, gelişmiş yanmazlık ve alev geciktirici özelliğe sahip ve nispeten uygun maliyetle hazırlanan bu poliakrilat reçetesinin, pahalı florokarbon monomer kauçuk karışımlarına muadil olarak kullanılabileceği sonucuna varılmıştır.

References

  • [1] P. Rybiński, G. Janowska, R. Dobrzyńska, and A. Kucharska, "Effect of halogenless flame retardants on the thermal properties, flammability, and fire hazard of cross-linked EVM/NBR rubber blends," Journal of Thermal Analysis and Calorimetry, vol. 115, pp. 771-782, 2014.
  • [2] P. Rybiński, G. Janowska, M. Jóźwiak, and A. Pająk, "Thermal stability and flammability of butadiene–styrene rubber nanocomposites," Journal of thermal analysis and calorimetry, vol. 109, pp. 561-571, 2012.
  • [3] P. Rybiński, R. Anyszka, M. Imiela, M. Siciński, and T. Gozdek, "Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials," Journal of Thermal Analysis and Calorimetry, vol. 127, pp. 2383-2396, 2017.
  • [4] N. Nakajima and R. DeMarco, "Application of polyacrylate rubber for high performance automotive gaskets and seals," Journal of Elastomers & Plastics, vol. 33, pp. 114-120, 2001.
  • [5] X. B. Yang, T. Lei, W. Lu, X. Huang, and L. Jiang, "Characterization and study of the vulcanization characteristics of ultra‐cold‐resistant reactive chlorinated acrylic rubber prepared by emulsion polymerization," Polymer International, vol. 72, pp. 189-194, 2023.
  • [6] T. M. Vial, "Recent developments in acrylic elastomers," Rubber Chemistry and Technology, vol. 44, pp. 344-362, 1971.
  • [7] E. Giannetti, R. Mazzocchi, L. Fiore, and E. Crespi, "Ammonium salt catalyzed crosslinking mechanism of acrylic rubbers," Rubber chemistry and technology, vol. 56, pp. 21-30, 1983.
  • [8] B. Soares, D. Santos, and A. Sirqueira, "A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends," Express Polymer Letters, vol. 2, pp. 602-613, 2008.
  • [9] J. Blair, "Fluorocarbons, polymers," Enc Ind Chem Anal, vol. 13, pp. 73-93, 1971.
  • [10] R. Su, G. Liu, H. Sun, and Z. Yong, "A new method to measure the three-dimensional solubility parameters of acrylate rubber and predict its oil resistance," Polymer Bulletin, pp. 1-14, 2022.
  • [11] H. L. Stephens and A. K. Bhowmick, Handbook of elastomers: Dekker New York, NY, USA, 2001.
  • [12] I. Banik, A. K. Bhowmick, S. Raghavan, A. Majali, and V. Tikku, "Thermal degradation studies of electron beam cured terpolymeric fluorocarbon rubber," Polymer degradation and stability, vol. 63, pp. 413-421, 1999.
  • [13] T. M. Aminabhavi, H. T. Phayde, J. D. Ortego, and W. M. Stahl, "Sorption and migration of aliphatic organic esters into VITON® fluoroelastomer membranes," Journal of applied polymer science, vol. 63, pp. 1223-1235, 1997.
  • [14] M. A. Kader and A. K. Bhowmick, "Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates," Polymer Degradation and Stability, vol. 79, pp. 283-295, 2003.
  • [15] H. Kato, H. Adachi, and H. Fujita, "Innovation in flame and heat resistant EPDM formulations," Rubber Chemistry and Technology, vol. 56, pp. 287-298, 1983.
  • [16] H. Zhang, Y. Wang, Y. Wu, L. Zhang, and J. Yang, "Study on flammability of montmorillonite/styrene‐butadiene rubber (SBR) nanocomposites," Journal of applied polymer science, vol. 97, pp. 844-849, 2005.
  • [17] K.-S. Lim, S.-T. Bee, L. T. Sin, T.-T. Tee, C. Ratnam, D. Hui, et al., "A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites," Composites Part B: Engineering, vol. 84, pp. 155-174, 2016.
  • [18] G. Fontaine and S. Bourbigot, "Intumescent polylactide: a nonflammable material," Journal of applied polymer science, vol. 113, pp. 3860-3865, 2009.
  • [19] S.-H. Chiu and W.-K. Wang, "Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives," Polymer, vol. 39, pp. 1951-1955, 1998.
  • [20] A. O. Patil and T. S. Coolbaugh, "Elastomers: A literature review with emphasis on oil resistance," Rubber Chemistry and Technology, vol. 78, pp. 516-535, 2005.
  • [21] S. B. Acar, M. A. Tasdelen, and B. Karaagac, "The effect of POSS nanoparticles on crosslinking of styrene-butadiene rubber nanocomposites," Turkish Journal of Chemistry, vol. 47, pp. 417-425, 2023.
  • [22] S. B. Acar, M. A. Tasdelen, and B. Karaagac, "Methacrylate-functionalized POSS influence on cross-linking and mechanical properties of styrene-butadiene rubber," Iranian Polymer Journal, vol. 30, pp. 697-705, 2021.
  • [23] B. G. Soares, D. M. Santos, and A. S. Sirqueira, "A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends," Express Polymer Letters, vol. 2, pp. 602-613, 2008.

Preparation and Characterization of Acrylic Rubber Compounds with Improved Flammability Properties

Year 2024, Volume: 12 Issue: 2, 869 - 880, 29.04.2024
https://doi.org/10.29130/dubited.1282072

Abstract

In this study, it was aimed to use polyacrylate rubber compounds as an alternative material to fluorocarbon monomer rubber by increasing their flame retardant properties. For this purpose, rubber compounds were prepared by adding different amounts of halogen-free flame retardant materials (melamine and ammonium polyphosphate) to polyacrylate rubber formulations and the rheological, mechanical and flammability properties of vulcanizates obtained by vulcanization of these compounds were investigated. Important rheological parameters and optimum curing times were determined by rheometer. As a result of the tensile test performed to determine the mechanical properties, it was determined that the prepared polyacrylate rubber vulcanizates showed better tensile strength compared to the fluorocarbon monomer rubber compound. As a result of the limiting oxygen index test performed to examine the flammability properties, it was observed that the LOI value improved significantly with the addition of melamine and ammonium polyphosphate materials, which were fillers that provide flammability properties to polyacrylate rubber formulations, at 8 and 16 phr, respectively. Therefore, it was concluded that this polyacrylate recipe, which had improved flame retardant properties where mechanical strength is important and prepared at relatively affordable cost, could be used as a potential substitute for expensive fluorocarbon monomer rubber compounds.

References

  • [1] P. Rybiński, G. Janowska, R. Dobrzyńska, and A. Kucharska, "Effect of halogenless flame retardants on the thermal properties, flammability, and fire hazard of cross-linked EVM/NBR rubber blends," Journal of Thermal Analysis and Calorimetry, vol. 115, pp. 771-782, 2014.
  • [2] P. Rybiński, G. Janowska, M. Jóźwiak, and A. Pająk, "Thermal stability and flammability of butadiene–styrene rubber nanocomposites," Journal of thermal analysis and calorimetry, vol. 109, pp. 561-571, 2012.
  • [3] P. Rybiński, R. Anyszka, M. Imiela, M. Siciński, and T. Gozdek, "Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials," Journal of Thermal Analysis and Calorimetry, vol. 127, pp. 2383-2396, 2017.
  • [4] N. Nakajima and R. DeMarco, "Application of polyacrylate rubber for high performance automotive gaskets and seals," Journal of Elastomers & Plastics, vol. 33, pp. 114-120, 2001.
  • [5] X. B. Yang, T. Lei, W. Lu, X. Huang, and L. Jiang, "Characterization and study of the vulcanization characteristics of ultra‐cold‐resistant reactive chlorinated acrylic rubber prepared by emulsion polymerization," Polymer International, vol. 72, pp. 189-194, 2023.
  • [6] T. M. Vial, "Recent developments in acrylic elastomers," Rubber Chemistry and Technology, vol. 44, pp. 344-362, 1971.
  • [7] E. Giannetti, R. Mazzocchi, L. Fiore, and E. Crespi, "Ammonium salt catalyzed crosslinking mechanism of acrylic rubbers," Rubber chemistry and technology, vol. 56, pp. 21-30, 1983.
  • [8] B. Soares, D. Santos, and A. Sirqueira, "A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends," Express Polymer Letters, vol. 2, pp. 602-613, 2008.
  • [9] J. Blair, "Fluorocarbons, polymers," Enc Ind Chem Anal, vol. 13, pp. 73-93, 1971.
  • [10] R. Su, G. Liu, H. Sun, and Z. Yong, "A new method to measure the three-dimensional solubility parameters of acrylate rubber and predict its oil resistance," Polymer Bulletin, pp. 1-14, 2022.
  • [11] H. L. Stephens and A. K. Bhowmick, Handbook of elastomers: Dekker New York, NY, USA, 2001.
  • [12] I. Banik, A. K. Bhowmick, S. Raghavan, A. Majali, and V. Tikku, "Thermal degradation studies of electron beam cured terpolymeric fluorocarbon rubber," Polymer degradation and stability, vol. 63, pp. 413-421, 1999.
  • [13] T. M. Aminabhavi, H. T. Phayde, J. D. Ortego, and W. M. Stahl, "Sorption and migration of aliphatic organic esters into VITON® fluoroelastomer membranes," Journal of applied polymer science, vol. 63, pp. 1223-1235, 1997.
  • [14] M. A. Kader and A. K. Bhowmick, "Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates," Polymer Degradation and Stability, vol. 79, pp. 283-295, 2003.
  • [15] H. Kato, H. Adachi, and H. Fujita, "Innovation in flame and heat resistant EPDM formulations," Rubber Chemistry and Technology, vol. 56, pp. 287-298, 1983.
  • [16] H. Zhang, Y. Wang, Y. Wu, L. Zhang, and J. Yang, "Study on flammability of montmorillonite/styrene‐butadiene rubber (SBR) nanocomposites," Journal of applied polymer science, vol. 97, pp. 844-849, 2005.
  • [17] K.-S. Lim, S.-T. Bee, L. T. Sin, T.-T. Tee, C. Ratnam, D. Hui, et al., "A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites," Composites Part B: Engineering, vol. 84, pp. 155-174, 2016.
  • [18] G. Fontaine and S. Bourbigot, "Intumescent polylactide: a nonflammable material," Journal of applied polymer science, vol. 113, pp. 3860-3865, 2009.
  • [19] S.-H. Chiu and W.-K. Wang, "Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives," Polymer, vol. 39, pp. 1951-1955, 1998.
  • [20] A. O. Patil and T. S. Coolbaugh, "Elastomers: A literature review with emphasis on oil resistance," Rubber Chemistry and Technology, vol. 78, pp. 516-535, 2005.
  • [21] S. B. Acar, M. A. Tasdelen, and B. Karaagac, "The effect of POSS nanoparticles on crosslinking of styrene-butadiene rubber nanocomposites," Turkish Journal of Chemistry, vol. 47, pp. 417-425, 2023.
  • [22] S. B. Acar, M. A. Tasdelen, and B. Karaagac, "Methacrylate-functionalized POSS influence on cross-linking and mechanical properties of styrene-butadiene rubber," Iranian Polymer Journal, vol. 30, pp. 697-705, 2021.
  • [23] B. G. Soares, D. M. Santos, and A. S. Sirqueira, "A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends," Express Polymer Letters, vol. 2, pp. 602-613, 2008.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Seda Bekin Açar 0000-0002-5448-3437

Furkan Emin Alacalar 0000-0001-5643-7138

Mehmet Atilla Tasdelen 0000-0002-7012-7029

Publication Date April 29, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Bekin Açar, S., Alacalar, F. E., & Tasdelen, M. A. (2024). Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması ve Karakterizasyonu. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 12(2), 869-880. https://doi.org/10.29130/dubited.1282072
AMA Bekin Açar S, Alacalar FE, Tasdelen MA. Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması ve Karakterizasyonu. DUBİTED. April 2024;12(2):869-880. doi:10.29130/dubited.1282072
Chicago Bekin Açar, Seda, Furkan Emin Alacalar, and Mehmet Atilla Tasdelen. “Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması Ve Karakterizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 12, no. 2 (April 2024): 869-80. https://doi.org/10.29130/dubited.1282072.
EndNote Bekin Açar S, Alacalar FE, Tasdelen MA (April 1, 2024) Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması ve Karakterizasyonu. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 12 2 869–880.
IEEE S. Bekin Açar, F. E. Alacalar, and M. A. Tasdelen, “Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması ve Karakterizasyonu”, DUBİTED, vol. 12, no. 2, pp. 869–880, 2024, doi: 10.29130/dubited.1282072.
ISNAD Bekin Açar, Seda et al. “Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması Ve Karakterizasyonu”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 12/2 (April 2024), 869-880. https://doi.org/10.29130/dubited.1282072.
JAMA Bekin Açar S, Alacalar FE, Tasdelen MA. Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması ve Karakterizasyonu. DUBİTED. 2024;12:869–880.
MLA Bekin Açar, Seda et al. “Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması Ve Karakterizasyonu”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 12, no. 2, 2024, pp. 869-80, doi:10.29130/dubited.1282072.
Vancouver Bekin Açar S, Alacalar FE, Tasdelen MA. Yanmazlık Özellikleri İyileştirilmiş Akrilik Kauçuk Karışımlarının Hazırlanması ve Karakterizasyonu. DUBİTED. 2024;12(2):869-80.