Review
BibTex RIS Cite

3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler ve Gelişmeler Üzerine Bir Derleme

Year 2021, Volume: 9 Issue: 4, 1186 - 1213, 31.07.2021
https://doi.org/10.29130/dubited.877423

Abstract

Günümüzün umut vadeden teknolojisi olarak eklemeli imalat (Eİ) veya 3B yazıcı teknolojileri farklı alanlarda kullanılabilecek ürünlerin/parçaların üretilmesi konusunda dikkatleri üzerine çekmektedir. 3B yazıcı teknolojileri ile farklı malzemeler kullanılarak istenilen mekanik ve yapısal özelliklere sahip parçalar üretilebilmektedir. Bu teknolojiler geleneksel üretim yöntemlerine göre parça tasarımında esneklik, üretim sürecinde ise malzeme, enerji ve maliyet tasarrufu sağlamaktadır. Bu çalışmada, 3B yazıcı teknolojileri, Amerikan Test ve Malzeme Derneği (ASTM) tarafından yapılan sınıflandırma temel alınarak yedi ana baslık altında sınıflandırılmıştır. Eİ yöntemleri çalışma prensibi ve kullanılan malzeme türü dikkate alınarak anlatılmış ve 3B yazıcılar ile yapılan çalışmalar incelenmiştir. Çalışmadan elde edilen sonuçlar, 3B yazıcı teknolojilerinde polimerler, metal ve alaşımları, seramikler ve kompozit malzemelerin hammadde olarak kullanılabildiği ve baskı sonrası ikincil işlemler ile oldukça yüksek mekanik özelliklere sahip parçaların üretilebildiğini göstermektedir. Diğer yandan, 3B baskı teknolojilerinin otomotiv, savunma, havacılık ve demiryolu taşımacılığı da dahil olmak üzere çok çeşitli endüstriyel sektörlerde kolayca prototip oluşturma ve bileşenlerin üretiminde yeni ufuklar açacağı beklenmektedir. Ancak 3B teknolojilerinde kullanılan malzeme sayısı şu an için oldukça sınırlıdır ve çalışmalar bu teknolojilerde kullanılabilecek yeni malzemelerin araştırılması üzerine yoğunlaşmalıdır.

Supporting Institution

Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2020/F/0001

Thanks

Yazarlar, mühendislik bölümleri için temel işlemler atölyesi alt yapısının oluşturulması isimli 2020/F/0001 nolu proje ile çalışmaya verdikleri finansal destek ve 3B yazıcı temini için, Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne teşekkür eder.

References

  • [1] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, and P.D. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, vol. 69, pp. 65-89, 2015.
  • [2] E. Bulut ve T. Akçacı, “Endüstri 4.0 ve inovasyon göstergeleri kapsamında Türkiye analizi,” ASSAM Uluslararası Hakemli Dergi, c. 7, ss. 50-72, 2017.
  • [3] E. Şenol, M.B. Yolcu, ve S. Celayir, “Üç boyutlu yazıcılar ve çocuk cerrahisi,” Çocuk Cerrahisi Dergisi, c. 29 s. 3, ss. 77-82, 2015.
  • [4] B. Berman, “3-D printing: The new industrial revolution,” Business Horizons, vol. 55, pp. 155-162, 2012.
  • [5] Ş. Özel, M. Zeren, ve N.Ç. Alp, “3D yazıcılar ile katmanlı imalat teknolojisinin otomotiv endüstrisinde uygulanması,” International Journal of 3D Printing Technologies and Digital Industry, c. 4, s. 1, ss. 18-31, 2020.
  • [6] C. Chen, B.T. Mehl, A.S. Mushi, A.D. Townsend, D.M. Spence, and R.S. Martin, “3D printed microfluidic devices: fabrication, advantages and limitations – a mini review,” Analytical Methods, vol. 8, pp. 6005-6012, 2016.
  • [7] İ. Karagöz ve M. Öksüz, “Termoplastiklerin sürtünme karıştırma kaynağı ile birleştirilmesinde kullanılan yöntemler,” Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 31, s. ÖS1, ss. 19-28, 2016.
  • [8] İ. Karagöz and M. Öksüz, “Microstructures occurring in the joined thermoplastics sheets with friction stir welding,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 33, no. 2, pp. 503-515, 2018.
  • [9] M. Attaran, “The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing,” Business Horizons, vol. 60, no. 5, pp. 677-688, 2017.
  • [10] Wohlers Associates Inc., “3D printing and additive manufacturing state of the industry,” Fort Collins, CO: Wohlers, USA, Rep., 2014.
  • [11] G. Yıldırım, S. Yıldırım, ve E. Çelik, “Yeni bir bakış - 3 boyutlu yazıcılar ve öğretimsel kullanımı: Bir içerik analizi,” Bayburt Eğitim Fakültesi Dergisi, c. 13, s. 25, ss. 163-184, 2018.
  • [12] R. Jiang, R. Kleer, and F.T. Piller, “Predicting the future of additive manufacturing: A delphi study on economic and societal implications of 3D printing for 2030,” Technologies Forecasting & Social Change, vol. 117, pp. 84-97, 2017.
  • [13] G. Özer, “Eklemeli üretim teknolojileri üzerine bir derleme,” NÖHÜ Müh. Bilim. Derg., c. 9, s. 1, ss. 606-621, 2020.
  • [14] K. Şahin ve B.O. Turan, “Üç boyutlu yazıcı teknolojilerinin karşılaştırmalı analizi,” Stratejik ve Sosyal Araştırmalar Dergisi, c. 2, s. 2, ss. 97-116, 2018.
  • [15] H.G. Lemu, “Study of capabilities and limitations of 3D printing technology,” AIP Conference Proceedings, vol. 1453, Apr 2012, Art. no. 857.
  • [16] C.B. Williams, F. Mistreee, and D.V. Rosen, “A functional classification framework for the conceptual design of additive manufacturing Technologies,” J. Mec. Des., vol. 133, no. 12, Dec 2011, Art. no. 121002.
  • [17] Standard Terminology for Additive Manufacturing Technologies, ASTM F42, 2012.
  • [18] Y. Huang and M.C. Leu, “An NSF additive manufacturing workshop report 2013,” University of Florida Center for Manufacyuring Innovation, USA, Rep. 2013.
  • [19] I. Gibson, D. Rosen, and B. Stucker, “Vat photopolymerization processes,” in Additive Manufacturing Technologies, 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., New York, USA: Springer, 2015, pp. 63-103.
  • [20] Loughborough University Additive Manufacturing Research Group. (2021, Jan 3). 7 Categories of additive manufacturing [Online]. Available: https://www.lboro.ac.uk/research/amrg/about/the7 categoriesofadditivemanufacturing/.
  • [21] K. Chockalingam, N. Jawahar, K.N. Ramanathan, and P.S. Banerjee, “Optimization of stereolithography process parameters for part strength using design of experiments,” Int. J. Adv. Manuf. Technol., vol. 29, pp. 79-88, 2006.
  • [22] Z. Weng, Y. Zhou, W. Lin, T. Senthil, and L. Wu, “Structure property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer,” Composites: Part A, vol. 88, pp. 234-252, 2016.
  • [23] S.O. Onuh and K.K.B. Hon, “Optimising build parameters for improved surface finish in stereolithography,” Int. J. Mach. Tools Manufact., 1998, vol. 38, no. 4, pp. 329-392, 1998.
  • [24] H.K. Sürmen, “Eklemeli imalat (3D baskı): Teknolojiler ve uygulamalar,” Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24 s. 2, ss. 373-392, 2019.
  • [25] D. Dean, J. Wallace, A. Siblani, M.O. Wang, K. Kim, A.G. Mikos, and J.P. Fisher, “Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual Phys. Prototyp., vol. 7, no. 1, pp. 13-24, 2012.
  • [26] A.P. West, S.P. Sambu, D.W. and Rosen, “A process planning method for improving build performance in stereolithography,” Computer-Aided Design, vol. 33, pp. 65-79, 2001.
  • [27] M.L. Griffith and J.W. Halloran, “Freform fabrication of ceramics via stereolithography,” J. Am. Ceram. Soc., vol. 79, no.10, pp. 2601-2608, 1996.
  • [28] G.A., Brady and J.W. Halloran, “Stereolithography of ceramic suspensions,” Rapid Prototyping Journal, vol. 3, no.2, pp. 61-65, 1997.
  • [29] C.E. Corcione, A. Greco, F. Montagna, A. Licciulli and A. Maffezzoli, “Slica moulds built by stereolithography,” Journal of Materials Science, vol. 40, pp. 4899-4904, 2005.
  • [30] Y. Yang, Z. Chen, X. Song, B. Zhu, T. Hsiai, P.I. Wu, R. Xiong, J. Shi, Y. Chen, Q. Zhou, and K.K. Shung, “Three dimensional printing of high dielectric capacitor using projection based stereolithography method,” Nano Energy, vol. 22, pp. 414-421, 2016.
  • [31] H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, and S. Wu, “Fabrication of dense zirconia-toughened alümina ceramics through a stereolithography-based additive manufacturing,” Ceramic International, vol. 43, pp. 968-972, 2017.
  • [32] Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, and T.A. Schaedler, “Additive manufacturing of polymer-derived ceramics,” Science, vol. 351, no. 6268, pp. 58-62, 2016.
  • [33] Formlabs. (2021, Jan 3). SLA vs. DLP: Guide to resin 3D printers [Online]. Available: https://www.formlabs.com.
  • [34] J. Valentinčič, M. Peroša, M. Jerman, I. Sabotin, and A. Lebar, “Low cost printer for DLP stereolithography,” Journal of Mechancal Engineering, vol. 63, no. 10, pp. 559-566, 2017.
  • [35] M. Borlaf, A.S. Capdevila, C. Colominas, and T. Graule, “Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology,” Journal of the European Ceramic Society, vol. 39, pp. 3797-3803, 2019.
  • [36] Y. Pan, C. Zhou, and Y. Chen, “A fast mask projection stereolithography process for fabricating digital models in minutes,” ASME Journal of Manufacturing Science and Engineering, vol. 134, no. 5, Dec 2012, Art. no. 051011.
  • [37] D. Dean, E. Mott, X. Luo, M. Busso, M.O. Wang, C. Vorwald, A. Siblani, and J.P. Fisher, “Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds,” Virtual Phy. Prototyping, vol. 9, no. 1, pp. 3-9, 2012.
  • [38] Y. Shin and M.L. Becker, “Alternating ring-opening copolymerization of epoxides with saturated and unsaturated cylic anhydrides: Reduced viscosity poly(propylene fumarate) oligomers for use in cDLP 3D printing,” Polym. Chem., vol. 11, pp. 3313-3321, 2020.
  • [39] A. Goyanes, H. Chang, D. Sedough, G.B. Hatton, J. Wang, A. Buanz A, S. Gaisford, and A.W. Basit, “Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing,” International Journal of Pharmaceutics, vol. 496, pp. 414-420, 2015.
  • [40] J.G. Guiterrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, “Additive manufacturing of metallic and ceramic componets by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, May 2018, Art. no. 840.
  • [41] D. Yadav, D. Chhabra, R.K. Gupt, A. Phogat, and A. Ahlawat, “Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS,” Materials Today: Proceedings, vol. 21, pp. 1592-1604, 2020.
  • [42] M.S. Alsoufi and A.E. Elsayed, “How surface roughness performance of printed parts manufactured by desktop FDM 3D printer with PLA+is influenced by measuring direction,” American Journal of Mechanical Engineering, vol. 5, no. 5, pp. 211-222, 2017.
  • [43] I. Gibson, D. Rosen, and B. Stucker, “Ekstrusion-Based Systems,” in Additive Manufacturing Technologies, 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., New York, USA: Springer, 2015, pp. 147-173.
  • [44] Z. Weng, J. Wang, T. Senthil, and L. Wu, “Mechanical and thermal properties pf ABS/montmorillonite nanocomposites for used deposition modeling 3D printing,” Materials and Design, vol. 102, pp. 276-283, 2016.
  • [45] B. Akhoundi, A.H. Behravesh, and A.B. Saed, “Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer,” Journal of Reinforced Plastics and Composites, vol. 38, no. 3, pp. 99-116, 2019.
  • [46] B. Akhoundi and A.H. Behravesh, “Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products,” Experimental Mechanics, vol. 59, pp. 883-897, 2019.
  • [47] R. Melnikova, A. Ehrmann, and K. Finsterbusch, “3D printing of textile-based structures by fused deposition modelling (FDM) with different polymer materials,” Materials Science and Engineering, vol. 62, May 2014, Art. no. 012018.
  • [48] V.G. Surange and P.V. Gharat, “3D printing process using fused deposition modelling (FDM),” International Research Journal of Engineering and Technology, vol. 3, no. 3, pp. 1403-1406, 2016.
  • [49] P. Stavropoulos and P. Foteinopoulos, “Modelling of additive manufacturing processes: a review and classification,” Manufacturing Rev., vol. 5, no. 2, pp. 1-26, 2018.
  • [50] K.V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mechanical Engineering, vol. 2012, Aug 2012, Art. no. 208760.
  • [51] P. Dudek, “FDM 3D printing technology in manufacturing composite elements,” Archives of Metallurgy and Materials, vol. 58, no. 4, pp. 1415-1418, 2013.
  • [52] Z. Chen, Z. Li, J. Li, C. Li, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” Journal of the European Ceramic Society, vol. 39, pp. 661-687, 2019.
  • [53] Y.L. Yap, C. Wang, S.L. Sing, V. Dikshit, W.Y. Yeong, and J. Wei, “Material jetting additive manufacturing: An experimental study using designed metrological benchmarks,” Precision Engineering, vol. 50, pp. 275-285, 2017.
  • [54] A. Cazón, P. Morer, and L. Matey, “PolyJet technology for product prototyping: tensilestrength and surface roughness properties,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., vol. 228, pp. 1664-1675, 2014.
  • [55] D. Blanco, P. Fernandez, and A. Noriega, “Nonisotropic experimental characterizationof the relaxation modulus for PolyJet manufactured parts,” J. Mater. Res., vol. 29, pp. 1876–1882, 2014.
  • [56] D. Ibrahim, T.L. Broilo, C. Heitz, M.G. de Oliveira, H.W. de Oliveira, S.M.W. Nobre, J.H.G.D.S. Filho, and D.N. Silva, “Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy,” J. Cranio-Maxillo-Facial Surg., vol. 37, pp. 167-173, 2009.
  • [57] N. Meisel and C. Williams, “An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing,” J. Mech. Des., vol. 137, no. 11, Nov 2015, Art. no. 111406.
  • [58] S. Tibbits, “4D printing: multi-material shape change,” Architl. Des., vol. 84, pp. 116–121, 2014.
  • [59] K. Yu, A. Ritchie, Y. Mao, M.L. Dunn, and H.J. Qi, “Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials,” Procedia IUTAM, vol. 12, pp. 193–203, 2015.
  • [60] I.Q. Vu, L.B. Bass, C.B. Williams, and D.A. Dillard, “Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing,” Additive Manufacturing, vol. 22, pp. 447-461, 2018.
  • [61] J. Dilag, T. Chen, S. Li, and S.A. Bateman, “Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies,” Additive Manufacturing, vol. 27, pp. 167-174, 2019.
  • [62] A. Khoshkhoo, A.L. Carano, and D.M. Blersch, “Effect of surface slope and build orientation on surface finish and dimensional accuracy in material jetting processes,” Procedia Manufacturing, vol. 26, pp. 720-730, 2018.
  • [63] H. Yang, J.C. Lim, Y. Liu, X. Qi, Y.L. Yap, V. Dikshit, W.Y. Yeong, and J. Wei, “Performance evaluation of ProJet multi-material jetting 3D printer,” Virtual and Physical Prototyping, vol. 12, no. 1, pp. 95-103, 2017.
  • [64] E.M. Palmero and A. Bollero, “3D and 4D printing of functional and smart composite materials,” Reference Module in Materials Science and Materials Engineering, vol. 2, pp. 402-419, 2021.
  • [65] I. Gibson, D. Rosen, and B. Stucker, “Development of Additive Manufacturing Technology,” in Additive Manufacturing Technologies, 3D printing, rapid prototyping, and direct digital manufacturing, 2nd ed., USA: Springer, New York, 2015. pp. 19-41.
  • [66] P.K. Gokuldoss, S. Kolla, and J. Eckert, “Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines,” Materials, vol. 10, no. 6, June 2017, Art. no. 672.
  • [67] Y. Bai and C.B. William, “Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor,” Materials and Design, vol. 147, pp. 146-156, 2018.
  • [68] J.A. Gonzalez, J. Mireles, Y. Lin, and R.B. Wicker, “Characterization of ceramic components fabricated using binder jetting additive manufacturing technology,” Ceramics International, vol. 42, pp. 10559-10564, 2016.
  • [69] H. Miyanaji, N. Momenzadeh, and L. Yang, “Effect of printing speed on quality of printed parts in binder jetting process,” Additive Manufacturing, vol. 20, pp. 1-10, 2018.
  • [70] M. Ziaee and N.B. Crane, “Binder jetting: A review of process, materials, and methods,” Additive Manufacturing, vol. 28, pp. 781-801, 2019.
  • [71] W. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, and S.A. Khairallah, “Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory,” Materials Science and Technology, vol. 31, no. 8, pp. 957-968, 2015.
  • [72] W. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, “Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges,” App. Phys. Rev., vol. 2, Dec 2015, Art. no. 041304.
  • [73] S. Vock, B. Klöden, A. Kirchner, T. Weiβgärber, and B. Kieback, “Powders for powder bed fusion: a review,” Progress in Additive Manufacturing, vol. 4, pp. 383-397, 2019.
  • [74] A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang J., P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J.N. Weker, M.F. Toney, T.V. Buuren, and M.J. Matthews, “Dynamics of pore formation during laser powder bed fusion additive manufacturing,” Nature Communications, vol. 10, Apr 2019, Art. no. 1987.
  • [75] A.T. Sutton, C.S. Kriewall, M.C. Leu, and J.W. Newkirk, “Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes,” Virtual and Physical Prototyping, vol. 12, no. 1, pp. 3-29, 2017.
  • [76] A. Dass and A. Moridi, “State of art in directed energy deposition: From additive manufacturing to materials design,” Coatings, vol. 9, no. 7, June 2019, Art. no. 418.
  • [77] W. Li, J. Zhang, X. Zhang, and F. Liou, “Effect of optimizing particle size on directed energy deposition of functionally graded material with blown pre-mixed multi-powder,” Materials Letters, vol. 13, pp. 39-43, 2017.
  • [78] M.A. Melia, H.D.A. Nquyen, J.M. Rodelas, and E.J. Schindelhoz, “Corrosion properties of 304 stainless steel made by directed energy deposition additive manufacturing,” Corrosion Science, vol. 152, pp. 20-30, 2019.
  • [79] J.C. Haley, B. Zheng, U.S. Bertoli, A.D. Dupuy, J.M. Schoenung, and E.J. Lavernia, “Working distance passive stability in laser directed energy deposition additive manufacturing,” Materials and Design, vol. 161, pp. 86-94, 2019.
  • [80] J.C. Haley, J.M. Schoenung, and E.J. Lavernia, “Modelling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing,” Materials Science & Engineering A, vol. 761, June 2019, Art. no. 138052.
  • [81] M.M. Hou. (2021, Jan 3). Mtsubishi heavy industries to expand DED metal 3D printing line [Online]. Available: https://3dprint.com/276434/mitsubishi-heavy-industries-to-expand-ded-metal-3d-printing-line/.
  • [82] Mitsubishi Heavy Industries Group. (2021, Jan 3). Directed Energy Deposition AM System [Online]. Available: https://www.mhi-machinetool.com/en/products /detail/lamda.html.
  • [83] Dassault Systemes. (2021, Jan 3). 3D Printing-Additive, Introduction to 3D printing-additive process [Online]. Available: https://make.3dexperience. 3ds.com/processes/directed-energy-deposition.
  • [84] A. Huckstepp. (2021, Jan 3). Digital Alloys’ guide to metal additive manufacturing – Part 9, Directed Energy Deposition (DED) [Online]. Available: https://www.digitalalloys.com/blog/directed-energy-deposition/.
  • [85] S.K. Parupelli and S. Desai, “A comprehensive review of additive manufacturing (3D printing) : Processes, applications and future potential,” Amerikan Journal Applied Sciences, vol. 16, no. 8, pp. 244-272, 2019.
  • [86] K.V. Wong and A. Herhandez, “A review of additive manufacturing,” International Scholarly Research Notices, vol. 2012, Aug 2012, Art. no. 208760.
  • [87] C.K. Chua, S.M. Chou, and T.S. Wong, “A study of the state-of-the-art rapid prototyping technologies,” Int. J. Adv. Manuf. Technol., vol. 14, pp. 146-152, 1998.
  • [88] B.G. Mekonnen, G. Bright, and A. Walker, “A study on state of the art technology of laminated object manufacturing (LOM),” CAD/CAM, Robotics and Factories of the Future Lecture Notes in Mechanical Engineering, In: Mandal D.K., Syan C.S. Ed., New Delhi, India: Springer, 2016, pp. 207-216.
  • [89] İ. Karagöz, “An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials,” Polym. Bull., vol. 78, pp. 2627-2644, 2021.
  • [90] İ. Karagöz, “Bilgisayar destekli programlar kullanılarak hazırlanmış döküm kalıbı ve ürün tasarımının polimer kompozit malzemeden üretilmesi,” El-Cezeri Journal of Science and Engineering, c. 5, s. 2, ss. 346-352, 2018.
  • [91] İ. Karagöz, “Hardness change due to carburization time and material thickness during heat treatment of SAE 8620 (21NiCrMo2) plates,” El-Cezeri Journal of Science and Engineering, vol. 6, no. 3, pp. 748-754, 2019.

A Review of Used Methods and Developments in 3D Printer Technologies

Year 2021, Volume: 9 Issue: 4, 1186 - 1213, 31.07.2021
https://doi.org/10.29130/dubited.877423

Abstract

Additive manufacturing (AM) or 3D printer technologies, as today's promising technique, has been drawn attention to the production of innovative products/parts that can be used in various fields. It can produce materials with desired mechanical and structural properties with 3D technologies. As compared to traditional production methods, the promising technology provides flexibility in product design, and contributes to increase material, energy, and cost efficiency in manufacturing system. Herein, 3B printer technologies are divided into seven different groups according to the American Society for Testing and Materials (ASTM) classification. AM methods are explained by considering working principles, and the type of material, as well as studies conducted with 3B printers using these methods were examined. This study shows that in 3D printer technologies, polymers, metals and alloys, ceramics and composite materials can be utilized as raw materials and post-printing secondary processes promote to produce parts with excellent mechanical properties. On the other hand, the technologies have been expected to open new horizons for easily creating prototypes and production of components using plastics, metals, metal alloys and ceramic materials used in a wide range of industrial sectors, including automotive, defence, aerospace, and rail transport. Nowadays, the number of raw materials for 3D technologies are limited and, recent studies should be directed to investigate new materials.

Project Number

2020/F/0001

References

  • [1] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, and P.D. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, vol. 69, pp. 65-89, 2015.
  • [2] E. Bulut ve T. Akçacı, “Endüstri 4.0 ve inovasyon göstergeleri kapsamında Türkiye analizi,” ASSAM Uluslararası Hakemli Dergi, c. 7, ss. 50-72, 2017.
  • [3] E. Şenol, M.B. Yolcu, ve S. Celayir, “Üç boyutlu yazıcılar ve çocuk cerrahisi,” Çocuk Cerrahisi Dergisi, c. 29 s. 3, ss. 77-82, 2015.
  • [4] B. Berman, “3-D printing: The new industrial revolution,” Business Horizons, vol. 55, pp. 155-162, 2012.
  • [5] Ş. Özel, M. Zeren, ve N.Ç. Alp, “3D yazıcılar ile katmanlı imalat teknolojisinin otomotiv endüstrisinde uygulanması,” International Journal of 3D Printing Technologies and Digital Industry, c. 4, s. 1, ss. 18-31, 2020.
  • [6] C. Chen, B.T. Mehl, A.S. Mushi, A.D. Townsend, D.M. Spence, and R.S. Martin, “3D printed microfluidic devices: fabrication, advantages and limitations – a mini review,” Analytical Methods, vol. 8, pp. 6005-6012, 2016.
  • [7] İ. Karagöz ve M. Öksüz, “Termoplastiklerin sürtünme karıştırma kaynağı ile birleştirilmesinde kullanılan yöntemler,” Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 31, s. ÖS1, ss. 19-28, 2016.
  • [8] İ. Karagöz and M. Öksüz, “Microstructures occurring in the joined thermoplastics sheets with friction stir welding,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 33, no. 2, pp. 503-515, 2018.
  • [9] M. Attaran, “The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing,” Business Horizons, vol. 60, no. 5, pp. 677-688, 2017.
  • [10] Wohlers Associates Inc., “3D printing and additive manufacturing state of the industry,” Fort Collins, CO: Wohlers, USA, Rep., 2014.
  • [11] G. Yıldırım, S. Yıldırım, ve E. Çelik, “Yeni bir bakış - 3 boyutlu yazıcılar ve öğretimsel kullanımı: Bir içerik analizi,” Bayburt Eğitim Fakültesi Dergisi, c. 13, s. 25, ss. 163-184, 2018.
  • [12] R. Jiang, R. Kleer, and F.T. Piller, “Predicting the future of additive manufacturing: A delphi study on economic and societal implications of 3D printing for 2030,” Technologies Forecasting & Social Change, vol. 117, pp. 84-97, 2017.
  • [13] G. Özer, “Eklemeli üretim teknolojileri üzerine bir derleme,” NÖHÜ Müh. Bilim. Derg., c. 9, s. 1, ss. 606-621, 2020.
  • [14] K. Şahin ve B.O. Turan, “Üç boyutlu yazıcı teknolojilerinin karşılaştırmalı analizi,” Stratejik ve Sosyal Araştırmalar Dergisi, c. 2, s. 2, ss. 97-116, 2018.
  • [15] H.G. Lemu, “Study of capabilities and limitations of 3D printing technology,” AIP Conference Proceedings, vol. 1453, Apr 2012, Art. no. 857.
  • [16] C.B. Williams, F. Mistreee, and D.V. Rosen, “A functional classification framework for the conceptual design of additive manufacturing Technologies,” J. Mec. Des., vol. 133, no. 12, Dec 2011, Art. no. 121002.
  • [17] Standard Terminology for Additive Manufacturing Technologies, ASTM F42, 2012.
  • [18] Y. Huang and M.C. Leu, “An NSF additive manufacturing workshop report 2013,” University of Florida Center for Manufacyuring Innovation, USA, Rep. 2013.
  • [19] I. Gibson, D. Rosen, and B. Stucker, “Vat photopolymerization processes,” in Additive Manufacturing Technologies, 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., New York, USA: Springer, 2015, pp. 63-103.
  • [20] Loughborough University Additive Manufacturing Research Group. (2021, Jan 3). 7 Categories of additive manufacturing [Online]. Available: https://www.lboro.ac.uk/research/amrg/about/the7 categoriesofadditivemanufacturing/.
  • [21] K. Chockalingam, N. Jawahar, K.N. Ramanathan, and P.S. Banerjee, “Optimization of stereolithography process parameters for part strength using design of experiments,” Int. J. Adv. Manuf. Technol., vol. 29, pp. 79-88, 2006.
  • [22] Z. Weng, Y. Zhou, W. Lin, T. Senthil, and L. Wu, “Structure property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer,” Composites: Part A, vol. 88, pp. 234-252, 2016.
  • [23] S.O. Onuh and K.K.B. Hon, “Optimising build parameters for improved surface finish in stereolithography,” Int. J. Mach. Tools Manufact., 1998, vol. 38, no. 4, pp. 329-392, 1998.
  • [24] H.K. Sürmen, “Eklemeli imalat (3D baskı): Teknolojiler ve uygulamalar,” Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24 s. 2, ss. 373-392, 2019.
  • [25] D. Dean, J. Wallace, A. Siblani, M.O. Wang, K. Kim, A.G. Mikos, and J.P. Fisher, “Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual Phys. Prototyp., vol. 7, no. 1, pp. 13-24, 2012.
  • [26] A.P. West, S.P. Sambu, D.W. and Rosen, “A process planning method for improving build performance in stereolithography,” Computer-Aided Design, vol. 33, pp. 65-79, 2001.
  • [27] M.L. Griffith and J.W. Halloran, “Freform fabrication of ceramics via stereolithography,” J. Am. Ceram. Soc., vol. 79, no.10, pp. 2601-2608, 1996.
  • [28] G.A., Brady and J.W. Halloran, “Stereolithography of ceramic suspensions,” Rapid Prototyping Journal, vol. 3, no.2, pp. 61-65, 1997.
  • [29] C.E. Corcione, A. Greco, F. Montagna, A. Licciulli and A. Maffezzoli, “Slica moulds built by stereolithography,” Journal of Materials Science, vol. 40, pp. 4899-4904, 2005.
  • [30] Y. Yang, Z. Chen, X. Song, B. Zhu, T. Hsiai, P.I. Wu, R. Xiong, J. Shi, Y. Chen, Q. Zhou, and K.K. Shung, “Three dimensional printing of high dielectric capacitor using projection based stereolithography method,” Nano Energy, vol. 22, pp. 414-421, 2016.
  • [31] H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, and S. Wu, “Fabrication of dense zirconia-toughened alümina ceramics through a stereolithography-based additive manufacturing,” Ceramic International, vol. 43, pp. 968-972, 2017.
  • [32] Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, and T.A. Schaedler, “Additive manufacturing of polymer-derived ceramics,” Science, vol. 351, no. 6268, pp. 58-62, 2016.
  • [33] Formlabs. (2021, Jan 3). SLA vs. DLP: Guide to resin 3D printers [Online]. Available: https://www.formlabs.com.
  • [34] J. Valentinčič, M. Peroša, M. Jerman, I. Sabotin, and A. Lebar, “Low cost printer for DLP stereolithography,” Journal of Mechancal Engineering, vol. 63, no. 10, pp. 559-566, 2017.
  • [35] M. Borlaf, A.S. Capdevila, C. Colominas, and T. Graule, “Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology,” Journal of the European Ceramic Society, vol. 39, pp. 3797-3803, 2019.
  • [36] Y. Pan, C. Zhou, and Y. Chen, “A fast mask projection stereolithography process for fabricating digital models in minutes,” ASME Journal of Manufacturing Science and Engineering, vol. 134, no. 5, Dec 2012, Art. no. 051011.
  • [37] D. Dean, E. Mott, X. Luo, M. Busso, M.O. Wang, C. Vorwald, A. Siblani, and J.P. Fisher, “Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds,” Virtual Phy. Prototyping, vol. 9, no. 1, pp. 3-9, 2012.
  • [38] Y. Shin and M.L. Becker, “Alternating ring-opening copolymerization of epoxides with saturated and unsaturated cylic anhydrides: Reduced viscosity poly(propylene fumarate) oligomers for use in cDLP 3D printing,” Polym. Chem., vol. 11, pp. 3313-3321, 2020.
  • [39] A. Goyanes, H. Chang, D. Sedough, G.B. Hatton, J. Wang, A. Buanz A, S. Gaisford, and A.W. Basit, “Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing,” International Journal of Pharmaceutics, vol. 496, pp. 414-420, 2015.
  • [40] J.G. Guiterrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, “Additive manufacturing of metallic and ceramic componets by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, May 2018, Art. no. 840.
  • [41] D. Yadav, D. Chhabra, R.K. Gupt, A. Phogat, and A. Ahlawat, “Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS,” Materials Today: Proceedings, vol. 21, pp. 1592-1604, 2020.
  • [42] M.S. Alsoufi and A.E. Elsayed, “How surface roughness performance of printed parts manufactured by desktop FDM 3D printer with PLA+is influenced by measuring direction,” American Journal of Mechanical Engineering, vol. 5, no. 5, pp. 211-222, 2017.
  • [43] I. Gibson, D. Rosen, and B. Stucker, “Ekstrusion-Based Systems,” in Additive Manufacturing Technologies, 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., New York, USA: Springer, 2015, pp. 147-173.
  • [44] Z. Weng, J. Wang, T. Senthil, and L. Wu, “Mechanical and thermal properties pf ABS/montmorillonite nanocomposites for used deposition modeling 3D printing,” Materials and Design, vol. 102, pp. 276-283, 2016.
  • [45] B. Akhoundi, A.H. Behravesh, and A.B. Saed, “Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer,” Journal of Reinforced Plastics and Composites, vol. 38, no. 3, pp. 99-116, 2019.
  • [46] B. Akhoundi and A.H. Behravesh, “Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products,” Experimental Mechanics, vol. 59, pp. 883-897, 2019.
  • [47] R. Melnikova, A. Ehrmann, and K. Finsterbusch, “3D printing of textile-based structures by fused deposition modelling (FDM) with different polymer materials,” Materials Science and Engineering, vol. 62, May 2014, Art. no. 012018.
  • [48] V.G. Surange and P.V. Gharat, “3D printing process using fused deposition modelling (FDM),” International Research Journal of Engineering and Technology, vol. 3, no. 3, pp. 1403-1406, 2016.
  • [49] P. Stavropoulos and P. Foteinopoulos, “Modelling of additive manufacturing processes: a review and classification,” Manufacturing Rev., vol. 5, no. 2, pp. 1-26, 2018.
  • [50] K.V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mechanical Engineering, vol. 2012, Aug 2012, Art. no. 208760.
  • [51] P. Dudek, “FDM 3D printing technology in manufacturing composite elements,” Archives of Metallurgy and Materials, vol. 58, no. 4, pp. 1415-1418, 2013.
  • [52] Z. Chen, Z. Li, J. Li, C. Li, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, “3D printing of ceramics: A review,” Journal of the European Ceramic Society, vol. 39, pp. 661-687, 2019.
  • [53] Y.L. Yap, C. Wang, S.L. Sing, V. Dikshit, W.Y. Yeong, and J. Wei, “Material jetting additive manufacturing: An experimental study using designed metrological benchmarks,” Precision Engineering, vol. 50, pp. 275-285, 2017.
  • [54] A. Cazón, P. Morer, and L. Matey, “PolyJet technology for product prototyping: tensilestrength and surface roughness properties,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., vol. 228, pp. 1664-1675, 2014.
  • [55] D. Blanco, P. Fernandez, and A. Noriega, “Nonisotropic experimental characterizationof the relaxation modulus for PolyJet manufactured parts,” J. Mater. Res., vol. 29, pp. 1876–1882, 2014.
  • [56] D. Ibrahim, T.L. Broilo, C. Heitz, M.G. de Oliveira, H.W. de Oliveira, S.M.W. Nobre, J.H.G.D.S. Filho, and D.N. Silva, “Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy,” J. Cranio-Maxillo-Facial Surg., vol. 37, pp. 167-173, 2009.
  • [57] N. Meisel and C. Williams, “An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing,” J. Mech. Des., vol. 137, no. 11, Nov 2015, Art. no. 111406.
  • [58] S. Tibbits, “4D printing: multi-material shape change,” Architl. Des., vol. 84, pp. 116–121, 2014.
  • [59] K. Yu, A. Ritchie, Y. Mao, M.L. Dunn, and H.J. Qi, “Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials,” Procedia IUTAM, vol. 12, pp. 193–203, 2015.
  • [60] I.Q. Vu, L.B. Bass, C.B. Williams, and D.A. Dillard, “Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing,” Additive Manufacturing, vol. 22, pp. 447-461, 2018.
  • [61] J. Dilag, T. Chen, S. Li, and S.A. Bateman, “Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies,” Additive Manufacturing, vol. 27, pp. 167-174, 2019.
  • [62] A. Khoshkhoo, A.L. Carano, and D.M. Blersch, “Effect of surface slope and build orientation on surface finish and dimensional accuracy in material jetting processes,” Procedia Manufacturing, vol. 26, pp. 720-730, 2018.
  • [63] H. Yang, J.C. Lim, Y. Liu, X. Qi, Y.L. Yap, V. Dikshit, W.Y. Yeong, and J. Wei, “Performance evaluation of ProJet multi-material jetting 3D printer,” Virtual and Physical Prototyping, vol. 12, no. 1, pp. 95-103, 2017.
  • [64] E.M. Palmero and A. Bollero, “3D and 4D printing of functional and smart composite materials,” Reference Module in Materials Science and Materials Engineering, vol. 2, pp. 402-419, 2021.
  • [65] I. Gibson, D. Rosen, and B. Stucker, “Development of Additive Manufacturing Technology,” in Additive Manufacturing Technologies, 3D printing, rapid prototyping, and direct digital manufacturing, 2nd ed., USA: Springer, New York, 2015. pp. 19-41.
  • [66] P.K. Gokuldoss, S. Kolla, and J. Eckert, “Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines,” Materials, vol. 10, no. 6, June 2017, Art. no. 672.
  • [67] Y. Bai and C.B. William, “Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor,” Materials and Design, vol. 147, pp. 146-156, 2018.
  • [68] J.A. Gonzalez, J. Mireles, Y. Lin, and R.B. Wicker, “Characterization of ceramic components fabricated using binder jetting additive manufacturing technology,” Ceramics International, vol. 42, pp. 10559-10564, 2016.
  • [69] H. Miyanaji, N. Momenzadeh, and L. Yang, “Effect of printing speed on quality of printed parts in binder jetting process,” Additive Manufacturing, vol. 20, pp. 1-10, 2018.
  • [70] M. Ziaee and N.B. Crane, “Binder jetting: A review of process, materials, and methods,” Additive Manufacturing, vol. 28, pp. 781-801, 2019.
  • [71] W. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, and S.A. Khairallah, “Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory,” Materials Science and Technology, vol. 31, no. 8, pp. 957-968, 2015.
  • [72] W. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, “Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges,” App. Phys. Rev., vol. 2, Dec 2015, Art. no. 041304.
  • [73] S. Vock, B. Klöden, A. Kirchner, T. Weiβgärber, and B. Kieback, “Powders for powder bed fusion: a review,” Progress in Additive Manufacturing, vol. 4, pp. 383-397, 2019.
  • [74] A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang J., P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J.N. Weker, M.F. Toney, T.V. Buuren, and M.J. Matthews, “Dynamics of pore formation during laser powder bed fusion additive manufacturing,” Nature Communications, vol. 10, Apr 2019, Art. no. 1987.
  • [75] A.T. Sutton, C.S. Kriewall, M.C. Leu, and J.W. Newkirk, “Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes,” Virtual and Physical Prototyping, vol. 12, no. 1, pp. 3-29, 2017.
  • [76] A. Dass and A. Moridi, “State of art in directed energy deposition: From additive manufacturing to materials design,” Coatings, vol. 9, no. 7, June 2019, Art. no. 418.
  • [77] W. Li, J. Zhang, X. Zhang, and F. Liou, “Effect of optimizing particle size on directed energy deposition of functionally graded material with blown pre-mixed multi-powder,” Materials Letters, vol. 13, pp. 39-43, 2017.
  • [78] M.A. Melia, H.D.A. Nquyen, J.M. Rodelas, and E.J. Schindelhoz, “Corrosion properties of 304 stainless steel made by directed energy deposition additive manufacturing,” Corrosion Science, vol. 152, pp. 20-30, 2019.
  • [79] J.C. Haley, B. Zheng, U.S. Bertoli, A.D. Dupuy, J.M. Schoenung, and E.J. Lavernia, “Working distance passive stability in laser directed energy deposition additive manufacturing,” Materials and Design, vol. 161, pp. 86-94, 2019.
  • [80] J.C. Haley, J.M. Schoenung, and E.J. Lavernia, “Modelling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing,” Materials Science & Engineering A, vol. 761, June 2019, Art. no. 138052.
  • [81] M.M. Hou. (2021, Jan 3). Mtsubishi heavy industries to expand DED metal 3D printing line [Online]. Available: https://3dprint.com/276434/mitsubishi-heavy-industries-to-expand-ded-metal-3d-printing-line/.
  • [82] Mitsubishi Heavy Industries Group. (2021, Jan 3). Directed Energy Deposition AM System [Online]. Available: https://www.mhi-machinetool.com/en/products /detail/lamda.html.
  • [83] Dassault Systemes. (2021, Jan 3). 3D Printing-Additive, Introduction to 3D printing-additive process [Online]. Available: https://make.3dexperience. 3ds.com/processes/directed-energy-deposition.
  • [84] A. Huckstepp. (2021, Jan 3). Digital Alloys’ guide to metal additive manufacturing – Part 9, Directed Energy Deposition (DED) [Online]. Available: https://www.digitalalloys.com/blog/directed-energy-deposition/.
  • [85] S.K. Parupelli and S. Desai, “A comprehensive review of additive manufacturing (3D printing) : Processes, applications and future potential,” Amerikan Journal Applied Sciences, vol. 16, no. 8, pp. 244-272, 2019.
  • [86] K.V. Wong and A. Herhandez, “A review of additive manufacturing,” International Scholarly Research Notices, vol. 2012, Aug 2012, Art. no. 208760.
  • [87] C.K. Chua, S.M. Chou, and T.S. Wong, “A study of the state-of-the-art rapid prototyping technologies,” Int. J. Adv. Manuf. Technol., vol. 14, pp. 146-152, 1998.
  • [88] B.G. Mekonnen, G. Bright, and A. Walker, “A study on state of the art technology of laminated object manufacturing (LOM),” CAD/CAM, Robotics and Factories of the Future Lecture Notes in Mechanical Engineering, In: Mandal D.K., Syan C.S. Ed., New Delhi, India: Springer, 2016, pp. 207-216.
  • [89] İ. Karagöz, “An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials,” Polym. Bull., vol. 78, pp. 2627-2644, 2021.
  • [90] İ. Karagöz, “Bilgisayar destekli programlar kullanılarak hazırlanmış döküm kalıbı ve ürün tasarımının polimer kompozit malzemeden üretilmesi,” El-Cezeri Journal of Science and Engineering, c. 5, s. 2, ss. 346-352, 2018.
  • [91] İ. Karagöz, “Hardness change due to carburization time and material thickness during heat treatment of SAE 8620 (21NiCrMo2) plates,” El-Cezeri Journal of Science and Engineering, vol. 6, no. 3, pp. 748-754, 2019.
There are 91 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İdris Karagöz 0000-0002-2644-8511

Ayşe Danış Bekdemir 0000-0001-6437-0316

Özlem Tuna 0000-0003-1641-4155

Project Number 2020/F/0001
Publication Date July 31, 2021
Published in Issue Year 2021 Volume: 9 Issue: 4

Cite

APA Karagöz, İ., Danış Bekdemir, A., & Tuna, Ö. (2021). 3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler ve Gelişmeler Üzerine Bir Derleme. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(4), 1186-1213. https://doi.org/10.29130/dubited.877423
AMA Karagöz İ, Danış Bekdemir A, Tuna Ö. 3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler ve Gelişmeler Üzerine Bir Derleme. DUBİTED. July 2021;9(4):1186-1213. doi:10.29130/dubited.877423
Chicago Karagöz, İdris, Ayşe Danış Bekdemir, and Özlem Tuna. “3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler Ve Gelişmeler Üzerine Bir Derleme”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, no. 4 (July 2021): 1186-1213. https://doi.org/10.29130/dubited.877423.
EndNote Karagöz İ, Danış Bekdemir A, Tuna Ö (July 1, 2021) 3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler ve Gelişmeler Üzerine Bir Derleme. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 4 1186–1213.
IEEE İ. Karagöz, A. Danış Bekdemir, and Ö. Tuna, “3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler ve Gelişmeler Üzerine Bir Derleme”, DUBİTED, vol. 9, no. 4, pp. 1186–1213, 2021, doi: 10.29130/dubited.877423.
ISNAD Karagöz, İdris et al. “3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler Ve Gelişmeler Üzerine Bir Derleme”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/4 (July 2021), 1186-1213. https://doi.org/10.29130/dubited.877423.
JAMA Karagöz İ, Danış Bekdemir A, Tuna Ö. 3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler ve Gelişmeler Üzerine Bir Derleme. DUBİTED. 2021;9:1186–1213.
MLA Karagöz, İdris et al. “3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler Ve Gelişmeler Üzerine Bir Derleme”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 9, no. 4, 2021, pp. 1186-13, doi:10.29130/dubited.877423.
Vancouver Karagöz İ, Danış Bekdemir A, Tuna Ö. 3B Yazıcı Teknolojilerindeki Kullanılan Yöntemler ve Gelişmeler Üzerine Bir Derleme. DUBİTED. 2021;9(4):1186-213.