Research Article
BibTex RIS Cite

Variation in chemical compounds of walnut (Juglans regia L.) leaves with tree age

Year 2020, Volume: 21 Issue: 1, 124 - 134, 15.03.2020
https://doi.org/10.17474/artvinofd.583170

Abstract

In this present study, we investigated the chemical compounds in the fresh leaves of ancient walnut trees (Juglans regia L.) aged 25, 75, 100, and over 400 year. Under similar environmental conditions, the fresh leaves of walnut trees were collected and analysed for chlorophyll molecules as chlorophyll a, chlorophyll b and carotenoids, enzymatic compounds (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) activities) and non-enzymatic compounds (proline, total soluble protein, total phenolic compounds), flavonoid and reducing sugars (glucose, sucrose, total soluble sugar). In addition, the oxidative stress level was determined by measuring lipid peroxidation (MDA-malondialdehyde) and hydrogen peroxide (H2O2). Significant differences in the chemical composition of the fresh leaves were found between the 4 different tree age classes. In general, the results showed that mean chlorophyll pigments were increased with increasing the age. There was also a general trend that mean glucose and starch concentrations increased with the age, while mean sucrose concentration decreased, but no changes were noted for mean total soluble carbohydrate. On the other hand, mean SOD concentration decreased with increasing the age. Other chemical compounds (mean proline, total soluble protein, malondialdehyde, hydrogen peroxide, APX and CAT), however, did not show clear trends with the age. As a result, these pioneer study have provided valuable insight into the variation in the chemical constituents of walnut tree leaves in relation to the age, and it can be used to better understanding, managing and fighting against pathogens of walnut ecosystems in future studies.

References

  • Akça Y, Ozgen M, Erturk U, Ercisli S (2012) The effects of AVG and GA3 treatments on pistillate (female) flower abortion in ‘Sebin’ walnut cultivar. Acta Sci. Pol. Hortorum Cultus, 11(4):179-185
  • Amaral JS, Seabra RM, Andrade PB, Valentao P, Pereira JÁ, Ferreres F (2004) Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chemistry, 88: 373-379
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol., 24: 1-15
  • Augspurger CK, Bartlett EA (2003) Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiology, 23: 517-525
  • Bates L, Waldern RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207
  • Bergmeyer J, Grabl M (1983) Methoden der Enzymatischen Analyse (Methods of enzymatic analysis). Akademie Verlag (Academy publishing house), 1: 190-302
  • Bertamini M, Nedunchezhian N, Broghi B (2001) Effect of iron deficiency induced changes on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase, and photosystem activities in field grown grapevine (Vitis vinifera L. cv. Pinot Noir) leaves. Photosynthetica, 39(1): 59-65
  • Bradford MM (1976) A rapid sensitive method for the quantitation of micro program quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254
  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. J. Exp. Bot., 45: 1259-1266
  • Cakmak I., Engels C. (1999). Role of mineral nutrients in photosynthesis and yield formation, in Rengel, Z.: Mineral Nutrition of Crops: Mechanisms and Implications. The Haworth Press, New York, USA, pp. 141-168
  • Del Tredici P (1998) Aging and rejuvenation in trees. Combined Proceedings of the International Plant propagators Society, 48: 637-642
  • Dickson RE, Tomlinson PT, Isebrands JG (2000) Partitioning of current photosynthate to different chemical fractions in leaves, stems and roots of northern red oak seedlings during episodic growth. Can. J. For. Res., 30: 1308-1317
  • Duran C (2017) Local distribution of the temperature and precipitation in Kastamonu province and surrounding. The Journal of International Social Research, 10(52): 509-516
  • Ercisli S, Sayinci B, Kara M, Yildiz C, Ozturk I (2012) Determination of size and shape features of walnut (Juglans regia L.) cultivars using image processing. Sci. Hortic., 131: 47-55
  • Evstigneev OI, Korotkov NV (2016) Ontogenetıc Stages of Trees. Russian Journal of Ecosystem Ecology, 1(2): 1-31
  • FAO (2013) Walnut production statistics. Available at: http://faostat3.fao.org. (Accessed on 25.12.2016)
  • Foyer CH (1988) Feedback inhibition of photosynthesis through source-sink regulation in leaves. Plant Physiol Biochem., 26: 483-492
  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol., 155: 93-100
  • Genet H, Breda N, Dufrene E (2010) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol., 30: 177-192
  • Green BR (2003) in: Green BR, Parson WW (Eds.) Light-Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, The Netherlands. pp: 129-168
  • Groover A, Jones AM (1999) Tracheary Element Differentiation Uses a Novel Mechanism Coordinating Programmed Cell Death and Secondary Cell Wall Synthesis. Plant Physiol., 119: 375-384
  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma, 249(3): 469-481
  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature, 428: 851-854
  • Krapp A, Hofmann B, Schaffer C, Stitt M (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism of the sink regulation of photosynthesis. Plant J., 3: 817-828
  • Kumaran A, Karunakaran RJ (2006) Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97: 109-114
  • Kusunoki M (2011) S1-state Mn4Ca complex of Photosystem II exists in equilibrium between the two most-stable isomeric substates: XRD and EXAFS evidence, J. Photochem. Photobiol. B, Biol., 104: 100-110
  • Louis J, Meyer S, Maunoury-Danger F, Fresneau C, Meudec E, Cerovic ZG (2009) Seasonally changes in optically assessed epidermal phenolic compounds and chlorophyll contents in leaves of sessile oak (Quercus petraea): towards signatures of phenological stage. Functional Plant Biology, 36: 732-741
  • Lutts S, Kinet JM, Bouharmon J (1996) NaCl-Induced senesence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78: 389-398
  • Marschner H (1995) Mineral Nutrition of Higher Plants. 2nd ed., London, Academic Press
  • Martinez-Finley EJ, Gavin CE, Aschne M, Gunter TE (2013) Manganese neurotoxicity and the role of reactiveoxygen species. Free Radic. Biol. Med., 62: 65-75
  • Muradoglu F, Balta F (2010) Some physical and chemical characteristics of promising walnuts (Juglans regia L.) genotypes selected from Ahlat (Bitlis).-YYU J. Agric. Sci., 20(1): 41-45 (in Turkish)
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-spesific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5): 867-880
  • Paul MJ, Driscoll SP (1997) Sugar repression of photosynthesis: therole of carbohydrates in signalling nitrogen deficiency through source: sink imbalance. Plant Cell Environ., 20: 110-116
  • Pearson D, Melon H, Ronald S (1976) Chemical analysis of Food, 8th edition. Churchill Livingstone. pp: 5-63
  • Polat M, Okatan V, Güclü F (2015) Determination of some physical and chemical properties of walnut (Juglans regia L.) genotypes grown in the central district of Bitlis/Turkey. - Scientific Papers. Series B. Horticulture, 59: 81-86
  • Ros Barceló A (1998) Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants. Ann Bot., 82: 97-103
  • Schafer C, Simper H, Hofman B (1992) Glucose feeding results in coordinated changes of chlorophyll content, ribulose 1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic potential in photoautotrophic suspension-cultured cells of Chenopodium rubrum. Plant Cell Environ., 15: 343-350
  • Schaffer AA, Liu KC, Goldschmidt EE, Boyer CD, Goren R (1986) Citrus leaf chlorosis induced by sink removal: starch, nitrogen, and chloroplast ultrastructure. Journal of Plant Physiology, 124(1-2):111-121
  • Scholes GD, Fleming GR (2005) Energy Transfer and Photosynthetic Light Harvesting. Adv. Chem. Phys., 13: 57-129
  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152-178
  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Science, 166: 293-302
  • Spiteller G (2001) Lipid peroxidation in aging and age dependent disease. Exp. Gerantol., 36: 1425-1456
  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci., 2: 89-97
  • Talon M, Iglesias DJ, Lliso I, Tadeo FR (2002) Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiologia Plantarum, 116: 563-572
  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytologist, 197: 696-711
  • Turfan N, Savacı G, Sarıyıldız T (2016) Uludağ Göknarı ve Sarıçam İbrelerinin Bazı Kimyasal Bileşiklerinin Meşcere Yaşına ve Bazı Toprak Özelliklerine Bağlı Olarak Değişimi. Kastamonu Üni., Orman Fakültesi Dergisi, 16(2):583-598
  • Velikova V, Yordanov I, Edrava A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151: 59-66
  • Weinstein LH, Robbins WR (1955) The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol., 30: 27-32
  • Willis RJ (2000) Juglans spp., juglone and allelopathy. Allelopathy Journal, 7: 1-55
  • Witham FH, Blaydes DF, Devlin RM (1971) Experiments in plant physiology. pp 55-56. Van Nostrand Reinhold Company,New York

Adi ceviz (Juglans regia L.) ağacı yapraklarının kimyasal bileşiklerinin ağaç yaşına bağlı değişimi

Year 2020, Volume: 21 Issue: 1, 124 - 134, 15.03.2020
https://doi.org/10.17474/artvinofd.583170

Abstract

Bu çalışmada ortalama yaşı 25, 75, 100 ve 400 yaş üzeri Adi ceviz (Juglans regia L.) olan ağacı yeşil yapraklarının kimyasal bileşikleri araştırılmıştır. Aynı yetişme ortamındaki, adi ceviz ağaçlarından toplanan yeşil yaprak örneklerinin içerdiği fotosentetik pigmentler (klorofil a, klorofil b ve karotenoit, askorbat peroksidaz (APX), katalaz (CAT), süperoksit dismutaz (SOD) enzim aktiviteleri, prolin, toplam çözünür protein, toplam fenolik bileşikleri, flavonoid gibi enzimatik olmayan bileşikleri ve indirgenmiş şekerlerden, glikoz ve sukroz miktarı ile toplam çözünür şeker miktarları belirlenmiştir. Ek olarak, yeşil yapraklar oksidatif stres seviyesi ile lipit peroksidasyonu (malondialdehit-MDA) ve hidrojen peroksit (H2O2) konsantrasyonları için analiz edilmiştir. Bu kimyasal bileşiklerden bazıları, ağaç yaşına bağlı olarak istatistiksel farklılıklar göstermiştir. Genel olarak, fotosentetik pigmentler, ağaç yaşı arttıkça artış göstermiştir. Glikoz ve nişasta miktarı ağaç yaşı ile artma eğilimi gösterirken, sukroz miktarı azalmış, fakat toplam çözünür karbohidrat içeriği ağaçlar arasında önemli bir farklılık göstermemiştir. Bunun yanında, SOD aktivitesi yaş arttıkça azalmıştır. Çalışmada incelenen diğer kimyasal bileşiklerle (prolin, toplam çözünür protein, MDA, H2O2, APX ve CAT) ağaç yaşı arasında belirgin bir ilişki tespit edilmemiştir. Sonuç olarak, öncü niteliğindeki bu bulgular, ceviz ağacı yapraklarının yaşa bağlı olarak kimyasal yapılarındaki değişimi hakkında önemli bilgiler sağlamış olup, ceviz ekosistemlerinin daha iyi anlaşılması, yönetimi ve zararlarına karşı uygulanacak mücadele yöntemlerine karar vermede gelecekteki çalışmalarda kullanılabilecektir.

References

  • Akça Y, Ozgen M, Erturk U, Ercisli S (2012) The effects of AVG and GA3 treatments on pistillate (female) flower abortion in ‘Sebin’ walnut cultivar. Acta Sci. Pol. Hortorum Cultus, 11(4):179-185
  • Amaral JS, Seabra RM, Andrade PB, Valentao P, Pereira JÁ, Ferreres F (2004) Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chemistry, 88: 373-379
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol., 24: 1-15
  • Augspurger CK, Bartlett EA (2003) Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiology, 23: 517-525
  • Bates L, Waldern RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207
  • Bergmeyer J, Grabl M (1983) Methoden der Enzymatischen Analyse (Methods of enzymatic analysis). Akademie Verlag (Academy publishing house), 1: 190-302
  • Bertamini M, Nedunchezhian N, Broghi B (2001) Effect of iron deficiency induced changes on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase, and photosystem activities in field grown grapevine (Vitis vinifera L. cv. Pinot Noir) leaves. Photosynthetica, 39(1): 59-65
  • Bradford MM (1976) A rapid sensitive method for the quantitation of micro program quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254
  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. J. Exp. Bot., 45: 1259-1266
  • Cakmak I., Engels C. (1999). Role of mineral nutrients in photosynthesis and yield formation, in Rengel, Z.: Mineral Nutrition of Crops: Mechanisms and Implications. The Haworth Press, New York, USA, pp. 141-168
  • Del Tredici P (1998) Aging and rejuvenation in trees. Combined Proceedings of the International Plant propagators Society, 48: 637-642
  • Dickson RE, Tomlinson PT, Isebrands JG (2000) Partitioning of current photosynthate to different chemical fractions in leaves, stems and roots of northern red oak seedlings during episodic growth. Can. J. For. Res., 30: 1308-1317
  • Duran C (2017) Local distribution of the temperature and precipitation in Kastamonu province and surrounding. The Journal of International Social Research, 10(52): 509-516
  • Ercisli S, Sayinci B, Kara M, Yildiz C, Ozturk I (2012) Determination of size and shape features of walnut (Juglans regia L.) cultivars using image processing. Sci. Hortic., 131: 47-55
  • Evstigneev OI, Korotkov NV (2016) Ontogenetıc Stages of Trees. Russian Journal of Ecosystem Ecology, 1(2): 1-31
  • FAO (2013) Walnut production statistics. Available at: http://faostat3.fao.org. (Accessed on 25.12.2016)
  • Foyer CH (1988) Feedback inhibition of photosynthesis through source-sink regulation in leaves. Plant Physiol Biochem., 26: 483-492
  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol., 155: 93-100
  • Genet H, Breda N, Dufrene E (2010) Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol., 30: 177-192
  • Green BR (2003) in: Green BR, Parson WW (Eds.) Light-Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, The Netherlands. pp: 129-168
  • Groover A, Jones AM (1999) Tracheary Element Differentiation Uses a Novel Mechanism Coordinating Programmed Cell Death and Secondary Cell Wall Synthesis. Plant Physiol., 119: 375-384
  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma, 249(3): 469-481
  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature, 428: 851-854
  • Krapp A, Hofmann B, Schaffer C, Stitt M (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism of the sink regulation of photosynthesis. Plant J., 3: 817-828
  • Kumaran A, Karunakaran RJ (2006) Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97: 109-114
  • Kusunoki M (2011) S1-state Mn4Ca complex of Photosystem II exists in equilibrium between the two most-stable isomeric substates: XRD and EXAFS evidence, J. Photochem. Photobiol. B, Biol., 104: 100-110
  • Louis J, Meyer S, Maunoury-Danger F, Fresneau C, Meudec E, Cerovic ZG (2009) Seasonally changes in optically assessed epidermal phenolic compounds and chlorophyll contents in leaves of sessile oak (Quercus petraea): towards signatures of phenological stage. Functional Plant Biology, 36: 732-741
  • Lutts S, Kinet JM, Bouharmon J (1996) NaCl-Induced senesence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78: 389-398
  • Marschner H (1995) Mineral Nutrition of Higher Plants. 2nd ed., London, Academic Press
  • Martinez-Finley EJ, Gavin CE, Aschne M, Gunter TE (2013) Manganese neurotoxicity and the role of reactiveoxygen species. Free Radic. Biol. Med., 62: 65-75
  • Muradoglu F, Balta F (2010) Some physical and chemical characteristics of promising walnuts (Juglans regia L.) genotypes selected from Ahlat (Bitlis).-YYU J. Agric. Sci., 20(1): 41-45 (in Turkish)
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-spesific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5): 867-880
  • Paul MJ, Driscoll SP (1997) Sugar repression of photosynthesis: therole of carbohydrates in signalling nitrogen deficiency through source: sink imbalance. Plant Cell Environ., 20: 110-116
  • Pearson D, Melon H, Ronald S (1976) Chemical analysis of Food, 8th edition. Churchill Livingstone. pp: 5-63
  • Polat M, Okatan V, Güclü F (2015) Determination of some physical and chemical properties of walnut (Juglans regia L.) genotypes grown in the central district of Bitlis/Turkey. - Scientific Papers. Series B. Horticulture, 59: 81-86
  • Ros Barceló A (1998) Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants. Ann Bot., 82: 97-103
  • Schafer C, Simper H, Hofman B (1992) Glucose feeding results in coordinated changes of chlorophyll content, ribulose 1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic potential in photoautotrophic suspension-cultured cells of Chenopodium rubrum. Plant Cell Environ., 15: 343-350
  • Schaffer AA, Liu KC, Goldschmidt EE, Boyer CD, Goren R (1986) Citrus leaf chlorosis induced by sink removal: starch, nitrogen, and chloroplast ultrastructure. Journal of Plant Physiology, 124(1-2):111-121
  • Scholes GD, Fleming GR (2005) Energy Transfer and Photosynthetic Light Harvesting. Adv. Chem. Phys., 13: 57-129
  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152-178
  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Science, 166: 293-302
  • Spiteller G (2001) Lipid peroxidation in aging and age dependent disease. Exp. Gerantol., 36: 1425-1456
  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci., 2: 89-97
  • Talon M, Iglesias DJ, Lliso I, Tadeo FR (2002) Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiologia Plantarum, 116: 563-572
  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytologist, 197: 696-711
  • Turfan N, Savacı G, Sarıyıldız T (2016) Uludağ Göknarı ve Sarıçam İbrelerinin Bazı Kimyasal Bileşiklerinin Meşcere Yaşına ve Bazı Toprak Özelliklerine Bağlı Olarak Değişimi. Kastamonu Üni., Orman Fakültesi Dergisi, 16(2):583-598
  • Velikova V, Yordanov I, Edrava A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151: 59-66
  • Weinstein LH, Robbins WR (1955) The effect of different iron and manganese nutrient levels on the catalase and cytochrome oxidase activities of green and albino sunflower leaf tissues. Plant Physiol., 30: 27-32
  • Willis RJ (2000) Juglans spp., juglone and allelopathy. Allelopathy Journal, 7: 1-55
  • Witham FH, Blaydes DF, Devlin RM (1971) Experiments in plant physiology. pp 55-56. Van Nostrand Reinhold Company,New York
There are 50 citations in total.

Details

Primary Language English
Subjects Forest Industry Engineering
Journal Section Research Article
Authors

Nezahat Turfan 0000-0002-5753-0390

Gamze Savacı 0000-0003-4685-2797

Temel Sarıyıldız 0000-0003-3451-3229

Publication Date March 15, 2020
Acceptance Date February 26, 2020
Published in Issue Year 2020Volume: 21 Issue: 1

Cite

APA Turfan, N., Savacı, G., & Sarıyıldız, T. (2020). Variation in chemical compounds of walnut (Juglans regia L.) leaves with tree age. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 21(1), 124-134. https://doi.org/10.17474/artvinofd.583170
AMA Turfan N, Savacı G, Sarıyıldız T. Variation in chemical compounds of walnut (Juglans regia L.) leaves with tree age. ACUJFF. March 2020;21(1):124-134. doi:10.17474/artvinofd.583170
Chicago Turfan, Nezahat, Gamze Savacı, and Temel Sarıyıldız. “Variation in Chemical Compounds of Walnut (Juglans Regia L.) Leaves With Tree Age”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 21, no. 1 (March 2020): 124-34. https://doi.org/10.17474/artvinofd.583170.
EndNote Turfan N, Savacı G, Sarıyıldız T (March 1, 2020) Variation in chemical compounds of walnut (Juglans regia L.) leaves with tree age. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 21 1 124–134.
IEEE N. Turfan, G. Savacı, and T. Sarıyıldız, “Variation in chemical compounds of walnut (Juglans regia L.) leaves with tree age”, ACUJFF, vol. 21, no. 1, pp. 124–134, 2020, doi: 10.17474/artvinofd.583170.
ISNAD Turfan, Nezahat et al. “Variation in Chemical Compounds of Walnut (Juglans Regia L.) Leaves With Tree Age”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 21/1 (March 2020), 124-134. https://doi.org/10.17474/artvinofd.583170.
JAMA Turfan N, Savacı G, Sarıyıldız T. Variation in chemical compounds of walnut (Juglans regia L.) leaves with tree age. ACUJFF. 2020;21:124–134.
MLA Turfan, Nezahat et al. “Variation in Chemical Compounds of Walnut (Juglans Regia L.) Leaves With Tree Age”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 21, no. 1, 2020, pp. 124-3, doi:10.17474/artvinofd.583170.
Vancouver Turfan N, Savacı G, Sarıyıldız T. Variation in chemical compounds of walnut (Juglans regia L.) leaves with tree age. ACUJFF. 2020;21(1):124-3.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.