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Highlights

« A new three—parameter model, called the inverted exponentiated Lomax distribution is proposed.

« Essential properties are studied.

« Based on Type | censoring, maximum likelihood estimators and asymptotic confidence intervals are provided.
* A simulation study is done to characterize the mean square errors of estimates for different sample sizes.

« A real data is used to illustrate the application and suitability of the proposed distribution.

Article Info Abstract

A new three-parameter lifetime model, called the inverted exponentiated Lomax (IEL)
Received: 11/08/2018 distribution is proposed. The IEL distribution is the inverse form of the exponentiated Lomax
Accepted: 19/02/2019 distribution. Some properties of the IEL distribution are established. The maximum likelihood

and the asymptotic confidence interval estimators are obtained in presence of Type | censored
samples. Two real data sets are employed to clarify the usefulness and flexibility of the IEL model
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1. INTRODUCTION

The Lomax (L) distribution is a significant and widely used lifetime model. It has been employed in some
areas, as; income, size of towns, queuing theory etc. It utilized for stochastic modeling of minimizing failure
rate. The L distribution can be deduced as a special case from the compound gamma distribution [1]. The
L distribution has been proposed as a substitutional to the exponential distribution for heavy-tailed data sets
[2]. The L distribution has been applied in right censored data [3]. The record values of the L distribution
have been proposed in [4,5]. Bayesian and non-Bayesian estimators of the sample size for L distribution,
depending on Type-I censored (TIC) samples were discussed in [6]. The estimation of the L distribution
under optimum step -stress accelerated life testing has been studied in [7]. The estimation of the L
parameters depending on hybrid censoring samples has been considered in [8]. The estimation of the L
distribution in accelerated life tests was discussed in [9]. Modified and extended versions of the L
distribution are available such as; Marshall-Olkin extended-L distribution [10,11], exponentiated Lomax
(EL) distribution [12], transmuted EL (TEL) distribution [13], extended Poisson-L distribution [14],
exponential L distribution [15], Weibull L distribution [16], power L distribution [17]. Furthermore, EL
geometric distribution, power L Poisson distribution, exponentiated Weibull L distribution and inverse
power L distribution have been discussed in [18-21].

The cumulative distribution function (cdf) and probability density function (pdf) of a random variable B
has a L distribution, respectively, are
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W(b; 4, a)=1-@1+Ab)™*, b,A,a >0, )
and
w(b; A4, @) = Aa(l+ ib)’(‘”l’ , b, A, a>0. )

The EL has the following cdf and pdf (see [12]),

W(b; A, cr,0) = {1- 1+ A0) )", b, 2,,0 >0, @3)
and
W(b; A, ct, 6) = AL+ Ab) “ {1 L+ Ab) )", b, A,0,6 0. @)

In reliability studies, life-tests are performed to observe the life of the experimental units put on test. In
such a life test, some surviving units are eliminated or lost owing to time, cost restrictions and instant needs
of the units for other purposes. Censored samples are known as the incomplete data that obtained from a
life-test. Censored samples provide only portion of the information about the failure time of the units under
study. Consequently, this information should not be neglected or addressed as a failure. Good estimation
parameters would not be possible to make and thus doing a proper analysis in the absence of such data. The
conventional TIC and Type-11 censoring (T1IC) are the two widespread censored samples. TIC data occur
when every unit of a system are spotted up to the date of completion of the inspection. In TIC scheme, the
test is terminated at the fixed time of examination. In TIIC scheme, the test is terminated at a pre-fixed
number items have failed.

Lifetime distributions, in presence of censored sampling schemes, have been gained a great importance
owing to their broad applications in disparate fields. So, our motivation here is to study the parameter
estimation of the new three-parameter lifetime model, based on TIC samples. The new model is the inverse
form of EL distribution; we call it the IEL. The remnant of the paper contains the following sections. The
IEL distribution is provided in Section 2. Statistical properties are given in Section 3. Then, in Section 4,
maximum likelihood (ML) and approximate confidence intervals (Cls) estimators under TIC samples are
derived. Simulation studies are performed in Section 5. In addition, real data applications are performed in
Section 6. The paper closed with a conclusion in Section 7.

2. INVERTED EXPONENTIATED LOMAX DISTRIBUTION

The importance of inverted distributions appears in applications related to many areas such as;
econometrics, biological and engineering sciences, medical research and life testing. So, the main aim here
is to introduce the IEL as the inverse form of the EL distribution.

The cdf of the IEL distribution, denoted by IEL(l,a,H), is derived, using the inverse transformation
Z=1/B, in (3) as follows

F[zA.a.0]= { -1+ }; Aa,0,2>0. 5)

The corresponding pdf is obtained as follows

[z:4,0,0]=a0| ¥/, }{ [+ 4] } [1+%]_H; 20,20, (6)
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The reliability function and hazard rate function (hrf) of the IEL distribution are given, respectively, as
follows:

R[z4,,6]= {1—[1+%]“}

and

4
)

ae,l[u v TH |
72 {1—[1+%T’}

Further, the reversed-hrf and cumulative hrf of Z are obtained as follows

h[z;4,a,0]=

-1

m%{l_[H%}‘“}e Wg@“*
22 {1—{1—[“ %}} }

r[z; 2, a,0]=

and
H[z4,2,0]=-INR[z;4,a,0] = —6’In{1—[1+ %]a}

Figures 1(a) and 1(b) display some potential shapes of the pdf and hrf of the IEL for different values of the
parameters.
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Figure 1. (a) the pdf plots and (b) the hrf plots of IEL for some selected values of parameters

It is clear from Figure 1(a) that the shapes of the IEL pdf are flexible for some selected parameter values.
Also, as seen from Figure 1(b) that the behavior of the hrf are decreasing, reversed J-shaped, increasing and

up-side-down.
3. STATISTICAL PROPERTIES

Statistical properties of the IEL distribution including; moments, quantile measures, Rényi entropy, and
distribution of order statistics (OS) are derived.
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3.1 Moments

The k™ moment about zero for the IEL distribution, using pdf (6), is derived as follows

= Jrao i Jo-[1 4]} e if] e 0

Let y=(1+ i)’“ —>dy=a(l+ i)’“’1izdz.
z VA z
Then Equation (7) convert to
1 k
[y~ o1
=01 | —— | @-y)"dy.
0 1_ ya
By using the geralized binomial series, then
AKZ J)Iy“( y)’ ™ dy,
F(k)
which leads to
= T(k+ i) T((™)+1)T(0
=3 TR )) () +1r() 45 ©®)

= (k) it T((")+0+1)

The k™ central moment ( £, ) of Z is given by

po=E{Z -} = Zk:[—l]i [ﬂ(ﬂ{)‘ﬂ&i-

i=0

To check how the mean and variance change for different parameters values, numerical results are provided
via Mathcad (14). Table 1 gives the mean and variance of the IEL distribution for diverse parameter values.
From Table 1, it can be detected that both values of the mean and variance of the IEL decrease as the values
of @ increase and increase as the values of A and ¢ increase.
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Table 1. Mean and variance of IEL distribution for diverse values of o, Aand @
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0=3 0=4 0=45 6=5
a |A
' 2 ' 2 ' 2 ' 2
H 01 | K 0, Hy O | M4 0,
1 |0.159 0.157 |0.09 0.039 [0.072 0.0230.059 0.015
052 |0.318 0.628 |0.181 0.154 |0.144 0.093(0.118 0.06
3 10477 1.413|0.271 0.347 |0.217 0.209 (0.178 0.136
1 10891 1.771]0.628 0.554 |0.552 0.376 {0.494 0.273
15(2 [1.782 7.084|1.256 2.214 |1.103 1.503|0.987 1.093
3 [2.673 1594|1885 4.982 |1.655 3.381(1.481 2.458
1 |2564 10.011|1.928 3.265 |1.739 2.263 1595 1.679
352 |5.128 40.042 |3.855 13.058 |3.479 9.0513.19 6.717
3 |7.691 90.095 |5.783 29.381 [5.218 20.365[4.785 15.114

Furthermore, we can get the moment generating function from moments in such a way, where, it is easy to
show that

[L(()+ro) |
o F((j+%)+¢9+1) k=

One can obtain
w=M;(0), 1, =

the moments about zero,
M7 (0),....

from the previous equation, where,

3.2 Quantile Function

We can determine the quantile function of Z ~ IEL (4, ,8) with pdf (6), where; Q(u) = F *(u) as:

-1 -1

Qu)=4 {1—(1—u);}“ ~1] 9)

where, u, has the uniform random variable in the interval (0,1). Individually, the first quartile, second and
third quartile are obtained by substituting u=0.25, 0.5 and u=0.75 in (9). The Bowley skewness ( BS ); (see
[22]), based on quantiles, is given by

BS = {Q(0.75)—2Q(0.5)+Q(0.25)} /{Q(0.75)—Q(0.25)}.

Further, the Moors kurtosis ( MK ); (see [23]) is defined as

MK ={Q(0.875)-Q(0.625)+Q(0.375)-Q(0.125)} /{Q(0.75) - Q(0.25)},

where Q (.) denotes the quantile function. The graphs of BS and MK are given below for different values
of the parameters. Figures 2 and 3 display plots of BS and MK for selected values of @ as function of o
and for selected values of « as function of . These plots demonstrate that the BS reduces for increasing
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value of @ for fixed a and when the value of « increases for fixed @. From these figures, we reveal that
the MK curves have considerable flexibility.
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Figure 2. Skewness of the IEL with different values of o and 6
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Figure 3. Kurtosis of the IEL with different values of o. and 0
3.3 Rényi Entropy

Entropy has been utilized in disparate directions, for instance; science and engineering. Furthermore, it is
a measure of variation of the uncertainty. The Rényi entropy of a random variable Z, for§ > 0,and § =1, is
formulated as

I [2]=[1-6]" Iog(_[[ f(z;4,a, 9)]5dz]. (10)
0
The Rényi entropy of IEL distribution is obtained by inserting pdf (6) in (10) as follows
1 % y) s y) —a 90D 1 -5(a+l)
I, [2]=[1-5]"log u(ae[Az}) {1—[1+ A } [1+4]] dz].
Using binomial expansion, we obtain

1. [2]=[1-5]" log [g[—l]j (W;D j(aa;t)éz T dzj.

After simplification, the formula becomes



1376 Amal HASSAN, Rokaya MOHAMED/ GU J Sci, 32(4): 1370-1386 (2019)

| [2]=[1-o] Iog(Z[ [WDJ( pogees (25—1)1“((05]+5(a+1)—25+1)].

INaj+d6(a +1))
3.4 Distribution of Order Statistics

The pdf of the qth OS of the IEL distribution is determined. Let Z(l) < Z( .<Z, be the OS for arandom

sample Z,,Z,,...,Z, of size n from the IEL distribution. It is recognized that, the pdf of the g™ OS (see
[24]) is defined by

f (q)[z]=

1 g-1 n—q
Ban—qep Tl -Fl L]

Utilizing the binomial series expansion for{l— F [z]}nfq , then, f [z]becomes

n-q

s> [ ( . j{F[Z]}“mlf[Z]- (11)

B(g,n- q+1) r)

Folzl=

Inserting cdf (5) and pdf (6) in (11), we obtain

. n—-q g+m-1 m+| q_|_m -1 n-g 1
R el S P A

m=0 i=0

AN

As specifically, the pdf of the smallest OS; Z

(12)

@ can be obtained as:

f[zha6]= nmii ™ [ _ )(nml}e[%z}{l—[u%}_a}

0+6i-1

1+, TH .

As well, the pdf of the largest OS; Z, ., can be obtained as:

(n)

R e U A S

i=0

6+0i-1

1+ }1 .

4. PARAMETER ESTIMATION

The point and approximate Cl estimators of the IEL population parameters, under TIC scheme, are
obtained using ML technique.

Let Z,) <Zy <..<Z

placed on a life test and the test is stopped at specified time T before all n items have failed. The log-
likelihood function, based on TIC, is

be a TIC sample of size r whose life time's follow the IEL distribution (6) are
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r

Inl= In{%ﬂ_r)!r!}rlnaﬂlnm rIn;t—ZZr:In 2, -|a +1]Zrlln S) +[H—1]Zln[1—s(i)‘“]+9[n—r]x
|n[1—(1+%)'1.

where, S(i) =(1+% j so for simplicity, we write S, instead of S(i). The partial derivatives with
0)

respect to the parameters are obtained as:

ol /] —gln s, +[0_1]§(S‘ ) “In(s,)[1-(s, )‘“T+[n ~r]0(1+44) " In(1+ 44 )x

)] @3
e A b
T {l—(h/%)_a T’ (14)

and

aln%gz[%}rgm[l—(si )’“}L [n—r]ln[l—(lju%)a}. (15)

Then the ML estimators of the population parameters are the solution of non-linear Equations (13) - (15)
after setting them equal zeros. These equations are very difficult to obtain, so iterative procedures are used.

Further, in case of interval estimation, the 3x3 observed information matrix I((D)z{luv} for
(u,v)=(a, 4,0)is considered. It is known that, under the regularity condition, the asymptotic properties

of the ML method ensure that: x/ﬁ(ﬁ)—d))% N, (0, I’l(CD)) as N — oo where —%— means the

convergence in distribution, with mean 0 = (0,0,0)T and 3x 3 variance-covariance matrix I’l(CD) then,

the 100(1—0)% Cls for a, A, and @ are given, respectively, as follows

a+2, o’ (&), A+Z,,[c? (i) and §+2, [o* (é),
2 2 2
where 7 is the [100 (1-v/ 2)]th standard normal percentile and o®’s denote the diagonal elements of

2
| (@) corresponding to the model parameters.

5. SIMULATION STUDY

In this section, a numerical study is presented to examine the behavior of the estimators for different
parameter values. The behavior of the estimates of unknown parameters is measured by their mean square
errors (MSEs), relative biases (RBs), standard errors (SEs), lower confidence bound (LCB), upper
confidence bound (UCB), and length of 95% Cls. The numerical procedures are formed as follows:



1378 Amal HASSAN, Rokaya MOHAMED/ GU J Sci, 32(4): 1370-1386 (2019)

Step (1): 1000 random sample of sizes 50, 100, 150, 200, 250 and 300 are selected, these random samples
are generated from the IEL distribution.

Step (2): Values of the unknown parameters («, A, 6) are selected as Setl=(a =0.5,1=0.8,0 = 2),
Set2= (¢=0.3,1=2,0=15), Set3= (¢=151=0.56=0.4)and Set4= (¢ =2,1=1.5,6=0.8).
The termination time is selected as T=0.3.

Step (3): The MSEs, RBs, SEs for all samples sizes and for all selected sets of parameters are computed.

Furthermore, the LCB, UCB and length with confidence level 0.95 for all samples sizes and for all selected
sets of parameters are calculated.

Numerical outcomes are reported in Tables 2 to 5. Based on these tables, we can detect the following about

the performance of the estimated parameters:

1. For all sets of parameters, SEs of all parameters decrease as the sample sizes increase (see Tables 2, 3
and Figure 5).

2. The MSEs and RBs of «r, 4 and @ decrease as the sample sizes increase for different selected sets of
parameters (see Tables 2, 3 and Figure 4).

3. The MSEs and SEs of & are smaller than the corresponding MSEs and SEs for the other estimates of
a and A inalmost all of the cases (see Table 2).

MSEs SEs
0.2000 0.1200
0.1500 0.1000
0.0800
0.0500 0.0400
0.0200
0.0000 0.0000
50 100 150 200 250 300 50 100 150 200 250 300
n n
0=0.5 ==@=\=0.8 9=2 0=1.5 ==@=\=0.5 0=0.4
Figure 4. MSEs for Setl Figure 5. SEs for Set3

4. Asitseems from Figure 6, the SEs of ¢ for all sets of parameters have the smallest values for the same
sample size. Also, it is clear that Set 1 has the smallest SEs corresponding to the other sets of
parameters.

5. Forall sets, it is clear that the length of Cls for the model parameters decreases as sample size increases
(see Tables 4, 5 and Figure 7).

6. Asitseems from Figure 7, the length of «, A and @ decreases as the sample sizes increase for different

selected sets of parameters (see also, Tables 4 and 5).
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a estimate Length
0.0800 0.8000
0.0600 0.6000
0.0400 0.4000
0.0200 0.2000 \‘*—q
0.0000 — @m—@—=0) v ~ 0.0000
50 100 150 200 250 300 50 100 150 200 250 300
n n
—@—>Setl Set) em@m=Set3 —=@=Setd —@—0=2 =@=)\=15 6=0.8

Figure 6. SEs of « for all set of parameters  Figure 7. Lengths for Set4

7. As it seems from Figures 8 and 9, the MSEs of A and & for all sets have the smallest values for the
same sample size. Also, it is clear that the Sets 1 and 2 have the smallest MSEs corresponding to other
sets of parameters.

A estimate 0 estimate
2.0000 0.1000
0.0800
15000 0.0600
1.0000 0.0400

0.5000 \—o_.s‘_‘ oo
-— 0.0000 m
0.0000 ———b——=C 50 100 150 200 250 100
50 100 150 200 250 300

n

=@==Setl Set2 em@umSet3 ==@==Setd =@==Setl Set2 em@umSet3 ==@=Setd

Figure 8. MSEs of A for all set of Figure 9. MSEs of € for all set of
parameters parameters
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Table 2. MSEs , RBs and SEs for Setl and Set 2 of the IEL distribution via TIC

(¢=051=08, 6=2) [(@¢=03 1=2, 6=15)

n |Properties | R . A R R

a A 0 a A 0
MSE 0.0294 |0.0383 |0.0847 |0.0091 |0.4532 |0.0773
50 |RB 0.3410 [0.2435 |0.1392 |0.3142 |0.3354 |0.1803
SE 0.0004 |0.0004 |0.0017 |0.0130 |0.0580 |0.0650
MSE 0.0225 [0.0298 |0.0474 |0.0079 ]0.2339 |0.0225
100 | RB 0.2994 [0.2135 |0.1043 |0.2963 |0.2395 |0.0949
SE 0.0001 |0.0002 |0.0006 |0.0067 |0.0660 |0.0480
MSE 0.0192 |0.0172 |0.0238 |0.0073 |0.2041 |0.0186
150 |RB 0.2770 ]0.1616 |0.0734 |0.2853 |0.2239 |0.0876
SE 0.0000 |0.0001 |0.0003 |0.0005 |0.0590 |0.0370
MSE 0.0183 |0.0099 |0.0070 |0.0070 |0.1704 |0.0154
200 |RB 0.2704 [0.1217 ]0.0362 |0.2781 |0.2046 |0.0803
SE 0.0000 |0.0001 |0.0002 |0.0034 |0.0540 |0.0310
MSE 0.0177 ]0.0080 |0.0043 |0.0069 |0.0876 |0.0082
250 |RB 0.2659 [0.1094 |0.0272 |0.2706 |0.1459 |0.0579
SE 0.0000 |0.0001 |0.0000 |0.0027 ]0.0490 |0.0260
MSE 0.0173 ]0.0028 |0.0012 |0.0065 |0.0498 |0.0047
300 |RB 0.2630 |0.0624 |0.0055 |0.2680 |0.1093 |0.0431
SE 0.0000 |0.0001 |0.0001 |0.0008 |0.0010 |0.0000

Table 3. MSEs, RBs and SEs for Set3 and Set 4 of the IEL distribution via TIC

(a:1.5, A=0.5, 0:0.4) (a:2, A=15 49:0.8)
n | Properties| . . ) . .
a A 0 a A 0
MSE 0.1738 [0.3377 |0.0016 |0.4805 |0.9579 |0.0154
50 |RB 0.2742 |1.1608 |0.0890 |0.3445 |0.6512 |0.1464
SE 0.0680 [0.0280 |0.0180 |0.0760 |0.0600 |0.0410
MSE 0.0227 |0.2545 |0.0004 |0.1607 |0.7940 |0.0080
100 | RB 0.0971 |1.0077 |0.0411 |0.1993 |0.5932 |0.1086
SE 0.0390 [0.0250 |0.0093 |0.0420 |0.0460 |0.0220
MSE 0.0038 |[0.2517 |0.0002 |0.0715 |0.7082 |0.0052
150 | RB 0.0366 |1.0022 |0.0320 |0.1328 |0.5604 |0.0878
SE 0.0290 [0.0240 |0.0065 |0.0310 |0.0400 |0.0150
MSE 0.0017 [0.2343 |0.0001 |0.0603 |0.6830 |0.0041
200 | RB 0.0227 [0.9672 |0.0244 |0.1222 |0.5506 |0.0788
SE 0.0220 [0.0200 |0.0049 |0.0230 |0.0310 |0.0110
MSE 0.0004 [0.2312 |0.0001 |0.0486 |0.6575 |0.0033
250 | RB 0.0520 [0.9611 |0.0213 |0.1098 |0.5403 |0.0714
SE 0.0190 [0.0180 |0.0040 |0.0190 |0.0270 |0.0090
MSE 0.0003 [0.2272 |0.0001 |0.0467 |0.5695 |0.0026
300 | RB 0.0174 [0.9529 |0.0174 |0.1077 |0.5029 |0.0630
SE 0.0160 [0.0150 |0.0033 |0.0170 |0.0240 |0.0075
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Table 4. LCB, UCB and Length of the estimates for Set 1 and Set 2 of the IEL distribution

(¢=051=08, 6=2) [(@¢=03 1=2, 6=15)

n |Properties
LCB uCB Length |LCB uCB Length
a 0.6650 |0.6760 [0.0110 [0.3680 |[0.4200 |0.0520
50 | A 0.6000 |0.6110 |[0.0110 [0.9426 |1.2160 |0.2734
0 1.6980 |1.7450 |0.0470 |1.1030 |1.3560 |0.2530
a 0.6480 |0.6520 [0.0040 [0.3760 |0.4020 |0.0260
100| A 0.6240 [0.6340 |0.0097 |1.3920 |1.6500 |0.2590
0 1.7790 |1.8040 |0.0250 |1.2640 |1.4510 |0.1870
a 0.6370 |0.6400 [0.0022 [0.3770 [0.3940 |0.0180
150| A 0.6670 [0.6740 |0.0067 |1.4360 |1.6680 |0.2320
0 1.8460 |1.8610 |0.0150 |1.2970 |1.4410 |0.1440
a 0.6340 |0.6360 |[0.0014 |0.3770 [0.3900 |0.0130
200 A 0.7000 [0.7050 |0.0055 |1.4850 |1.6970 |0.2120
0 1.9220 |1.9330 |0.0110 |1.3200 |1.4390 |0.1200
a 0.6320 |0.6330 |[0.0010 [0.3760 |0.3860 |0.0110
250 | A 0.7100 [0.7150 |0.0047 |1.6120 |1.8050 |0.1930
0 1.9410 |1.9500 |0.0090 |1.3620 |1.4650 |0.1030
a 0.6310 |0.6320 [0.0008 |0.3760 |0.3850 |0.0088
300| A 0.7480 [0.7520 |0.0039 |1.6930 |1.8690 |0.1760
0 1.9850 |1.9930 |0.0073 |1.3900 |1.4810 |0.0910

Table 5. LCB, UCB and Length of the estimates for Set 3 and Set 4 of the IEL distribution
(a =15 1=05, 6= 0.4) (a =2, A=15, 6= 0.8)

n | Properties
LCB ucCB Length |LCB ucB Length

1.7780 [2.0450 ]0.2670 |2.5400 |2.8380 |0.2990
1.0250 [1.1360 |0.1110 |2.3590 |[2.5950 |0.2360
0.4000 |0.4710 |0.0710 ]0.8380 |0.9970 |0.1590
0.3980 ]0.4350 |0.1520 |2.3160 |2.4810 |0.1640
0.9540 |1.0540 |0.1000 |2.3000 |2.4800 |0.1800
0.3980 ]0.4350 |0.0370 |0.8450 |0.9290 |0.0850
14990 [1.6110 |0.1120 |2.2050 |2.3260 |0.1200
0.9530 |1.0490 |0.0960 |2.2620 |2.4190 |0.1570
0.4000 ]0.4260 |0.0250 |0.8410 |0.8990 |0.0580
1.4900 [1.5780 |0.0880 |2.1980 |[2.2900 |0.0920
0.9430 |1.0240 |0.0800 |2.2650 |2.3870 |0.1230
0.4000 ]0.4190 |0.0190 [0.8410 |0.8850 |0.0440
1.4710 |1.5440 |0.0730 ]2.1820 |2.2570 |0.0760
0.9460 |1.0150 |0.0700 |2.2580 |2.3630 |0.1050
0.4010 |0.4160 |0.0160 |0.8400 |0.8750 |0.0350
1.4750 [1.5360 |0.0610 |2.1820 |2.2490 |0.0670
0.9470 |1.0060 |0.0590 |2.2070 |2.3010 |0.0940
0.4010 ]0.4130 |0.0130 |0.8650 |0.8650 |0.0290
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100
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6. REAL DATA APPLICATIONS

We fit the IEL distribution to two different real data sets and we check the behavior with those of the inverse
L (IL), TEL, inverted exponentiated Rayleigh (IER), inverse Weibull (IW) and Kumarswamy
exponentiated L (KEL). In each real data set, the ML estimates and their corresponding SEs of the model
parameters are obtained. The model selection is conducted using; -2 log-likelihood (-2logl), Akaike
information criterion (AIC), the consistent AIC (CAIC), Bayesian information criterion (BIC), Hannan-
Quinn information criterion (HQIC), Cramer-von Mises (W) statistic, Kolmogorov-Smirnov (K-S)
statistic, and Anderson-Darling (A") statistic. However, the better distribution corresponds to the smaller
values of the previous measures. Furthermore, the histogram and the estimated pdf for the models are
displayed for each data set. Moreover, the empirical cdf and estimated pdf for the models are displayed for
both real data.

Data Set 1: The first data set represents the number of million revolutions of the 23 ball bearings before
failure ([25]). Table 6 gives the ML estimates of the model parameters and their SEs (in the parentheses)
for 23 ball bearings before failure. The results in Table 7 indicate that the IEL model is suitable for this
data set based on the selected criteria. The IEL model has the smallest goodness of fit measures.

Table 6. ML estimates and SEs for the first data

Distribution | ] 0 a 7 B a b
IEL 51.071 12.299 | 5.018 - - - -
(10.069) |(1.558) |(1.696) |- - - -
1L 119.394 |- 0.461 - - - -
(299.793) | - (0.892) |- - - -
TEL 0.491 2.671 |21.538 0.036 |- - -
(0.547) | (1.163) | (27.976) | (0.046) |- - -
IER - - 0.605917 | - 946.054337 | - -
- - (0.146) |- (325.895) |- -
W 48.575 - 1.834 - - - -
(5.866) |- (0.269) |- - - -
KEL 2.325 0.565 |48.382 - - 1.282 |31.478
(7.064) [(0.44) |(65.078) |- - (1.724) | (75.744)
Table 7. Goodness of fit measures for the first data
Distribution | -2LogL | AIC BIC CAIC [|HQIC w* A* |K-S \F/:JUB
IEL 226.046 | 232.046 | 235.452|233.309 | 232.902 | 0.030{0.190 | 0.088 | 0.994
1L 243.577 | 247.577|249.848 | 248.177 | 248.149 | 0.274 1 3.927 [ 0.305|0.027
TEL 228.764 | 236.764 | 241.306 | 238.986 | 237.906 | 0.048 | 0.354 {0.108 | 0.950
IER 238.411(242.411|244.682|243.011(242.982(0.117|1.297 {0.276]0.060
1w 231.561 | 235.561|237.832(236.161|236.132(0.066|0.520 {0.190]0.810
KEL 226.120(236.120|241.797|239.649 | 237.547{0.031|0.192 | 1.000| 0.000

It is also clear from Figure 10 that the IEL distribution provides a better fit and therefore be one of the best
models for this data set.
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PDF Plot for ball Data COF Plot for ball data

Figure 10. Estimated pdfs and cdfs of models for 23 ball bearings before failure

Data Set 2: The second data set represents remission times (in months) of a random sample of 128 bladder
cancer patient’s [26]. Table 8 gives the ML estimates of the model parameters and their SEs (in the
parentheses) for the 128 bladder cancer patient’s. The results in Table 9 indicate that the IEL model is
suitable for this data set based on the selected criteria. The IEL model has the smallest values corresponding
to other models.

Table 8. ML estimates and SEs for the second data

A A A A

Distribution | ] ) a 4 ,3 a b
IEL 30.214 |5.079 1.083 |- - - -
(3.464) | (0.046) | (0.106) | - ; ; -
1L 1.531 - 2,782 |- - - -
(0.304) |- (0.818) | - ; ; -
TEL 0.257 6.482 1.107 ]0.02 - - -
(0.315) |(1.098) |(0.231) | (0.001774) |- - -
IER - - 0.183 |- 0.094 - -
- - (0.018) | - 0.02) |- -
W 2.287 - 0.69 - - - -
(0.312) |- (0.042) | - ; ; -
KEL 3.172 0.087 1.43 - - 2.138 78.45
(5.013) (0.038) |(0.297) |- ; (0.444) | (29.662)

Table 9. Goodness of fit measures for the second data

Distribution | -2LogL | AIC BIC CAIC |HQIC w* | A* |K-S |P-value
IEL 801.096 | 807.096 | 815.652 | 807.290 | 810.573 | 0.051 | 0.341|0.046 | 0.948
IL 824.528 | 828.528 | 834.232 | 828.624 | 830.845|0.414|3.131|0.103 | 0.133
TEL 842.018 | 850.018 | 861.426 | 850.343 | 854.653 | 0.058 | 0.377 | 0.256 | 0.000
IER 938.469 | 942.469 | 948.174 | 942.565 | 944.787 | 1.634|8.940| 0.313 | 0.000
W 857.352|861.352|867.056 | 861.448 | 863.669 | 0.944 | 5.508 | 0.995 | 0.005
KEL 816.565 | 824.565|835.973 | 824.891|829.201 | 0.382 | 2.163 | 1.000 | 0.000
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POF Plot far remission times data COF Plotfor remission times data

Figure 11. Estimated pdfs and cdfs of models for 128 bladder cancer patient’s

It is also clear from Figure 11 that the IEL distribution provides a better fit and therefore be one of the best
models for this data set.

7. CONCLUDING REMARKS

In this paper, three—parameter model, called the inverted exponentiated Lomax distribution is proposed and
discussed. Some of statistical properties of the subject model for instance, quantile measures, moments,
Rényi entropy and distribution of OS are obtained. The ML method is implemented for estimating
population parameter depending on TIC sample. Also, the approximate Cls are obtained. The simulation
study is implemented to check the performance of the estimators. Practical relevance and applicability of
the IEL distribution are illustrated via real data sets. The real life application indicates that the IEL model
produces a good fit than the other competitive models.
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