(_/
NTMSCI 4, No. 4, 276-284 (2016) BISKA <2

~ NewTendsinMathematcal Sciences

http://dx.doi.org/10.20852/ntmsci.2016.114

Ricci Solitons in f-Kenmotsu Manifolds with the
semi-symmetric non-metric connection

Tolga Demirli, Cumali Ekici, Ali Gorgulu
Eskisehir Osmangazi University, Department of Mathensa@omputer, 26480 Eskisehir-Turkey

Received: 25 November 2016, Accepted: 17 December 2016
Published online: 22 December 2016.

Abstract: In this study, some curvature conditions are given for 3atigionalf-Kenmotsu manifolds with the semi-symmetric non-
metric connection. It is showed that this manifold is notajw/é -projective flat. Moreover, it is informed that if 3-dimeosal f-
Kenmotsu manifold with the semi-symmetric non-metric aeetion is Ricci semi-symmetric and regular, then the maaife an
Einstein manifold. Finally, it is proved that 3-dimensibrfakenmotsu manifold with the semi-symmetric non-metric ection is
also ann-Einstein manifold and the Ricci soliton defined on this nfiagldiis named expanding or shrinking with respect to valuet o
andA constant.
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1 Introduction

In 1983, Sharma and Sinha started to study of the Ricci sdlito contact geometrylp|. Later Mukut Mani Tripathi,
Cornelia Livia Bejan and Mircea Crasmareanu and otherssitely studied Ricci solitons in contact metric manifolds
[3], [17]. Kenmotsu studied a class of contact Riemannian manifeltsfying some special conditions and this
manifold is known as Kenmotsu manifolds, in 1972 [

The manifoldM with (¢,&,n,g) structure is said to be normal|ip, ¢] + 2dn ® & = 0 and also it is said to be almost
cosymplectic ifdn = 0 andd® = 0. If it is normal and almost cosymplectic, it is called cogpfettic [18]. Olszak and
Rosca looked intof- Kenmotsu manifolds, explained in section 2, in a geometspect and gave some curvature
conditions [L1]. Besides this the other mathematicians proved that a Riggimetric f -Kenmotsu manifold is an
Einstein manifold. In 2010, authors show that Ricci senmgetrica-Kenmotsu manifolds are also Einstein manifolds
[12). As we are talking about-Kenmotsu manifold, we also mean an almost contact metriaifald which is normal
and locally conformal almost cosymplectic.

In 2012, Nagaraja ve Premalatha studied exclusively abadi Rolitons on Kenmotsu manifold4(]. Agashe and
Chafle, Liang, Pravonovic and Sengupta, Yildiz and Cetiakstudied semi-symmetric non-metric connection in
different ways 1], [8], [13], [14] and [19].

The paper is organized as follows: After introduction inteect 2, we give some basic notions used in this study. In
section 3, we introducd —Kenmotsu manifolds. In the next section, we stuflyKenmotsu manifolds with the
semi-symmetric non-metric connection and show that thigifolal is not alwaysé —projective flat. In section 5, we
inform that if 3-dimensionalf-Kenmotsu manifold with the semi-symmetric non-metric mection is Ricci
semi-symmetric and regular, then manifold is also callatstgin manifold. In section 6, it is proved th&tKenmotsu
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manifold with the semi-symmetric non-metric connectionni€Einstein manifold and Ricci soliton defined on this
manifold is classified with respect to valuesfodndA constant.

2 Preiminaries

LetM be a 3-dimensional differentiable manifold with an almost contsteucturée, &, n,g) satisfying

n)=1¢¢=0, n (¢X) =0,
g(X,0Y) =—g(@X.Y), ¢?(X)=-X+n(X)E, 1)
g(X,&)=n(X), g(@X,9Y) =g(X,Y)—n(X)n(Y)

for any vector fieldX, Y € x (M), wheregis a(1,1) tensor field£ is a vector fieldn is a 1-form andy is the Riemannian
metric. TherM is called an almost contact manifold. For an almost contaatifald M, it follows that [18]

(Ox@)Y = OxoY —@(0xY),

(Oxn)Y = Oxn (Y) = n (OxY). )

Let R be Riemann curvature tens@&Ricci curvature tensoQ Ricci operator andey, ...,en} be orthonormal basis of
Tp(M). ¥X,Y € x (M) it follows that [6]

S0CY) = S a(Ri@.XV.e). @)
Q) =~ 3 Rie. e @

and
SX.Y) = 9(QX).Y). ©)

If the Ricci tensoiS of an f-Kenmotsu manifoldV satisfies the condition

S(X,Y) = ag(X,Y)+Bn (X)n (Y) (6)

wherea, [ are certain scalars, thévh is said to bep Einstein manifold. If3 = 0, thenM manifold is Einstein manifold

[5].
In a three dimensional Riemann manifold the curvature teRs$® described as

R(X,Y)Z=S(Y,Z) X —g(X,Z2)QY+g(Y,Z) QX —S(X,2)Y — g 9(Y,Z2)X—g(X,2)Y] (7
whereSis the Ricci tensoiQ is the Ricci operator andis the scalar curvature for 3-dimensiohalimanifold [19].

On the other hand, let M be amdimensional Riemannian manifold with the Riemannian emtion . A linear
connectiori] onM is said to be a semi-symmetric connection if its torsiondefisof the connection satisfies

TXY)=n(Y)X=n(X)Y (8)
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wheren is a non-zero 1-form andl + 0.

If moreoverﬁg = 0 then the connection is called a semi-symmetric metric eotion. Ifﬁg # 0 then the connection is
called a semi-symmetric non-metritq).

Forn > 1, M is locally projectively flat if and only if the well known pregtive curvature tensd? vanishes. Projective
curvature tensol is defined by

P(X,Y)Z:R(X,Y)Z—2—1n{S(Y,Z)X—S(X,Z)Y} 9)

for any X,Y,Z € x (M), whereR is the curvature tensor ar@ilis the Ricci tensor of Mg). If P(X,Y)& = 0 for any
X,Y € x (M), M manifold is called€ —projective flat [.8].

According to P], a Ricci soliton is a natural generalization of an Einsteietric and is defined on a Riemannian
manifold (M, g). A Ricci soliton is a triplg(g,V, A ) with g a Riemannian metrid a vector field, and a real scalar such
that

Lvg+2S+2Ag=0 (20)

whereSis a Ricci tensor oM andLy denotes the Lie derivative operator along the vector field@he Ricci soliton is
said to be shrinking, steady, and expanding accordinglyismegative, zero, and positive, respectively.

3 f-Kenmotsu manifolds

Let M be a 3-dimensional almost contact manifoldd,®,&,n,9) is an f-Kenmotsu manifold if the covariant
differentiation ofgp satisfies 19],
(Ox@)Y = f(9(eX,Y) & —n(Y) oX) (11)

wheref € C* (M,R) such thad f An =0. If f = a =constant# 0, the manifold is said to be am—Kenmotsu. Iff =1,
then 1-Kenmotsu manifold is also called Kenmotsu maniftflcf2 + # 0, thenf-Kenmotsu manifold is said to be
regular, wherd’ = & f [4]. By using (1) and @), it can be shown that

(Oxn)Y = fg(eX, @Y). (12)

From (11), we have 16|
Oxé = (X=n(X)$). (13)

Also from (6), in a 3—dimensionalf -Kenmotsu manifold we have

R(X,Y)Z = (g 421242 ) (X AY) — (£+3f2+3f’> (0 (X)(EAY)Z+n (V) (X A €)Z} (14)
and
S(X,Y) = (% 24 f)g(X,Y) — (% +31243 )0 (X)n (Y). (15)

Thus from (L5), we get
S(X,&)=—2(f2+ ) n(X) (16)
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wherer is the scalar curvature o andf’ = & f [17].

Using (14) and (L5), we obtain

R(X,Y)&=—(f2+ 1) [n(Y)X—n (X)Y], 17)
R(EX)E=—(f2+ 1) (n(X)E—X), (18)
sz(£+f2+f’)x—(£+3f2+3f’)n(X)z. (19)

It can be easily checked out fror)(by using (7) and (L6) that a 3-dimensional-Kenmotsu manifold is alwayé§-
projectively flat [L8].

4 f-Kenmotsu M anifolds with the semi-symmetric non-metric connection

Let [ be a linear connection arid be a Riemann connection of &aKenmotsu manifoldM. This [ lineer connection
defined by
OxY =0OxY+n(Y)X (20)

wheren —1-form and any vector field&, Y € x (M), denotes the semi-symmetric non-metric connectidn [
For f —Kenmotsu manifold with the semi-symmetric non-metric aection, using 2), (11) and 0) we have

(Ox@)Y = F(g(PX,Y) & —2n (Y) ¢X) (21)

for any vector fieldX, Y € x (M), whereg is a(1,1) tensor field§ is a vector field; is a 1-form andf € C* (M,R)
such thad f An = 0. As a consequence dff A n =0, we get

df = f' andX (f) = f'n (X) (22)

where f' = &f [11]. If f = a = constant# 0, then the manifold is ar-Kenmotsu. If f = 0, then the manifold is
cosymplectic. Anf—Kenmotsu manifold with the semi-symmetric non-metric ceetion is said to be regular if
f24f+2f #0.

By using @) and 1), we get B
Ox§ = f(2X=n(X)¢). (23)

From @), (20) and (L2), we have B
(Oxn)Y = fg(eX, @Y). (24)

The curvature tensdr of an f-Kenmotsu manifoldV with respect to the semi-symmetric non-metric connecfiois
defined by
R(X,Y)& = OxOv& — OyOx& — Oix v €. (25)

With the help of 20), (23) and (L3), we get

OxOvE =X (£)2Y =X (f)n (Y)E+2f0xY — EXn (V) E—n (V) X +n(Y)n(X) f2E+fn(Y)X  (26)
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and
—EI[X,Y}E = =2f0xY -2fn(Y)X+2fOyX+2fn (X)Y+ fXn(Y)E - fYn(X)&. (27)

Using 26) and @7) in (25), we get
ROX,Y)E=X(H)2Y =X(F)n(Y)E =Y (F)2X+Y () n (X)E+ 20 (X)Y — £2n (V)X 4+ fn (X)Y — fn (Y)X. (28)

By using @2) in (28), it follows that

R(X,Y)E = — (f2+f+2f) (n(Y)X—n(X)Y). (29)
From 29), we have
R(EY)E=—(F2+f+2f) (n(Y)E-Y), (30)
and
R(X,6)& = — (f2+f+2") (X—n(X)€&). (31)

Taking the inner product wité in (29), we have
gR(XY)&,2) =~ (f2+f+2f') (0 (V)g(X.Z) —n (X)g(Y.2)) (32)
which is used in the proof of following lemma.

Lemmal. Let M be a3-dimensional f-Kenmotsu manifold with the semi-symmaeitoic-metric connectionS Ricci
curvature tensor an€ Ricci operator. Then

S(X,&) = —2(f2+ f+2f")n(X), (33)

and
Q¢ = —2(f2+f+2f) €. (34)

Proof.Contracting withy andZ in (32) and summing ovdr=1,2, ..., n, from (3) expression the proof 08@) is completed.
Then also usingH) and @) in (33), the proof of 84) is completed.

Lemma 2. Let M be a3-dimensional f-Kenmotsu manifold with the semi-symmeioic-metric connectiorng scalar
curvature tensorS(X, Y) Ricci curvature tensor an@X Ricci operator. Then it follows that

S(X,Y) = (% 244 260g(X,Y) — (% 4312431 +6f)n (X)n (Y) (35)

and
sz(%Jrf2+f’)x—(£+3f2+3f’)n(v)z. (36)

Proof. Contracting 81) with Y, we get
9RO, E)E,Y) == (24 F42f) (g(X.Y) = n (X)n (Y)) (37)
Using 33), puttingX = &,Y =X, Z=Y in (7) and contracting witt§ , we obtain

R(E.X,Y,&) = S(X,Y) —2(f2+  +2f/) g(Y,X) - % (90,Y) = n (X)n(Y))

: (39)
+2(f2H 426 n(X)n(Y)+2(F2+ F+2) n (X)n (Y).
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With the help of 87) and @38) proof of (35) is completed.
Using(35) and(5), it's verified that
A T .2 / r 2 /
g (QX— (5 F2+F421)X — (5+312431+6') (X) E],Y) —0. (39)

SinceY # 0in (39), the proof of(36) is completed.

Example 1. (a 3-dimensional f-Kenmotsu manifold with the semi-symmetric non-metric connection.) We consider
the 3-dimensional manifoll = {(x, y,2) € R3,z# O}, where(x,y, z) are the standart coordinatesRA. The vector fields

; B, B,
22 oA e= L
Q=7 =T e

are linearly independent at each pointfLet g be the Riemannian metric defined by

Let n be the 1-form defined by) (Z) = g(Z,e3) for any Z € x(M). Let ¢ be the(1,1) tensor field defined by
P(e1) = —€2, ¢(&2) = €1, P(&3) = 0.

Then using linearity ofp andg we have

nes)=1 ¢2Z)=-Z+n(2)es
9(9Z, W) = g(Z,W) —n(Z)n (W)

foranyZ,W € x(M). Now, by direct computations we obtain

2 2
ere] =0, [ &3] = <& lere3] = —2en

By using these above equations we ded] [

2 2 .
Oe& = Ee3 andDae3:—Eei,| =12

(40)
Ue,€1 = Ue € = Hey €1 = He, € = He, €3 =0,
Now we consider at this example for semi-symmetric non-imetmnection. Fron20) and(40),
~ 2 ~ 2
Uee =-ezandlges=—-e+@
4 V4 (41)
Og€j = Ue,6 = 0 andle,e3 = €3.
wherei # j = 1, 2. It's known that
R(X,Y)Z = OxOyZ - OyOxZ — Oy Z. (42)
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By using(41) and(42) we obtain

_ 2 4 _
R(e.)e = (5~ 5)a, R(e,e)ej =0, (43)
~ 2 6
R(es.&)e = (5~ 2)
wherei # j =1,2.
From(3) and(43), it's verified that
~ 10 2 . = 12 4
S(a,a):—§+2+l,|:1,2.andS(e3,e3):—?+E. (44)

Now from (9), (43) and @4) it's easily found that

~ ~ 2 .
P(e,e)e3=0, P(e,es)esz—ge, i=1,2.

This leads to the following:

Lemma 3. A 3-dimensional f-Kenmotsu manifold with the semi-synimeton-metric connection isiot always
& —projectively flat.

5 Ricci-semisymmetric 3-dimensional f-Kenmotsu M anifoldswith the semi-symmetric
non-metric connection

An f- Kenmotsu manifold with the semi-symmetric non-metricrection is called as Ricci-semisymmetric if

R(X,Y).S=0
holds onM.Then
S(R(X,Y)U,V) +SU,R(X,Y)V) =0. (45)
In (45) replacingX andU by &, we get
SR(E,Y)E,V)+S(E,R(E,Y)V) =0. (46)

Then with the help of30) and @1), it's clarified that
(F24+f+2f) [ (Y)S(E,V) = S(Y,V)] + (f2+ f +2f") [g(Y,V)S(E,&)-n (V) S(E,Y)] = 0. (47)

By using @3) in (47), we obtain
S(Y,V) = —2(f2+ f+2f)g(Y,V). (48)

This leads to the following:

Theorem 1. Let M be a3-dimensonal regular, non-cosymplectic f-Kenmotsu méhifdgth the semi-symmetric non-
metric connection is Ricci semi-symmetric. Then manifbkhi Einstein manifold.
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6 Ricci Solitonsin f-Kenmotsu M anifolds with the semi-symmetric non-metric connection

Let M be a 3-dimensionaf-Kenmotsu manifold with the semi-symmetric non-metric mection.and/ be pointwise
collinear with¢ (i.e.V = b&, whereb is a function). TherfLyg+ 2S5+ 2Ag) (X,Y) = O, implies

bg(OxE,Y) + (Xb) 1 () +ba(X,0vE) + (YB) 1 (X) +25(X,Y) + 2Ag(X,Y) = 0. (49)
Using @3) in (49), we get
4bfg(X,Y) —2fbn (X)n (Y)+ (Xb)n (Y) + (YB) N (X) +25(X,Y) +2Ag(X,Y) = 0. (50)
With the substitution o with & in (50), it follows that
(Xb)+ (Eb)n (X)+ 200 (X) — 4 (2+ f+2f') 1 (X) +2An (X) =0. (51)

Again replacingX by & in (51) shows that

EB=2(f2+f+2f)—bf-A. (52)
Putting 62) in (51), we obtain
db= [2(f2+ f+2f') —bf—A]n. (53)
By applyingd on (63), we get
[2(f2+ f+2f)—bf—A]dn =0. (54)
Sincedn # 0 from (54), we have
[2(f2+ f+2f)—bf-A]=0. (55)

By using 63) and 65), we obtain thab is a constant. Hence from(@) it is verified

S(X,Y)=—(2bf+A)g(X,Y)+bfn(X)n(Y). (56)

which implies thaM is ann-Einstein manifold. This leads to the following:

Theorem 2. If in a 3-dimensional f-Kenmotsu manifold with the semi-symmatiicmetric connection, the metric g is a
Ricci soliton and V is a pointwise collinear with then V is a constant multiple §fand g is ann-Einstein manifold of
the form 66) and Ricci soliton is expanding or shrinking accordinglas- 2(f2 +f+ 2f’) —bf is positive or negative.

7 Conclusion

In this study, we gave some curvature conditions for 3-disi@ral f -Kenmotsu manifolds with the semi-symmetric non-
metric connection. We also showed that these manifolds @ralwaysé -projective flat. If 3-dimensional-Kenmotsu
manifold with the semi-symmetric nhon-metric connectioRisci semi-symmetric and regular, then the manifold is an
Einstein manifold. Finally, we proved that 3-dimensioriakenmotsu manifold with the semi-symmetric non-metric
connection is also an-Einstein manifold and the Ricci soliton defined expandingrainking on this manifold is named
with respect to values of andA constant.
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