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Buckling and Free Vibration Analysis of Laminated Functionally Graded Carbon Nanotube-

Reinforced Rectangular Plates 

 
A R T I C L E  I N F O  

 
A B S T R A C T  

 

This study investigated the buckling and free vibration of functionally graded 

carbon nanotube-reinforced composite (FG-CNTRC) rectangular plates 

under uniaxial loads. The current study researches the buckling and vibration 

behavior of CNTRC plates using single-walled CNTs (SWCNTs). SWCNTs 

were accepted to be regular and aligned, with a consistent pattern. CNT 

topologies were studied, including four different FG distributions of CNTs 

over thickness. Hamilton's principle was used to get the equations of motion 

for composite plates. The equations obtained for the solution were obtained 

by using the Navier solution method to solve the equation of motion. The 

results were compared using the FEM (Ansys) approach. The findings were 

proved to be compatible with FEM (Ansys). Then, it was understood from 

the parametric work that volume fractions, thickness ratios and FG 

distributions have a significant effect on the buckling and vibration response 

of FG-CNTRC plates. The findings were presented with graphs and tables. 
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1.  Introduction 

FG-CNTRC is an important material in the 

production of high-tech engineering components. It 

offers increased functionality and efficiency in a 

variety of applications. Recent advancements in 

nanotechnology enable the use of CNT materials in 

high-tech devices, making further research necessary 

to determine their engineering efficiency. Many 

scientists have conducted various studies to 

investigate the mechanical effects on FG-CNTRC 

reinforced plate-shell and beam in order to select the 

most suitable material for their applications. Yas et al. 

[1] investigated free vibrations and buckling in 

nanocomposite material Timoshenko beams 

reinforced with single-walled carbon nanotubes 

(SWCNTs) laying on an elastic basis. Lei et al. [2] 

examined the buckling behavior of thick skew plates 
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reinforced by functionally graded carbon nanotubes 

(FG-CNTs). Kumar and Srinivas [3] conducted a 

computational investigation of the dynamic and static 

response of beams built of FG-CNTR. Civalek et al. 

[4] presented the free vibration and buckling effects 

of CNTR cross-ply plates. Moradi-Dastjerdi and 

Malek-Mohammadi [5] used improved plate theory to 

examine free vibration and buckling behavior of FG-

CNT plates using the refined shear deformation plate 

theory. Nguyen et al. [6] developed an analytical 

solution built on a 3D Finite Element model and Third 

Order Shear Dimensional theory. Foroutan et al. [7], 

nonlinear analysis of sandwich cylindrical panels 

whose core region consists of FG-CNTRC material 

was performed. Efraim and Eisenberger [8] presented 

exact vibration analysis of variable thickness thick 

annular isotropic and FGM plates. Nguyen, Karam 

and Bonnet [9] study on first-order shear deformation 

plate models for functionally graded materials. 

Zhang, Lei and Liew [10] researched buckling 

analysis of FG-CNT reinforced composite thick skew 

plates using an element-free approach. Kiani [11] 

presented free vibration of functionally graded carbon 

nanotube reinforced composite plates integrated with 

piezoelectric layers. Kiani [12] researched shear 

buckling of FG-CNT reinforced composite plates 

using Chebyshev-Ritz method. Kiani [13] presented 

buckling of FG-CNT-reinforced composite plates 

subjected to parabolic loading. Mota et al. [14] 

investigated porous functionally graded plates: an 

assessment of the influence of shear correction factor 

on static behavior. Sahan [15] suggested an 

alternative formulation for transient analysis of cross 

ply laminated shells. Sahan [16] investigated the 

dynamic analysis of linear viscoelastic cross-ply 

laminated shallow spherical shells. Dogan [17] 

researched free vibration and mode-shape analysis of 

plates and shallow shells. Dogan [18] investigated the 

mode-shapes behavior of double-curved shells. 

Dogan [19] analyzed the force vibration of laminated 

composite shells on elastic foundations. Dogan [20] 

presented the buckling analysis of symmetric 

laminated composite plates. Dogan [21] studied on 

buckling analysis of laminated plates. Dogan [22] 

investigated the responses of FGM plates for the 

viscoelastic case under the dynamic and quasi-static 

loads. Dogan and Sahan [23] investigated the 

viscoelastic damping response of FG-CNT shells. 

Dogan [24] researched dynamic response of 

laminated functionally graded carbon nanotube-

reinforced composite viscoelastic plates. Dogan [25] 

presented dynamic and quasi-static behavior of 

laminated FG-CNTRC viscoelastic double-curved 

shells. An alternative solution method for the damped 

response of laminated Mindlin plates was presented 

by [26]. The dynamic analysis of viscoelastic 

functionally graded nanoplate was analysed by [27]. 

The inertio-elastic instability of functionally graded 

nanotube-reinforced composite disks was studied by 

[28]. A powerful numerical approach for the 

axisymmetric bending response of shear deformable 

two-directional functionally graded (2D-FG) plates 

with variable thickness was presented by [29]. 

Transient analysis of orthotropic, viscoelastic thick 

plates in the Laplace domain was investigated by 

[30]. Rasoli et al. [31] studied on static analysis of 

functionally graded porous beam-column frames by 

the complementary functions method. Xiao et al. [32] 

researched electric field-assisted alignment of carbon 

nanotubes in the interlayers of CFRP composites to 

enhance the properties. Cao et al. [33] investigated 

mechanical performance of diamine silane modified 

carbon Nanotubes reinforced epoxy resin composites.  

In this study, the buckling and free vibration analysis 

of laminated FG-CNTRC plates was investigated. 

The FG-CNTRC material was put into the plate both 

layered and at an angle within each layer of CNT 

efficiency parameters (η) and volume fractions 

(Vcnt*) for various micromechanical models (Type 

1-2-3) include were also added as parameters during 

the analyses. Buckling analysis of the FG-CNTRC 

plate, which combines all these features, has been 

carried out for the first time in the published works. 

The work progresses in the following stages: Firstly, 

the study's theoretical foundation was established. 

Secondly, critical buckling load values and free 

vibration values were found using Ansys and the 

approach used in this work for a variety of CNT FG 

distributions over the plate’s thickness, and values 

found were compared to the results obtained using 

ANSYS. The approach employed in this study is 

totally congruent with the results obtained using the 

ANSYS. In the third step, a parametric study was 

performed to better comprehend the effect of 

thickness ratios and volume fractions on various 

micro-mechanical models and FG-CNT 

configurations. 

2.  FG-CNT Material Models 

FGM is obtained by changing the composite material 

properties in line with the thickness of the plate. FG-

CNT materials can be developed by adding carbon 

nanotubes to the element. Automotive, aerospace, 

biomedical nuclear, mechanical and civil engineering 

etc. FG-CNT materials are used in all areas. Figure 1 

shows various material configurations of a 

rectangular FG-CNTRC plate. This study uses CNTs 

embedded in a polymer matrix. The CNTRC plate is 

made up of isotropic matrix and SWCNTs. 
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𝐸11 = 𝜂1 𝑉𝑐𝑛𝑡 𝐸11
𝑐𝑛𝑡 + 𝑉𝑚 𝐸𝑚       (1a) 

𝜂2 

𝐸22
=

𝑉𝑐𝑛𝑡

𝐸22
𝑐𝑛𝑡 +

𝑉𝑚

 𝐸𝑚
          (1b) 

𝜂3 

𝐺12
=

𝑉𝑐𝑛𝑡

𝐺12
𝑐𝑛𝑡 +

𝑉𝑚

 𝐺𝑚
          (1c) 

Where, 𝐸11
𝑐𝑛𝑡, 𝐸22

𝑐𝑛𝑡 and 𝐺12
𝑐𝑛𝑡 represent the elasticity 

and shear modulus, respectively. Em and Gm 

symbolize the elasticity and shear modulus of the 

matrix material, respectively. Equation (3) includes 

the CNT efficiency parameters ηi (i=1,2,3). Vcnt is the 

volume fractions of a CNT. Vm is the volume 

fractions of matrix material. There is Vm+Vcnt = 1 

formulation relationship between them. The mass 

density (ρ) and Poisson's ratio (ν) may be described 

as follows: 

𝜈 = 𝑉𝑐𝑛𝑡𝜈
𝑐𝑛𝑡 + 𝑉𝑚𝜈𝑚         (2a) 

𝜌 = 𝑉𝑐𝑛𝑡𝜌
𝑐𝑛𝑡 + 𝑉𝑚𝜌𝑚        (2b) 

The Poisson's ratios are , 𝜈𝑐𝑛𝑡, 𝜈𝑚 whereas the matrix 

and CNT densities are 𝜌𝑚 𝜌𝑐𝑛𝑡 respectively. The 

distribution of CNTs in the plate's thickness direction 

illustrated in Figure 1 is presumed to be as follows: 

 𝐹𝐺 − 𝑈𝐷−  ∶      𝑉𝑐𝑛𝑡 = 𝑉𝑐𝑛𝑡
∗            (3a) 

𝐹𝐺 −  𝑂−  ∶      𝑉𝑐𝑛𝑡 = 2(1 −
2|𝑧|

ℎ
)𝑉𝑐𝑛𝑡

∗       (3b) 

𝐹𝐺 − 𝑋−  ∶      𝑉𝑐𝑛𝑡 = 2(
2|𝑧|

ℎ
) 𝑉𝑐𝑛𝑡

∗     (3c) 

𝐹𝐺 − 𝛥−  ∶      𝑉𝑐𝑛𝑡 = (1 +
2𝑧

ℎ
)𝑉𝑐𝑛𝑡

∗        (3d) 

The volume fraction of CNTs, denoted by V*cnt, is 

stated as follows: 

𝑉𝑐𝑛𝑡
∗ = 

𝑊𝑐𝑛𝑡

𝑊𝑐𝑛𝑡+(𝜌𝑐𝑛𝑡 𝜌𝑚⁄ )(1−𝑊𝑐𝑛𝑡)
    (4) 

Wcnt is the mass fraction of CNTs. 

3.  Theoretical Formulations 

In plate theories, the mid-surface deflections of the 

plate can be written depending on the plate thickness. 

These thick plate theories may be higher order or not. 

In the current study, first order shear deformation 

theory (FSDT) was used. Equation 5 explains how 

FSDT works. FSDT takes into account both rotational 

inertia and transverse shear. The (ψx, ψy) and (u, v, 

w) symbolize the rotations and deflections of each 

point in the laminated plate, respectively. The 

deflections at the central surface of the plate are called 

wo, vo and uo, they are extremely minor compared to 

the thickness. Equation 5 allows the assumptions εz 

and σz equal zero to be applied. The vertical 

deflection in the z direction (w) is calculated using x, 

y and z directions. The shear angles and strains can 

be expressed at any location using median surface 

stresses, shear angles, and curvature changes 

(Equation 6). 

𝑢(𝑥, 𝑦, 𝑧)=u
0
(x, y)+z 𝜓𝑥 (x, y)       (5a) 

𝑣(𝑥, 𝑦, 𝑧)=v
0
(x, y)+z 𝜓𝑦 (x, y)       (5b) 

𝑤(𝑥, 𝑦, 𝑧)=w
0
(x, y)           (5c) 

 
 

Figure 1. Illustration of FG-CNTRC configuration diversity for a plate. 
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𝜀𝑥 = (𝜀0𝑥 + 𝑧𝜅𝑥)                    (6a) 

𝜀𝑦 = (𝜀0𝑦 + 𝑧𝜅𝑦)               (6b) 

𝜀𝑥𝑦 = (𝜀0𝑥𝑦 + 𝑧𝜅𝑥𝑦)             (6c) 

𝜀𝑦𝑥 = (𝜀0𝑦𝑥 + 𝑧𝜅𝑦𝑥)             (6d) 

𝛾𝑥𝑧 = 𝛾0𝑥𝑧                  (6e) 

𝛾𝑦𝑧 = 𝛾0𝑦𝑧                 (6f) 

Equation (7) depicts the curvatures and strains of the 

plate's center surface. 

𝜀0𝑥 =
𝜕𝑢0

𝜕𝑥
, 𝜀0𝑦 =

𝜕𝑣0

𝜕𝑦
, 𝜀0𝑥𝑦 =

𝜕𝑣0

𝜕𝑥
, 𝜀0𝑦𝑥 =

𝜕𝑢0

𝜕𝑦
     (7a) 

𝛾0𝑥𝑧 =
𝜕𝑤0

𝜕𝑥
+ 𝜓𝑥, 𝛾0𝑦𝑧 =

𝜕𝑤0

𝜕𝑦
+ 𝜓𝑦        (7b) 

𝜅𝑥 =
𝜕𝜓𝑥

𝜕𝑥
, 𝜅𝑦 =

𝜕𝜓𝑦

𝜕𝑦
, 𝜅𝑥𝑦 =

𝜕𝜓𝑦

𝜕𝑥
, 𝜅𝑦𝑥 =

𝜕𝜓𝑥

𝜕𝑦
       (7c) 

With the help of the equation below, the σ-ε 

relationship of the plate can be calculated in x-y-z 

coordinates (Equation 8) 

[
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜏𝑦𝑧

𝜏𝑥𝑧

𝜏𝑥𝑦]
 
 
 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66]

 
 
 
 

[
 
 
 
 
𝜀𝑥

𝜀𝑦

𝛾𝑦𝑧

𝛾𝑥𝑧

𝛾𝑥𝑦]
 
 
 
 

 (8) 

where, 𝑄ij are the lamina stiffness’s, 

𝑄11 = 𝐸1(𝑧)
1−𝜗23(𝑧)𝜗32(𝑧)

∆
         (9a) 

𝑄12 = 𝐸1(𝑧)
𝜗21(𝑧)+𝜗31(𝑧)𝜗23(𝑧)

∆
= 𝐸2(𝑧)

𝜗12(𝑧)+𝜗32(𝑧)𝜗13(𝑧)

∆
 (9b) 

𝑄22 = 𝐸2(𝑧)
1−𝜗31(𝑧)𝜗13(𝑧)

∆
              (9c) 

𝑄13 = 𝐸1(𝑧)
𝜗31(𝑧)+𝜗21(𝑧)𝜗32(𝑧)

∆
= 𝐸3(𝑧)

𝜗13(𝑧)+𝜗12(𝑧)𝜗23(𝑧)

∆
 (9d) 

𝑄23 = 𝐸2(𝑧)
𝜗32(𝑧)+𝜗12(𝑧)𝜗31(𝑧)

∆
= 𝐸3(𝑧)

𝜗23(𝑧)+𝜗21(𝑧)𝜗13(𝑧)

∆
 (9e) 

𝑄33 = 𝐸3(𝑧)
1−𝜗12(𝑧)𝜗21(𝑧)

∆
        (9f) 

𝑄44 = 𝐺23(𝑧)             (9g) 

𝑄55 = 𝐺13(𝑧)             (9h) 

𝑄66 = 𝐺12(𝑧)                (9i) 

∆= 1 − 𝜗12(𝑧)𝜗21(𝑧) − 𝜗23(𝑧)𝜗32(𝑧)−𝜗31(𝑧)𝜗13(𝑧) −
2𝜗21(𝑧)𝜗32(𝑧)𝜗13(𝑧)                 (9j) 

where E1, E2 and E3 are young modulus in the 1,2,3 

coordinates, G12, G23 and G13 correspond to shear 

modulus and υ12, υ21, υ13, υ31, υ23, υ32 represent to 

Poisson’s ratios.  

Figure 2 shows the angle (θ) between coordinate 

systems. Axis of 1 is fiber direction. The matrix of 

transformations can change the axe system from 1,2 

to x, y directions (Equation 10). 

 
Figure 2. Illustration of axes of CNTR material in a 

layer (Dogan 2023) 

𝑇 =  

[
 
 
 
 
 
c2 s2 0 0 0 2cs
s2 c2 0 0 0 −2𝑐𝑠
0 0 1 0 0 0
0 0 0 c −s 0
0 0 0 s c 0

−cs cs 0 0 0 (c2 − s2)]
 
 
 
 
 

   (10) 

The σ-ε connection for the nth layer may be 

determined using the Equation (11). In Equation (11), 

the terms �̅�ij modified stiffness coefficients. 

[
 
 
 
 
 
σx

σy

σz

τyz

τxz

τxy]
 
 
 
 
 

=

[
 
 
 
 
 
 
Q̅11 Q̅12 Q̅13 0 0 Q̅16

Q̅12 Q̅22 Q̅23 0 0 Q̅26

Q̅13 Q̅23 Q̅33 0 0 Q̅36

0 0 0 Q̅44 Q̅45 0

0 0 0 Q̅45 Q̅55 0

Q̅16 Q̅26 Q̅36 0 0 Q̅66]
 
 
 
 
 
 

[
 
 
 
 
 
εx

εy

εz

γyz

γxz

γxy]
 
 
 
 
 

 (11) 

Where, 

𝑄11 = 𝑄11𝑐
4 + 𝑄22𝑠

4 + 2(𝑄12 + 2𝑄66)𝑠
2𝑐2 (12a) 

𝑄12 = (𝑄11 + 𝑄22 − 4𝑄66)𝑠
2𝑐2 + 𝑄12(𝑠

4+𝑐4)   (12b) 

𝑄22 = 𝑄11𝑠
4 + 𝑄22𝑐

4 + 2(𝑄12 + 2𝑄66)𝑠
2𝑐2    (12c) 
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𝑄13 = 𝑄13𝑐
2 + 𝑄23𝑠

2          (12d) 

𝑄23 = 𝑄23𝑐
2 + 𝑄13𝑠

2         (12e) 

𝑄33 = 𝑄33              (12f) 

𝑄
16

= (𝑄11 − 𝑄12 − 2𝑄66)𝑐
3𝑠 − (𝑄22 − 𝑄12 − 2𝑄66)𝑠

3𝑐     (12g) 

𝑄
26

= (𝑄11 − 𝑄12 − 2𝑄66)𝑠
3𝑐 − (𝑄22 − 𝑄12 − 2𝑄66)𝑐

3𝑠     (12h) 

𝑄36 = (𝑄13 − 𝑄23)𝑐𝑠         (12i) 

𝑄66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑠
2𝑐2 + 𝑄66(𝑠

4+𝑐4)(12j) 

𝑄44 = 𝑄44𝑐
2 + 𝑄55𝑠

2         (12k) 

𝑄55 = 𝑄55𝑐
2 + 𝑄44𝑠

2         (12l) 

𝑄45 = (𝑄55 − 𝑄44)𝑐𝑠         (12m) 

The moment and force results may be calculated by 

integrating the stresses over the plate thickness. 

[

𝑁𝑥

𝑁𝑥𝑦

𝑄𝑥

] = ∫ [

𝜎𝑥

𝜎𝑥𝑦

𝜎𝑥𝑧

]
ℎ/2

−ℎ/2
𝑑𝑧         (13a) 

[

𝑁𝑦

𝑁𝑦𝑥

𝑄𝑦

] = ∫ [

𝜎𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

]
ℎ/2

−ℎ/2
𝑑𝑧         (13b) 

[

𝑀𝑥

𝑀𝑥𝑦

𝑃𝑥

] = ∫ [

𝜎𝑥

𝜎𝑥𝑦

𝜎𝑥𝑧

]
ℎ/2

−ℎ/2
𝑧𝑑𝑧        (14a) 

[

𝑀𝑦

𝑀𝑦𝑥

𝑃𝑦

] = ∫ [

𝜎𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

]
ℎ/2

−ℎ/2
𝑧𝑑𝑧        (14b) 

In equation (13, 14), Qx and Qy are transverse shear 

forces. Px, and Py are higher-order shear expressions. 

Mx, My and Mxy are moments and Nx, Ny, Nxy are 

normal forces. Potential energy Equation (15) and 

Lagrangian function Equation (16) can be expressed 

by the following equation: 

𝛱 = 𝑈 − 𝑊             (15) 

𝐿 = 𝑇 − 𝛱              (16) 

By setting the integral of the Lagrangian function 

equal to zero, Hamilton's principle can be applied to 

the equation for the solution. 

𝛿 ∫ (𝑇 + 𝑊 − 𝑈)
𝑡2

𝑡1
𝑑𝑡 = 0        (17) 

In equation (17), T represents kinetic energy 

expression (Equation 18) and W defines the work 

done by external forces (Equation 19) can be 

expressed by the following equation; 

𝑇 =
𝜌

2
∫ {

𝜕𝑢

𝜕𝑡
}
2

+ {
𝜕𝑣

𝜕𝑡
}
2

+ {
𝜕𝑤

𝜕𝑡
}
2

𝑉
𝑑𝑥𝑑𝑦𝑑𝑧      (18) 

𝑊 = ∫ ∫ (𝑞𝑥𝑢0 + 𝑞𝑦𝑣0 + 𝑞𝑧𝑤0 + 𝑚𝑥𝜓𝑥 + 𝑚𝑦𝜓𝑦)𝑦𝑥
𝐴𝐵𝑑𝑥𝑑𝑦 (19) 

The moments are mx, my, and the external forces are 

qx, qy, qz. In Equation (20), U represents strain energy. 

𝑈 =
1 

2
 ∫ {𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜎𝑧𝜀𝑧 + 𝜎𝑥𝑦𝛾𝑥𝑦 + 𝜎𝑥𝑧𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛾𝑦𝑧}𝑑𝑉

𝑉
 (20) 

Equation (21), also defined as the plate’s governing 

formulations, can be obtained by solving Equation 

(17). An explicit version of Equation (17) can be 

written as follows; 

𝜕

𝜕𝑥
(𝑁𝑥) +

𝜕

𝜕𝑦
(𝑁𝑦𝑥) + 𝑞𝑥 = 𝐼1�̈�

2 + 𝐼2�̈�𝑥
2
  (21a) 

𝜕

𝜕𝑥
(𝑁𝑦) +

𝜕

𝜕𝑥
(𝑁𝑥𝑦) + 𝑞𝑦 = 𝐼1�̈�

2 + 𝐼2�̈�𝑦
2
 (21b) 

𝜕

𝜕𝑥
(𝑄𝑥) +

𝜕

𝜕𝑦
(𝑄𝑦) + 𝑞𝑧 = 𝐼1�̈�

2     (21c) 

𝜕

𝜕𝑥
(𝑀𝑥) +

𝜕

𝜕𝑦
(𝑀𝑦𝑥) − 𝑄𝑥 + 𝑚𝑥 = 𝐼2�̈�

2 + 𝐼3�̈�𝑥
2
  (21d) 

𝜕

𝜕𝑦
(𝑀𝑦) +

𝜕

𝜕𝑥
(𝑀𝑥𝑦) − 𝑄𝑦 + 𝑚𝑦 = 𝐼2�̈�

2 + 𝐼3�̈�𝑦
2
  (21e) 

The terms in equation (21) can be explained in 

equation (22 and 23) as follows: 

[
 
 
 
 
 
 
𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16

𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26

𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16

𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26

𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66]
 
 
 
 
 

[
 
 
 
 
 

𝜀0𝑥

𝜀0𝑦

𝛾0𝑥𝑦

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦 + 𝜅𝑦𝑥]
 
 
 
 
 

 (22) 

[
𝑄𝑥

𝑄𝑦
] = [

𝐴55 𝐴45

𝐴45 𝐴44
] [

𝛾0𝑥𝑧

𝛾0𝑦𝑧
]        (23) 

𝐴𝑖𝑗= ∫ 𝑄𝑖𝑗(𝑧)
−ℎ 2⁄

ℎ 2⁄
𝑑𝑧            (24a) 

𝐵𝑖𝑗= ∫ 𝑄𝑖𝑗(𝑧)
−ℎ 2⁄

ℎ 2⁄
𝑧𝑑𝑧            (24b) 
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𝐷𝑖𝑗= ∫ 𝑄𝑖𝑗(𝑧)
−ℎ 2⁄

ℎ 2⁄
𝑧2𝑑𝑧           (24c) 

𝐴𝑖𝑗= ∫ 𝐾𝑖𝐾𝑗𝑄𝑖𝑗(𝑧) 𝑑𝑧      𝑖, 𝑗 = 4,5
−ℎ 2⁄

ℎ 2⁄
 (24d) 

In equation (24), K are the shear correction factors (Ki 

and Kj). K values were used as 5/6 in this study, as 

suggested by Timoshenko (1921). The inertia of the 

mass moment is also I in equation (25) as follow; 

[𝐼1, 𝐼2, 𝐼3]= ∫ 𝜌(𝑧)
−ℎ 2⁄

ℎ 2⁄
[1, 𝑧, 𝑧2]𝑑𝑧     (25) 

ρ(z) is the density. Solutions can be obtained with the 

help of the Navier method, which is a solution made 

using trigonometric functions. The thick plate is 

designed as simply supported, the boundary 

conditions of the plate can be written as in Equation 

(26). 

𝑁𝑥= w
0
 = v0 = 𝑀𝑥= ψ

y
= 0    𝑎𝑡  𝑥 = 0,  (26a) 

𝑁𝑦= w
0
= u0 = 𝑀𝑦= ψ

x
= 0   𝑎𝑡  𝑦 = 0, 𝑏(26b) 

Equation (26) and Figure 3 shows the boundary 

conditions for the case of simply supported. 

 
Figure 3. Illustration of boundary conditions of plate 

To find the displacement and stress components, the 

displacement functions defined as Fourier series can 

be used in equation (27) as below: 

𝑢0(x,y)= ∑ ∑ 𝑈𝑚𝑛
∞
𝑛=0

∞
𝑚=0 𝑐𝑜𝑠(𝑥𝑚𝑥) 𝑠𝑖𝑛(𝑦𝑛𝑦) (27a) 

𝑣0(x,y)= ∑ ∑ 𝑉𝑚𝑛
∞
𝑛=0

∞
𝑚=0 𝑠𝑖𝑛(𝑥𝑚𝑥) 𝑐𝑜𝑠(𝑦𝑛𝑦)   (27b) 

𝑤0(x,y)= ∑ ∑ 𝑊𝑚𝑛
∞
𝑛=0

∞
𝑚=0 𝑠𝑖𝑛(𝑥𝑚𝑥) 𝑠𝑖𝑛(𝑦𝑛𝑦) (27c) 

𝜓𝑥(x,y)= ∑ ∑ 𝑊𝑚𝑛
∞
𝑛=0

∞
𝑚=0 𝑐𝑜𝑠(𝑥𝑚𝑥) 𝑠𝑖𝑛(𝑦𝑛𝑦) (27d) 

𝜓𝑦(x,y)= ∑ ∑ 𝑊𝑚𝑛
∞
𝑛=0

∞
𝑚=0 𝑠𝑖𝑛(𝑥𝑚𝑥) 𝑐𝑜𝑠(𝑦𝑛𝑦) (27e) 

In equation (27), yn = n/b and xm = m/a. Substituting 

equations (22) – (27) into equations of motion (21), 

and eigenvalue equations are found for free vibration 

case by equation (28); 

[𝐾𝑚𝑛]-𝜔𝑚𝑛
2 [𝑀𝑚𝑛]{∆𝑚𝑛}={0}      (28) 

and for buckling problem, the equations of motion are 

written in Equation (29) as below; 

[𝐾𝑚𝑛]-𝜔𝑚𝑛[𝑁𝑚𝑛]{∆𝑚𝑛}={0}       (29) 

Where, 

𝑀 =

[
 
 
 
 
𝑀11 0 0 𝑀14 0
0 𝑀22 0 0 𝑀25

0 0 𝑀33 0 0
𝑀41 0 0 𝑀44 0
0 𝑀52 0 0 𝑀55]

 
 
 
 

     (30a) 

[𝑁] =

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 𝛼2�̅�𝑥 + 𝛽2�̅�𝑦 0 0

0 0 0 0 0
0 0 0 0 0]

 
 
 
 

     (30b) 

[𝐾]

[
 
 
 
 
𝐾11 𝐾12 𝐾13 𝐾14 𝐾15

𝐾21 𝐾22 𝐾23 𝐾24 𝐾25

𝐾31 𝐾32 𝐾33 𝐾34 𝐾35

𝐾41 𝐾42 𝐾43 𝐾44 𝐾45

𝐾51 𝐾52 𝐾53 𝐾54 𝐾55]
 
 
 
 

       (30c) 

  =

[
 
 
 
 
𝑈𝑚𝑛

𝑉𝑚𝑛

𝑊𝑚𝑛

𝜓𝑥𝑚𝑛

𝜓𝑦𝑚𝑛]
 
 
 
 

            (30d) 

In equations (30), [Mmn], [Nmn], [Kmn], [Δmn] represent 

mass, buckling load, stiffness, displacement matrixes 

respectively. The stiffness matrix terms are given in 

equations (31) below; 

K11=-A11xm
2 -A16xmy

n
-A66y

n
2      (31a) 

K12=K21=-A16xm
2 -(A12+A66)xmy

n
-A26y

n
2  (31b) 

K13=K31=0            (31c) 

K14=K41=-B11xm
2 -2B16xmy

n
-B66y

n
2  (31d) 

K15=K51=-B16xm
2 -(B12B66) x

m
y

n
-B26y

n
2   (31e) 

K22=-A66xm
2 -A26xmy

n
-A22y

n
2       (31f) 
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K23=K32 = 0           (31g) 

K24=K42=-(B12+B66) x
m

y
n
       (31h) 

K25=K52=-B66xm
2 -B22y

n
2        (31i) 

K33=-A55xm
2 -2A45xmy

n
-A44y

n
2     (31j) 

K34=K43=-A55x
m

-A45y
n
        (31k) 

K35=K53=-A44y
n
-A45x

m
        (31l) 

K44=-A55-D11x
m
2 -2D16 xmy

n
-D66y

n
2   (31m) 

K45=K54=-A45-D16x
m
2 -(D12+D66) xmy

n
-D26y

n
2 (31n) 

K55=-A44-D66x
m

2 -2D26 xmy
n
-D22y

n
2     (31o) 

M11=M22=M33=-I1, M14=M25=-I2, M44=M55=-I3   (31p) 

Mij=Mji ,                  (31r) 

4.  Numerical Solutions and Discussions 

The current study focused on uniaxial buckling 

analysis and vibration analysis of FG-CNT (Figure 

4). The codes have been developed using a 

Mathematica [34] to solve the technique suggested in 

this paper. The findings were compared to ANSYS 

[35] finite element software. The buckling and free 

vibration analysis results for FG-CNT plates 

generated by the technique suggested in this paper 

were compared to those obtained using the FEM. 

FEM analysis was performed using the ANSYS 23 

version software. In this study, SHELL281 Element 

Description is suitable for analyzing thin to 

moderately-thick shell structures (Figure 6). The 

element has eight nodes quadratic element with six 

degrees of freedom at each node: translations in the x, 

y, and z axes, and rotations about the x, y, and z-axes 

(ANSYS (2023)). The plate shapes have been divided 

into 40x40 mesh pieces (Figure 5). The effect of 

thickness and volume fractions on several FG-CNT 

combinations and micromechanical models were 

explored. The matrix material used in the 

investigation was poly methyl methacrylate 

(PMMA), and its material properties are Em=2.5GPa, 

νm=0.3, ρm=1.190 kg/m3. The material characteristics 

of SWCNTs are as follows: 𝐸11
𝑐𝑛𝑡 = 600 𝐺𝑃𝑎 

, 𝐸22
𝑐𝑛𝑡 = 10 𝐺𝑃𝑎 , 𝐺12

𝑐𝑛𝑡 = 17.2 𝐺𝑃𝑎 , 𝜌𝑐𝑛𝑡 =
1.400 𝑘𝑔 𝑚3⁄  and νcnt= 0.19. In the study, symmetric 

(0°/0°/0°/0°/0°) and (0°/90°/0°/90°/0°) cross-ply 

layered simply supported samples was used. This 

study employed three different types of 

micromechanical models (Table 1). In the study, 

Equation (32) was used to non-dimensional the 

buckling and free vibration results, respectively: 

λ= �̅�𝑥
𝑏2

𝐸𝑚ℎ3
, 𝛺 = 𝜔𝑏2√𝜌𝑚 𝐸𝑚ℎ2⁄   (32) 

 
Figure 4. The loading conditions of plate 

FG-CNT has a more complicated configuration than 

traditional FGM. In this work, Vf and η parameters, 

as well as several micromechanical models, were 

studied. Figure 7 displays the variation in the 

distribution of Vf (volume fractions) throughout 

thickness for FG-CNTRC configurations. Parametric 

analysis was done to clarify and emphasize the effect 

of Vf, and configurations of FG (FG-OD, FG-VD, 

FG-UD and FG-XD) on the free vibration and 

buckling behavior of the FG-CNT plate. By 

evaluating the data found, the following conclusions 

were reached. 

 

Figure 6. SHELL281 element description in ANSYS 

simulation. 

 

 
Figure 5. FG-CNTRC plate model under the effect of 

uniaxial load in ANSYS simulation 
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Table 1 : Various input model scenarios. 

Type η1 η2 η3 Vcnt* 

1 1.2833 1.0556 1.0556 0.12 

2 1.3414 1.7101 1.7101 0.17 

3 1.3238 11.7380 1.7380 0.28 

 

 
Figure 7. Illustration of volume fraction change of FG-CNT across thickness. 

 

 4.1. Results of Buckling Analysis 

Table 2 and 3 displays the uniaxial buckling load 

factors of plates for various configurations of the FG-

CNT and micromechanical model. It was 

demonstrated that the values acquired in this 

investigation were compatible with FEM (Ansys). 

From largest to smallest, the non-dimensional 

buckling load values of FG-CNTRC plate are 

XD>UD>VD>OD (Fig. 8). Table 2 and Table 3 show 

buckling load values of thick and thin plates at 

various material configurations for (0°/0°/0°/0°/0°) 

and (0°/90°/0°/90°/0°) angle orientations. In the case 

of the thick plate and FG-OD configuration, the 

dimensionless buckling load values obtained for the 

angle orientation (0°/0°/0°/0°/0°) are bigger than the 

obtained dimensionless buckling load values for the 

angle orientation (0°/90°/0°/90°/0°). In the case of 

FG-VD, the dimensionless buckling load values is 

nearly equal for (0°/0°/0°/0°/0°) and 

(0°/90°/0°/90°/0°) angle orientation. In the cases of 

FG-UD and FG-XD configurations, the 

dimensionless buckling load values obtained for the 

angle orientation (0°/0°/0°/0°/0°) are smaller than the 

obtained dimensionless buckling load values for the 

angle orientation (0°/90°/0°/90°/0°) (Table 2). In the 

case of the thin plate and FG-OD configuration, the 

dimensionless buckling load values obtained for the 

angle orientation. 

(0°/0°/0°/0°/0°) are bigger than the obtained 

dimensionless buckling load values for the angle 

orientation (0°/90°/0°/90°/0°). In the case of FG-VD, 

the dimensionless buckling load values obtained for 

the angle orientation (0°/0°/0°/0°/0°) are bigger than 

the obtained dimensionless buckling load values for 

the angle orientation (0°/90°/0°/90°/0°). In the cases 

of FG-UD and FG-XD configurations, the 

dimensionless buckling load values obtained for the 

angle orientation (0°/0°/0°/0°/0°) are smaller than the 

obtained dimensionless buckling load values for the 

angle orientation (0°/90°/0°/90°/0°) (Table 3). 

Furthermore, it is observed that the order of buckling 

loads of plate in terms of Vf and η parameters for 

micromechanical models is Type3>Type2>Type1 

(Fig. 8 and 9). 
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Table 2 : Uniaxial dimensionless buckling load values of thick plate for various micromechanical models and angle 

orientations. (b/h= 10) 

Lamina 

Type 

FGCNT 

Type 

FG-OD FG-VD FG-UD FG-XD 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

0
°/

0
°/

0
°/

0
°/

0
° 

1 10.2924 9.9439 16.9101 16.4612 23.9966 24.1484 32.9210 32.8386 

2 15.8196 15.4540 26.2284 25.7405 37.5424 37.8325 52.9845 52.2735 

3 21.2110 20.6679 37.1433 36.0871 52.1664 52.4314 75.6030 70.3509 

0
°/

9
0

°/
0

°/
9

0
°/

0
 

1 9.04446 8.82948 17.1570 17.6612 26.4296 27.3353 36.3845 37.1730 

2 13.1716 12.9755 26.3042 27.5104 40.8121 42.4951 57.7196 58.7546 

3 16.2769 15.9007 37.0253 37.3599 58.5435 60.1049 84.0559 81.0153 

 
Table 3 : Uniaxial dimensionless buckling load values of thin plate for various micromechanical models and angle 

orientations. (b/h= 40) 

Lamina 

Type 

FGCNT 

Type 

FG-OD FG-VD FG-UD FG-XD 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

0
°/

0
°/

0
°/

0
°/

0
° 

1 11.4556 11.5168 21.1054 20.8858 34.2187 34.4356 56.2738 56.5251 

2 17.3478 17.4885 31.8347 31.4398 51.3572 51.7556 84.896 85.2889 

3 23.8512 23.9606 47.0617 46.7938 78.8232 79.2238 133.563 132.988 

0
°/

9
0

°/
0

°/
9

0
°/

0
° 

1 10.315 10.4501 19.7247 21.3463 34.4983 35.8408 56.7926 58.4774 

2 14.6815 15.0779 29.7241 32.4741 51.7094 54.0506 85.5411 88.4675 

3 18.3072 18.6433 42.7954 45.5032 79.6236 82.1985 134.898 137.791 
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Figure 8. Effect of thickness ratio on non-dimensional Ncr values for varied configurations of the FG-CNT 

 

 
Figure 9. Effect of thickness ratio on non-dimensional Ncr values for various FG-CNT micro-mechanical models 
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4.2. Results of Free Vibration Analysis 

Table 4 and 5 displays the non-dimensional free 

vibration of rectangular plates for various 

configurations of the FG-CNT and micromechanical 

model. It was demonstrated that the values acquired 

in this investigation were compatible with FEM 

(Ansys). From largest to smallest, the non-

dimensional free vibration values of FG-CNTRC 

plate are XD>UD>VD>OD (Fig. 10). Table 4 and 

Table 5 show non-dimensional frequency values of 

thick and thin plates at various material 

configurations for (0°/0°/0°/0°/0°) and 

(0°/90°/0°/90°/0°) angle orientations. In the case of 

thick plate, FG-OD configuration, the dimensionless 

free vibration values obtained for the angle 

orientation (0°/0°/0°/0°/0°) and (0°/90°/0°/90°/0°) is 

nearly equal. In the case of FG-VD configuration, the 

dimensionless free vibration values obtained for the 

angle orientation (0°/0°/0°/0°/0°) and 

(0°/90°/0°/90°/0°) are very closed to each other. In 

the cases of thick plate, for FG-UD and FG-XD 

configurations, the dimensionless buckling load 

values obtained for the angle orientation 

(0°/0°/0°/0°/0°) are smaller than the obtained 

dimensionless free vibration values for the angle 

orientation (0°/90°/0°/90°/0°) (Table 4). In the cases 

of the thin plate, for FG-UD and FG-XD 

configurations, the dimensionless free vibration 

values obtained for the angle orientation 

(0°/0°/0°/0°/0°) and (0°/90°/0°/90°/0°) is nearly 

equal (Table 5). In the cases of FG-VD 

configurations, the dimensionless free vibration 

values obtained for the angle orientation 

(0°/0°/0°/0°/0°) are bigger than the obtained 

dimensionless free vibration values for the angle 

orientation (0°/90°/0°/90°/0°). In the cases of FG-OD 

configuration, the dimensionless free vibration values 

obtained for the angle orientation (0°/0°/0°/0°/0°) and 

(0°/90°/0°/90°/0°) is nearly equal (Table 5). 

Furthermore, in terms of Vf and η parameters for 

micromechanical models, it is observed that the order 

of dimensionless free vibration results of FG plate is 

Type3>Type2>Type1 (Fig. 10 and 11).

Table 4 : Uniaxial non-dimensional frequency values of thick plate for various micromechanical models and angle 

orientations. (b/h= 10) 

Lamina 

Type 

FGCNT 

Type 

FG-OD FG-VD FG-UD FG-XD 

This study 

(calculated) 

This 

study  

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

0
°/

0
°/

0
°/

0
°/

0
° 

1 9.92642 9.71884 12.43928 12.68808 15.14387 15.14387 17.71050 17.64189 

2 12.26296 12.06023 15.73105 15.47320 18.85736 18.85736 22.34867 22.12538 

3 14.09624 13.86914 18.55677 18.21420 22.03037 23.03037 26.40694 25.41685 

0
°/

9
0

°/
0
°/

9
0
°/

0
° 

1 9.96028 9.765542 12.76998 12.44063 15.89906 15.86907 18.62800 18.56395 

2 12.27211 12.07946 15.73974 15.38373 19.66736 19.63568 23.33519 23.15083 

3 14.13281 13.91246 18.50565 17.99844 23.34959 23.35682 27.85931 27.00512 
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Table 5 : Uniaxial non-dimensional frequency values of thin plate for various micromechanical models and angle 

orientations. (b/h= 40) 

Lamina 

Type 

FGCNT 

Type 

FG-OD FG-VD FG-UD FG-XD 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

This study 

(calculated) 

This 

study 

(Ansys) 

0
°/

0
°/

0
°/

0
°/

0
° 1 10.53883 10.52234 14.19875 14.17551 18.17673 18.17673 23.26160 23.25151 

2 12.92424 12.90862 17.34592 17.32301 22.17253 22.17255 28.42477 28.39466 

3 15.04084 15.02268 20.96553 20.93270 27.21381 27.21379 35.25883 35.09753 

0
°/

9
0

°/
0
°/

9
0
°/

0
° 1 10.54133 10.52615 13.79763 13.77024 18.25083 18.25078 23.36860 23.36798 

2 12.92491 12.91027 16.86497 16.83622 22.24842 22.24808 28.53257 28.51735 

3 15.04356 15.02624 20.04805 20.00564 27.35217 27.35165 35.43470 35.32911 

 

 
Figure 10. Effect of thickness ratio on non-dimensional frequency values for varied configurations of the FG-CNT 
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Figure 11. Effect of thickness ratio on non-dimensional frequency values for various FG-CNT micro-mechanical models

5.  Conclusions 

The present study investigated the buckling and free 

vibration analysis of rectangular plates reinforced 

with FG-CNTRC material under uniaxial loads. The 

FG-CNTRC material was put into the plate both 

layered and at an angle within each lamina. The 

governing equation for the FGCNT material-

reinforced plate was obtained by applying Hamilton's 

principle. The solutions were done by using Navier 

solution method. The critical buckling load values 

were computed in this work for FG-OD, FG-VD, FG-

UD and FG-XD distributions of CNT over the 

thickness of plate. The results of the research were 

compared with the results obtained with the help of 

ANSYS. The approach employed in this study is 

totally congruent with the results obtained using the 

ANSYS. Then, a parametric study was performed to 

better comprehend the effect of a/h ratios and Vf for 

various micromechanical models and FG-CNT 

combinations. The results obtained are summarized 

as follows: 

 The non-dimensional buckling loads and free 

vibration frequency parameters obtained for 

calculated with this study were detected to be 

compatible with FEM (Ansys) results. 

 The effect of thickness ratios (a/h), volume 

ratios (Vcnt
*) and efficiency parameters (η) for several 

micromechanical models and FG-CNT 

configurations have a very significant effect on 

buckling loads and free vibration frequency 

parameters. 

 The increase rate of dimensionless buckling 

load factors increases from Type1 to Type3. In other 
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words, when the a/h ratio increases, the dimensionless 

buckling load factor curves in Type 1 are more 

horizontal. They are not affected much by the 

increase in the a/h ratio. However, when the a/h 

values increase in Type 3, the dimensionless buckling 

load values increase significantly. 

 The smallest dimensionless buckling load 

values occur in the case of FG-OD configurations and 

the largest dimensionless buckling load values occur 

in the case of FG-XD configurations. 

 When the plate thickness decreases, that is, as 

the a/h ratio increases, buckling loads and frequency 

values both increase and the rate of increase 

increases. 

 As the plate thickness decreases, that is, as the 

a/h ratio increases, the rate of increase in buckling 

loads and frequency values occurs the most in FG-

XD. The order of increase rate is FG-XD> FG-UD> 

FG-VD> FG-OD. 

 Micromechanical models appear to 

importantly affect buckling loads and and free 

vibration frequency parameters. A suitable change in 

FG configurations, and volume fractions can enable 

the manufacture of smart products that intelligently 

respond to engineering problems and suit the needs. 

 Knowing the behavior of plates and shells 

containing FG-CNT under the influence of axial load 

is important in sectors where many high-tech 

products are used (aerospace engineering, rocket 

technology, automotive and engine technology, civil 

engineering, etc.). By optimizing the FG-CNT 

material configurations and volume fractions 

required for these technologies, smart materials 

tailored to the required function can be composed. 

 In future work, stress and strain distributions 

along the length of laminate sheets and failure 

theories can be examined. FG-CNT laminated plate 

types can be examined using optimization techniques. 
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