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Adomian Decomposition and Variational Iteration Methods in the Context of 

Partial Differential Equations 

 
A R T I C L E  I N F O  

 
A B S T R A C T  

 

Partial Differential Equations (PDE) help model problems in science and 

engineering, given their abilities to capture complex phenomena compared 

to Ordinary Differential Equations. This paper aims to investigate two semi-

analytical techniques called the Adomian Decomposition Method (ADM) 

and the Variational Iteration Method (VIM), how these methods can be used 

in practice, and to make a comparative study of the two methods for solving 

linear and nonlinear PDEs. The efficiency of ADM and VIM is assessed by 

comparing their errors relative to the exact solutions of the examined 

numerical experiments. The results obtained from the numerical experiments 

revealed that ADM proved to be a more efficient and accurate method for 

solving PDEs than VIM. 
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1.  Introduction 

In physics and engineering, partial differential 

equations (PDEs) are utilized to model diverse 

problems, given their ability to describe the change of 

a system concerning multiple independent variables. 

Investigating solutions of differential equations has 

been significant to scientists and researchers [14]. 

Given the challenges faced in obtaining analytical 

solutions for PDEs, especially those with non-

linearity, numerical methods have been employed to 

address these problems [18,20]. Nevertheless, despite 

the various numerical methods for solving differential 

equations, significant limitations remain in numerical 
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analysis for tackling PDE problems [10,11]. Some 

works on semi-analytical methods have been 

proposed in extant literature to approximate solutions 

to such problems [1,14,20,27,28]. 

Considering the Adomian Decomposition Method 

(ADM), George Adomian was the first to begin using 

ADM to find the solution of functions by illustrating 

them in the form of a series. This method uses an 

iterative formula to calculate subsequent series parts 

based on initial and boundary conditions. Wazwaz 

and El-Sayed further re ned ADM to address this, 

enabling rapid convergence and easily computable 

components. Researchers have developed modified 

techniques to enhance ADM's efficiency. For 

instance, a new approach was proposed to solve time-

fractional diffusion equations with initial and 

boundary conditions, Volterra-Fredohlm integral- 

equations, demonstrating improved accuracy and 

convergence [4.21]. Additionally, ADM has been 

effectively applied to systems of second-order 

differential-algebraic equations and systems of PDEs, 

providing approximate solutions that align closely 

with exact results [6,24]. Meanwhile, He and Wu 

developed the Variational Iteration Method (VIM), 

which involves constructing a correction function 

related to the solved equation, incorporating a 

Lagrange multiplier [2,12].  

The VIM is a highly effective technique commonly 

employed in analyzing various mathematical models. 

Unlike other methods, it does not necessitate any 

transformation of the given problem, allowing for 

direct application similar to the ADM. Implementing 

VIM for various types of linear and nonlinear partial 

differential equations was carried out by Shihab et al. 

[25]. Fatima et al. [15] used the VIM to solve 

nonlinear partial differential equations in fluid 

dynamics. At the same time, authors [5, 23,30] 

utilized a blend of VIM with the Sumudu transform 

to resolve some nonlinear equations. Recent studies 

[1,12,13,17,19,22] have explored the efficacy of the 

ADM and the VIM in solving specific complex 

differential equations. Comparative studies have also 

been conducted to evaluate the effectiveness of ADM 

and VIM in solving nonlinear differential equations, 

providing insights into their respective advantages 

and applications [7.8,16,29, 31,32]. This work 

compares ADM and VIM methods to solve both 

linear and nonlinear partial differential equations. 

The methods, their numerical solution, and errors will 

be analyzed to aid understanding of the application of 

both methods to solve PDE problems. Novel 

contributions include a comparative analysis of the 

ADM and the VIM in solving linear and nonlinear 

PDEs, which introduces new understanding and 

insights into the suitability of the two methods for 

different types of PDE problems and bridges research 

gaps in the literature.  

The subsequent section of this work is segmented into 

four (4) parts. The first part provides an overview of 

the ADM and the VIM development for both linear 

and nonlinear PDEs. The second part declares the 

numerical experiments via which the methods' 

efficiency and accuracy are evaluated and the results 

of the numerical experiment after computations have 

been carried out. Following this, the third part 

discusses the results that were attained to provide 

context for their implications in applications. Lastly, 

a conclusion is made, and recommendations are 

proposed for researchers seeking to improve this body 

of work in the last part. 

2.  Material and Methods 

2.1. Description of Adomian Decomposition 

Method (ADM) 

The study Given the general differential equation in 

the form: 

𝐹𝑣(𝑢, 𝑡) = 𝑔(𝑢, 𝑡) (1) 

 With conditions (initial) 𝑣(𝑢, 0) = 𝑓(𝑢), where F 

denotes a differential operator involving nonlinear 

and linear terms. Hence, Equation (1) can take the 

form 

𝐿𝑡𝑣(𝑢, 𝑡) + 𝑅𝑣(𝑢, 𝑡) + 𝑁𝑣(𝑢, 𝑡) = 𝑔(𝑢, 𝑡) (2) 

where 𝐿𝑡 =
𝜕

𝜕𝑡
, R denotes a linear operator containing 

partial derivatives with respect to u,𝑁 represents a 

nonlinear operator and 𝑔 is the source term or a 

nonhomogenous term that is independent of v. 

Algebraically,   

𝐿𝑡𝑣(𝑢, 𝑡) = 𝑔(𝑢, 𝑡) − 𝑅𝑣(𝑢, 𝑡) − 𝑁𝑣(𝑢, 𝑡) (3) 

Inversion of the operator 𝐿𝑡, (𝐿𝑡
−1) and application of 

it to both sides of equation (3) gives 

𝐿𝑡
−1𝐿𝑡𝑣(𝑢, 𝑡) =

𝐿𝑡
−1𝑔(𝑢, 𝑡) − 𝐿𝑡

−1𝑅𝑣(𝑢, 𝑡) − 𝐿𝑡
−1𝑁𝑣(𝑢, 𝑡) (4)
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Which results into 

𝑣(𝑢, 𝑡) =

𝑓(𝑢) + 𝐿𝑡
−1𝑔(𝑢, 𝑡)

−𝐿𝑡
−1𝑅𝑣(𝑢, 𝑡) − 𝐿𝑡

−1𝑁𝑣(𝑢, 𝑡) (5)

 

where f(u) denotes constant of integration concerning 

that satisfies Lt f=0. The unknown function v(u, t) is 

decomposed into an infinite series as: 

𝑣(𝑢, 𝑡) = ∑𝑣𝑝(𝑢, 𝑡)

∞

𝑝=0

(6) 

The nonlinear operator N(v) is decomposed as: 

𝑁𝑣(𝑢, 𝑡) = ∑𝛢𝑝(𝑣0,  𝑣1 𝑣2,⋯ , 𝑣𝑝)

∞

𝑝=0

(7) 

where sequence  [𝛢𝑝]𝑝=0
∞

is called the Adomian 

polynomial sequence and explicit computation of  the 

nonlinear  terms is given by 

𝛢0(𝑣0) = 𝑁(𝑣0) 

𝛢1(𝑣0, 𝑣1) = 𝑁
′(𝑣0)𝑣1 

𝛢2(𝑣0, 𝑣1,  𝑣2) = 𝑁
′(𝑣0)𝑣2 +

𝑣1
2

2!
𝑁 ′

′(𝑣0) 

𝛢3(𝑣0, 𝑣1,  𝑣2, 𝑣3) = 𝑁
′(𝑣0)𝑣3 +𝑁 

′′(𝑣0)12
𝑣1
3

3!
′′
′(𝑣0) ⋮ 

Hence the summarized format is given by the relation 

𝐴𝑝(𝑣0,  𝑣1 𝑣2,⋯ , 𝑣𝑝) =

1

𝑝!

𝑑𝑝

𝑑𝛽𝑝
[𝑁(∑𝛽𝑗𝑣𝑗

𝑝

𝑗=0

)]

𝛽=0

(8)
 

                                    
Thus, substituting equations (6), (7) and (8) into (5) 

results into 

∑𝑣𝑝(𝑢, 𝑡)

∞

𝑝

=

𝑓(𝑢) + 𝐿𝑡
−1𝑔(𝑢, 𝑡) − 𝐿𝑡

−1𝑅∑𝑣𝑝(𝑢, 𝑡)

∞

𝑝

−𝐿𝑡
−1∑𝛢𝑝(𝑣0,  𝑣1 𝑣2,⋯ , 𝑣𝑝)

∞

𝑝=0

(9)

 

Identification of  𝑣0 as 𝑓(𝑢) + 𝐿𝑡
−1𝑔(𝑢, 𝑡) , it is 

possible to write 

⋮ 

𝑣𝑝+1(𝑢, 𝑡) =

−𝐿𝑡
−1𝑅𝑣𝑝(𝑢, 𝑡) − 𝐿𝑡

−1𝛢𝑝(𝑣0,   ⋯ , 𝑣𝑝) (10)
 

By isolating the linear and nonlinear components and 

equating terms having the same order, the resulting 

recursive algorithm becomes 

{

𝑣0(𝑢, 𝑡) = 𝑓(𝑢) + 𝐿𝑡
−1𝑔(𝑢, 𝑡)

𝑣𝑝+1(𝑢, 𝑡) = 𝐿𝑡
−1𝑅𝑣𝑝(𝑢, 𝑡)

−𝐿𝑡
−1𝛢𝑝(𝑣0,  𝑣1, ⋯ , 𝑣𝑝)

 

,     𝑝 = 0,  1,  2,  3, ⋯ (11)

 

Using the recursive algorithm defined in Equation 

(11), an approximate solution to Equation (1) can be 

obtained through a series expansion. 

𝑣𝑗(𝑢, 𝑡) = ∑𝑣𝑝(𝑢, 𝑡)

𝑗

𝑝=0

 

where 

𝐿𝑖𝑚
𝑗→∞

∑𝑣𝑝(𝑢, 𝑡)

𝑗

𝑝=0

= 𝑣(𝑢, 𝑡) (12) 

Given the right conditions, the series∑ 𝑣𝑝(𝑢, 𝑡)
∞
𝑝=0  

converges to the solution v(u,t) of the initial problem. 

The decomposition of the series solution tends to 

converge rapidly, requiring only a few terms for 

effective solution analysis. The conditions governing 

this convergence have been extensively studied in 

references [8,17,21,22]. 

 

2.2.  Description of Variational Iteration 

Method (VIM) 

Consider the following general nonlinear differential 

equation: 

𝐿𝑣(𝑢, 𝑡) + 𝑅𝑣(𝑢, 𝑡) + 𝑁𝑣(𝑢, 𝑡) = 𝑔(𝑢, 𝑡) (13) 

where L denotes a linear operator, N represents a 

nonlinear operator, v(u,t) is a known function, and 

g(u,t) is a known analytical function. The correction 

functional can be constructed thus 

pA
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𝑣𝑝+1(𝑢, 𝑡) = 𝑣𝑝(𝑢, 𝑡)

+∫
𝜆(𝜂)

[𝐿𝑣(𝑢, 𝜂) + 𝑁�̃�(𝑢, 𝜂) − 𝑔(𝑢, 𝜂)]𝑑𝜂

𝑡

0

,    𝑝 ≥ 0 (14)

 

where  denotes the Lagrange multiplier, which 

can be determined optimally using the variational 

theory. The subscript refers to the

approximation and is considered a restricted 

variation, meaning . By first determining the 

Lagrange multiplier  through integration by parts, 

the successive approximation , can be 

obtained using the selected Lagrange multiplier and 

any initial function . It can be obtained through the 

stationary functions 

1 + 𝜆|𝜂 = 𝑡 = 0 

      𝜆′|𝜂 = 𝑡 = 0 (15) 

where one can find the next Lagrange multiplier as 

follows 

𝜆 = −1   𝑓𝑜𝑟   𝑟 = 1 

𝜆 = 𝜂 − 𝑡 𝑓𝑜𝑟  𝑟 = 2 (16) 

In addition, the standard formula for the Lagrange 

multiplier in the scenario 𝑟 ≥ 1 is denoted as 

𝜆(𝜂) =
(−1)𝑟(𝜂 − 𝑡)𝑟−1

(𝑟 − 1)!
(17) 

After determining the value of 𝜆(𝜂), substituting it 

into the corrective function in equation (14) enables 

us to derive the following iteration formula. 

𝑣𝑝+1(𝑢, 𝑡) = 𝑣𝑝(𝑢, 𝑡)

+∫

(−1)𝑟(𝜙 − 𝑡)𝑟−1

(𝑟 − 1)!
[𝐿𝑣(𝑢, 𝜂) + 𝑁�̃�(𝑢, 𝜂) − 𝑔(𝑢, 𝜂)]𝑑𝜂

𝑡

0

(18)
 

For , the iteration formula becomes: 

𝑣𝑝+1(𝑢, 𝑡) = 𝑣𝑝(𝑢, 𝑡)

−∫ [𝐿𝑣(𝑢, 𝜂) + 𝑁�̃�(𝑢, 𝜂) − 𝑔(𝑢, 𝜂)]𝑑𝜂
𝑡

0

(19)
 

Applying the iterative formula in equations (18) or 

(19) yields the sequence from a suitable initial guess. 

Advanced computing allows repeated iterations until 

the desired precision is achieved. The approximate 

solution is then given by  

𝑣(𝑢, 𝑡) = 𝑙𝑖𝑚
𝑝→∞

𝑣𝑝(𝑢, 𝑡) (20) 

3.  Numerical Experiments 

The two methods are applied to a range of linear and 

nonlinear PDEs with known solutions to evaluate the 

accuracy of the VIM and ADM methods. The 

methods' performance is assessed by comparing 

computed results obtained using Python's Jupyter 

Notebook 2022 to analytical solutions. The findings 

are presented in Tables 1-6 and illustrated in Figures 

1-3, highlighting the computed solutions and 

corresponding errors. 

Experiment 1: Using ADM and VIM, solve the 

following linear PDE 

𝑎𝑢𝑎 + 𝑢𝑦 = 3𝑢 (21) 

with the following initial conditions: 

𝑢(𝑎, 0) = 𝑎2, 𝑢(0, 𝑦) = 0, and analytical solution: 

𝑢(𝑎, 𝑦) = 𝑎2𝑙𝑦  

ADM Solution: Re-write (21) in an operator form as 

𝐿𝑦𝑢(𝑎, 𝑦) = 3𝑢(𝑎, 𝑦) − 𝑎𝐿𝑎𝑢(𝑎, 𝑦) (22) 

The inverse operator is applied to both sides of (22) 

alongside the given condition 𝑢(𝑎, 0) = 𝑎2 results in 

𝑢(𝑎, 𝑦) = 𝑎2 + 𝐿𝑦
−1(3𝑢 − 𝑎𝐿𝑎𝑢) (23) 

Substitute 𝑢(𝑎, 𝑦) = ∑ 𝑢𝑝(𝑎, 𝑦)
𝑛
𝑝=0  into both sides of 

(23) 

∑

𝑢𝑝(𝑎, 𝑦) = 𝑎
2 + 𝐿𝑦

−1

(

 
 
 
 
 3(∑𝑢𝑝(𝑎, 𝑦)

∞

𝑝=0

)

−𝑎𝐿𝑎(∑𝑢𝑝

∞

𝑝=0

(𝑎, 𝑦))

)

 
 
 
 
 ∞

𝑝=0

(24) 

Taking few components of the decomposition of 

𝑢(𝑎, 𝑦), equation (24) becomes 

  

p
thp

pv

0pv 



1, 0pv p 

0v

1  
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𝑢0 + 𝑢1 + 𝑢2 +⋯ =

𝑎2 + 𝐿𝑦
−1 (

3(𝑢0 + 𝑢1 + 𝑢2 +⋯) −

𝑎𝐿𝑎(𝑢0 + 𝑢1 + 𝑢2 +⋯)
) (25)

 

The recursive terms are identified 

𝑢𝑜(𝑎, 𝑦) = 𝑎
2 

𝑢𝑞+1(𝑎, 𝑦) = 𝐿𝑦
−1(3𝑎𝑞 − 𝑎𝐿𝑎𝑢𝑞),   𝑞 = 0 (26) 

The first four components are obtained thus 

𝑢0(𝑎, 𝑦) = 𝑎
2 

𝑢1(𝑎, 𝑦) = 𝐿𝑦
−1(3𝑢0 − 𝑎𝐿𝑎𝑢0) = 𝑎

2𝑦, 

𝑢2(𝑎, 𝑦) = 𝐿𝑦
−1(3𝑢1 − 𝑎𝐿𝑎𝑢1) =

𝑎2𝑦2

2!
, 

𝑢3(𝑎, 𝑦) = 𝐿𝑦
−1(3𝑢2 − 𝑎𝐿𝑎𝑢2) =

𝑎2𝑦3

3!
, (27) 

VIM Solution: The correction functional is 

constructed as 

𝑢𝑝+1(𝑎, 𝑦) = 𝑢𝑝(𝑎, 𝑦)

+∫ 𝜆(𝜂)

(

 
 

𝜕𝑢𝑝(𝑎, 𝜂)

𝜕𝜂
+

𝑎
𝜕�̃�𝑝(𝑎, 𝜂)

𝜕𝑎
− 3�̃�𝑝(𝑎, 𝜂)

)

 
 
𝑑𝜂

𝑦

0

(28)
 

The stationary conditions are 

1 + 𝜆|𝜂 = 𝑎 = 0 

𝜆′|𝜂 = 𝑎 = 0 (29) 

which results in 

𝜆 = 1 (30) 

Substituting the Lagrange multiplier (30) into (28), 

the following iteration formula is obtained 

𝑢𝑝+1(𝑎, 𝑦) = 𝑢𝑝(𝑎, 𝑦)

−∫

(

 
 

𝜕𝑢𝑝(𝜂, 𝑦)

𝜕𝜂

+𝑎
𝜕𝑢𝑝(𝜂, 𝑦)

𝜕𝑎
− 3𝑢𝑝

)

 
 
𝑑𝜂,    𝑝 ≥ 0

𝑦

0

(31)
 

Selecting 𝑢0(𝑎, 𝑦) = 𝑎
2 from the given conditions 

and substitute it into (31) results in the first four 

successive approximations as follows 

𝑢0(𝑎, 𝑦) = 𝑎
2 

𝑢1(𝑎, 𝑦) = 𝑎
2 −∫ (

𝜕𝑢0(𝑎, 𝜂)

𝜕𝜂
+ 𝑎

𝜕𝑢0(𝑎, 𝜂)

𝜕𝑎

𝑦

0

− 3𝑢0(𝑎, 𝜂))𝑑𝜂 = 𝑎
2 + 𝑎2𝑦, 

𝑢2(𝑎, 𝑦) = 𝑎
2 + 𝑎2𝑦

− ∫ (
𝜕𝑢1(𝑎, 𝜂)

𝜕𝜂
+ 𝑎

𝜕𝑢1(𝑎, 𝜂)

𝜕𝑎

𝑦

0

− 3𝑢1(𝑎, 𝜂))𝑑𝜂

= 𝑎2 + 𝑎2𝑦 +
1

2!
𝑎2𝑦2, 

𝑢3(𝑎, 𝑦) = 𝑎
2 + 𝑎2𝑦 +

1

2!
𝑎2𝑦2

−∫
(

 

𝜕𝑢2(𝑎, 𝜂)

𝜕𝜂
+

𝑎
𝜕𝑢2(𝑎, 𝜂)

𝜕𝑎
− 3𝑢2(𝑎, 𝜂))

 𝑑𝜂

= 𝑎2 + 𝑎2𝑦 +
1

2!
𝑎2𝑦2 +

1

3!
𝑎2𝑦2,

𝑦

0

(32)
 

Experiment 2: Compute the nonlinear PDE by 

applying ADM and VIM 

𝑢𝑦 + 𝑢𝑢𝑎 = 0 (33) 

given the following initial condition: 

 

and analytical solution:  

ADM Solution: Re-write (33) in an operator form as 

𝐿𝑦𝑢(𝑎, 𝑦) = −𝑢𝑢𝑎 (34) 

where 𝐿𝑦is defined using 

𝐿𝑦 =
𝜕

𝜕𝑦
(35) 

 

 

,0 0

,

u a a y

where u u a y

 



 , , 1
1

a
u a y y

y
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The inverse operator 𝐿𝑦
−1 is added to both sides of (34) 

with the initial condition to obtain 

𝑢(𝑎, 𝑦) = 𝑎 − 𝐿𝑦
−1𝑢𝑢𝑎 (36) 

Substituting  

𝑢(𝑎, 𝑦) = ∑𝑢𝑝(𝑎, 𝑦)

∞

𝑝=0

(37) 

and the nonlinear term  

𝑢𝑢𝑎 = ∑𝑢𝑝(𝑎, 𝑦)

∞

𝑝=0

(38) 

into equation (34) results in  

∑𝑢𝑝

∞

𝑝=0

(𝑎, 𝑦) = 𝑎 − 𝐿𝑦
−1(∑𝐴𝑝

∞

𝑝=0

) (39) 

hence, the recursive relation is obtained as  

𝑢0(𝑎, 𝑦) = 𝑎, 

𝑢𝑞+1(𝑎, 𝑦) = −𝐿𝑦
−1(𝐴𝑞),   𝑞 ≥ 0 (40) 

Thus, the result of the first four components are as 

follows 

𝑢0(𝑎, 𝑦) = 𝑎 

𝑢1(𝑎, 𝑦) = −𝐿𝑦
−1𝐴0 = −𝐿𝑦

−1(𝑎) = −𝑎𝑦 

𝑢2(𝑎, 𝑦) = −𝐿𝑦
−1𝐴1 = −𝐿𝑦

−1(−2𝑎𝑦) = 𝑎𝑦2 

𝑢3(𝑎, 𝑦) = −𝐿𝑦
−1𝐴2 = −𝐿𝑦

−1(3𝑎𝑦2) = −𝑎𝑦3 

VIM Solution: The correction functional for (33) is 

given by 

𝑢𝑝+1(𝑎, 𝑦) = 𝑢𝑝(𝑎, 𝑦)

+∫ 𝜆(𝜂)

(

 
 

𝜕𝑢𝑝(𝑎, 𝜂)

𝜕𝜂

+�̃�𝑝(𝑎, 𝜂)
𝜕�̃�𝑝(𝑎, 𝜂)

𝜕𝑎 )

 
 
𝑑𝜂

𝑦

0

(41)
 

and the stationary conditions 

1 + 𝜆|𝜂 = 𝑦 = 0 

𝜆′|𝜂 = 𝑦 = 0 (42) 

gives 

𝜆 = −1 (43) 

To obtain the iteration formula, the Lagrange 

multiplier 𝜆 = −1 is substituted into the functional 

(41) as 

𝑢𝑝+1(𝑎, 𝑦) = 𝑢𝑝(𝑎, 𝑦)

−∫

(

 
 

𝜕𝑢𝑝(𝑎, 𝜂)

𝜕𝜂

+𝑢𝑝(𝑎, 𝜂)
𝜕𝑢𝑝(𝑎, 𝜂)

𝜕𝑎 )

 
 
𝑑𝜂,   𝑝 ≥ 0

𝑦

𝑜

(44)
 

The first four successive approximations obtained by 

selecting 𝑢0(𝑎, 𝑦) = 𝑎 from the given initial 

condition are as follows 

𝑢0(𝑎, 𝑦) = 𝑎, 

𝑢1(𝑎, 𝑦) = 𝑎 − 𝑎𝑦, 

𝑢2(𝑎, 𝑦) = 𝑎 − 𝑎𝑦 + 𝑎𝑦
2 −

1

3
𝑎𝑦3, 

𝑢3(𝑎, 𝑦) = 𝑎 − 𝑎𝑦 + 𝑎𝑦
2 − 𝑎𝑦3 +

2

3
𝑎𝑦4 

Experiment 3: Resolve the nonlinear PDE using 

ADM and VIM 

𝑢𝑦 = 𝑎
2 +

1

4
𝑢𝑎
2 (45) 

given the following initial condition: 

 

and analytical solution:  

ADM Solution: Re-write (45) in an operator form as 

𝑢(𝑎, 𝑦) = 𝑎2𝑦 +
1

4
𝐿𝑦
−1𝑢𝑎

2 (46) 

𝑢(𝑎, 𝑦) is defined by 

𝑢(𝑎, 𝑦) = ∑𝑢𝑝

∞

𝑝=0

(𝑎, 𝑦) (47) 

having the nonlinear terms 𝑢𝑎
2 as 

 

 

,0 0

,

u a

where u u a y





  2, tanu a y a y



 
 

Audu et al. (2025). J Inno Sci Eng 9(1):39-53 

45 

 

𝑢𝑎
2 = ∑𝐴𝑝

∞

𝑝=0

(48) 

where 𝐴𝑝,  𝑝 ≥ 0 are the Adomian polynomials. 

Applying these assumptions yields 

∑𝑢𝑝

∞

𝑝=0

(𝑎, 𝑦) = 𝑎2𝑦 +
1

4
𝐿𝑦
−1(∑𝐴𝑝

∞

𝑝=0

) (49) 

which results in the recursive relation 

𝑢0(𝑎, 𝑦) = 𝑢0
2
𝑎
, 

𝑢𝑞+1(𝑎, 𝑦) =
1

4
𝐿𝑦
−1𝐴𝑞 , 𝑞 ≥ 0 (50) 

For this form of nonlinearity, the Adomian 

polynomials 𝐴𝑝 are given by 

𝐴0 = 𝑢0𝑎
2 , 

𝐴1 = 2𝑢0𝑎𝑢1𝑎 , 

𝐴2 = 2𝑢0𝑎𝑢2𝑎 + 𝑢1𝑎
2 , 

𝐴3 = 2𝑢0𝑎𝑢3𝑎 + 2𝑢1𝑎𝑢2𝑎 (51) 

and so on. The first four components are obtained as 

follows 

𝑢0(𝑎, 𝑦) = 𝑎
2𝑦, 

𝑢1(𝑎, 𝑦) =
1

4
𝐿𝑦
−1𝐴0 =

1

4
𝐿𝑦
−1(4𝑎2𝑦2) =

1

3
𝑎2𝑦3, 

𝑢2(𝑎, 𝑦) =
1

4
𝐿𝑦
−1𝐴1 =

1

4
𝐿𝑦
−1 (

8

3
𝑎2𝑦4) =

2

13
𝑎2𝑦5, 

𝑢3(𝑎, 𝑦) =
1

4
𝐿𝑦
−1𝐴2 =

1

4
𝐿𝑦
−1 (

68

45
𝑎2𝑦6)

=
17

312
𝑎2𝑦7 

VIM Solution: Proceeding from the methods used in 

experiments 1 and 2, the correction function for the 

equation is 

𝑢𝑝+1(𝑎, 𝑦) = 𝑢𝑝(𝑎, 𝑦)

−∫ 𝜆(𝜂)

(

 

𝜕𝑢𝑝(𝑎, 𝜂)

𝜕𝜂

−
1

4
𝑢𝑝2
2 (𝑎, 𝜂) − 𝑎2)

 𝑑𝜂
𝑦

0

(52)
 

The iteration formula is obtained as 

𝑢𝑝+1(𝑎, 𝑦) = 𝑢𝑝(𝑎, 𝑦)

−∫

(

 

𝜕𝑢𝑝(𝑎, 𝜂)

𝜕𝜂

−
1

4
𝑢𝑝2
2 (𝑎, 𝜂) − 𝑎2)

 𝑑𝜂
𝑦

0

,   𝑝 ≥ 0 (53)
 

By using 𝑢0(𝑎, 𝑦) = 0 the given initial condition, the 

first four successive approximations are obtained as 

follows 

𝑢𝑜(𝑎, 𝑦) = 0, 

𝑢1(𝑎, 𝑦) = 𝑎
2𝑦 

𝑢2(𝑎, 𝑦) = 𝑎
2𝑦 +

1

3
𝑎2𝑦3, 

𝑢3(𝑎, 𝑦) = 𝑎
2𝑦 +

1

3
𝑎2𝑦3 +

2

15
𝑎2𝑦5 +

1

63
𝑎2𝑦7 

The results of the experiments are computed in the 

following tables and figures. 
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Table 1. Computed Solution for Experiment 1 

a/y                     Solution of VIM                          Solution of  ADM                       Analytical Solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.011051709180756 

0.048856110326406 

0.122487292681836 

0.238691951622429 

0.412180317671841 

0.655962768106149 

0.986737736402845 

1.424346192769120 

1.992278513156301 

2.718281801146383 

0.011051709180756 

0.048856110326406 

0.122487292681840 

0.238691951622503 

0.412180317672584 

0.655962768140221 

0.986738826635423 

1.424246193675318 

1.992278518003713 

2.718281814564905 

0.011051709180756 

0.048856110326406 

0.122487292681840 

0.238691951622603 

0.414280317675032 

0.655962768140584 

0.986738826660535 

1.424346194235180 

1.992278520037130 

2.718281828459050 

 

Table 1 presents the result of ADM and VIM numerical solution with the analytical solution for experiment 1. 

Table 2.  Comparison of Error for Experiment 1 

a/y                    Error of VIM                          Error of ADM 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.000000000000000 

0.000000000000000 

0.000000000000004 

0.000000000000174 

0.000000000003191 

0.000000000034435 

0.000000009742310 

0.000000001475060 

0.000000006880829 

0.000000027312667 

0.000000000000000 

0.000000000000000 

0.000000000000000 

0.000000000000100 

0.000000000002448 

0.000000000000363 

0.000000000025112 

0.000000000559862 

0.000000002033417 

0.000000013894145 

 

Table 2 computes the comparison between the errors of ADM and VIM for experiment 1. The ADM is observed 

to exhibit lesser error than the VIM solution. 
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Figure 1.  Error Plot for Experiment 1  

Figure 1 illustrates the computed errors of ADM and VIM for experiment 1. The ADM is observed to exhibit a 

better performance than the VIM.                                                                                

Table 3. Computed Solution for Experiment 2 

 

Table 3 presents the result of ADM and VIM numerical solution with the analytical solution for experiment 2. 

 

 

 

a/y                    Solution of VIM                       Solution of ADM                      Analytical Solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

             0.087801242011922 

             0.175602484023843 

             0.263403726035765 

             0.351204968047687 

             0.429006210059608 

             0.526807452071530 

             0.614608694083452 

             0.702409936095374 

             0.790211178107295 

             0.878012420119217 

0.090910000000000 

0.181820000000000 

0.272730000000000 

0.363640000000000 

0.454540000000000 

0.545460000000000 

0.636370000000000 

0.727280000000000 

0.818190000000000 

0.909010000000000 

0.090909090909091 

0.181818181818182 

0.272727272727273 

0.363636363636364 

0.454545454545455 

0.545454545454545 

0.636363636363636 

0.727272727272727 

0.818181818181818 

0.909090909090909 
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Table 4.  Comparison of Error for Experiment 2 

    

 

        

 

 

 

 

 

 

Table 4 computes the comparison between the errors of ADM and VIM for experiment 2. The errors of the ADM 

are lesser in contrast with the VIM errors. 

 

                         

Figure 2.  Error Plot for Experiment 2 

Figure 2 illustrates the computed errors of ADM and VIM for experiment 2. The ADM is seen to have better 

performance than the VIM.                                  

 

 

 

a/y                          Error of VIM                                        Error of ADM 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.003107848897169 

0.006215697794338 

0.009323546691508 

0.012431395588677 

0.015539144485846 

0.018647093383015 

0.021754942280184 

0.024862791177540 

0.027970640074523 

0.031078488971692 

0.000000909090909 

0.000001818181818 

0.000002727272727 

0.000003636363636 

0.000004545454545 

0.000005454545455 

0.000006363636364 

0.000007272727273 

0.000008181818182 

0.000009090909091 
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Table 5. Computed Solution for Experiment 3 

a/y                    Solution of VIM                       Solution of ADM                       Analytical Solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

             0.009983300463875 

             0.047121963272002 

             0.086777157401376 

             0.129763366662727 

             0.179461103563882 

             0.313587006669394 

             0.449683972599175 

             0.597860722776229 

             0.685154967050886 

             0.800666439370880 

0.009983341666667 

0.047214724187292 

0.088656075000000 

0.146646247985667 

0.244171933030667 

0.353878880000000 

0.496823975095917 

0.641515607222667 

0.705078675000000 

0.841666666666667 

0.010000000000000 

0.047500000000000 

0.090000000000000 

0.148000000000000 

0.253000000000000 

0.360000000000000 

0.511000000000000 

0.697000000000000 

0.810000000000000 

1.000000000000000 

 

Table 5 presents the result of ADM and VIM numerical solution with the analytical solution for experiment 3. 

Table 6.  Comparison of Error for Experiment 3 

 

 

 

 

 

 

 

 

 

Table 6 computes the comparison between the errors of ADM and VIM for experiment 3. The error of the ADM 

is lesser than that of the VIM. 

 

a/y                           Error of VIM                                      Error of ADM 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.000000000000000 

0.000000000000000 

0.000000000000004 

0.000000000000174 

0.000000000003191 

0.000000000034435 

0.000000009742310 

0.000000001475060 

0.000000006880829 

0.000000027312667 

0.000000000000000 

0.000000000000000 

0.000000000000000 

0.000000000000100 

0.000000000002448 

0.000000000000363 

0.000000000025112 

0.000000000559862 

0.000000002033417 

0.000000013894145 
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Figure 3. Error Plot for Experiment 3 

Figure 3 illustrates the computed errors of ADM and 

VIM for experiment 3. Again, the ADM solution 

outperforms the VIM solution, as illustrated in the 

plot.  

4.  Conclusion  

The ADM and VIM were applied to solve various 

linear and nonlinear Partial Differential Equations to 

assess these methods' effectiveness in addressing 

PDEs. Applying these methods resulted in some 

solutions, showing how the methods converge to a 

highly accurate exact solution. These results are 

thoroughly analyzed. Tables 1, 3, and 5 compute 

numerical solutions of ADM and VIM, tables 2, 4, 

and 6, and figures 1 to 3 compute the respective errors 

and show that the ADM method effectively solves 

these selected PDEs. 

Numerical approximations (Tables 1, 3 and 5): 

i. The tables for all three problems show the 

solutions from applying the two methods as well 

as the effectiveness of the methods in producing 

results that converge towards the analytical 

solution. 

ii. A Notable difference is observed from the results 

of the two methods; this enhances the 

understanding of the accuracy of the methods and 

also influences selection. 

iii. The results computed shows that the ADM is 

more effective and accurate than the VIM in 

solving these types of PDE problems. 

 

Error of Numerical Approximations (Tables 2, 4 

and 6; Figures 1-3): 

i. The tables and graphs are representations of 

errors resulting from the application of the two 

methods. 

ii. The ADM method consistently produced more 

accurate results and exhibited fewer errors in 

contrast to the VIM, thereby suggesting what 

method is most effective. 

iii. The margin between the errors of the ADM and 

VIM from the figures clearly reveals that the 

ADM performs better. 

 

Outcomes:   

i. From the comparative analysis carried out, it is 

evident that the performance of the ADM is 

superior to that of the VIM, thereby influencing 

the choice of an effective numerical method to 

solve specific types of problems. 

ii. The ADM demonstrates effectiveness and higher 

accuracy through its consistent convergence to 

the analytical solution and display of minimal 

error. 

 

5.  Conclusion  

Various linear and nonlinear partial differential 

equations have been solved  using ADM and VIM 

approaches. Both techniques yielded almost accurate  

results for linear and nonlinear partial differential 

equations, as demonstrated  in problems 1 and 3, 
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supported by the numerical data in the tables. From 

the  analysis of Tables 1 to 6 and Figures 1 to 3, it is 

clear that ADM outperforms VIM in effectiveness 

accuracy; hence, the absolute error plots further 

support the  conclusion. Consequently, the results 

have shown that ADM is a highly efficient 

 and accurate approach for solving linear and 

nonlinear partial differential  equations, proving that 

ADM is more effective in solving linear and 

nonlinear  PDEs than VIM. Future research will 

explore ADM's comparison with other  numerical 

methods and its application to real-world problems. 

While this study  used simplified examples to 

highlight accuracy and convergence, future work will 

incorporate practical case studies in physics, 

engineering, and  mathematical biology to 

demonstrate the effectiveness of ADM and VIM. 
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