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Aircraft Recognition Based on CNN Using Satellite Images 

 
A R T I C L E  I N F O  

 
A B S T R A C T  

 

This study investigates the use of Convolutional Neural Networks (CNN), 

particularly the VGG16 and VGG19 architectures, for aircraft recognition 

with satellite-derived image data. Deep learning, especially multi-layer neural 

networks, addresses significant limitations in artificial intelligence, allowing 

advanced models to achieve high accuracy in complex tasks like aircraft 

recognition. The MTARSI dataset is exclusively used to evaluate these 

models. Motivated by the importance of accurate aircraft recognition in civil 

aviation, military security, and emergency interventions, this study aims to 

develop a CNN-based aircraft recognition system. Experimental results show 

that VGG19 outperforms VGG16, achieving an accuracy of 89.29% compared 

to 82.67% for VGG16. These findings highlight VGG19’s advantage over 

traditional methods and underscore its potential in future military aircraft 

recognition systems. 
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1.  Introduction 

In today’s rapidly digitizing world, technological 

tools that were once exclusive to defense systems 

have found effective applications in military aircraft 

recognition, particularly using satellite imagery and 

deep learning algorithms. The advancement of 

technology, coupled with the efficient use of deep 

learning techniques, has enabled the use of images 

and videos for a range of tasks, such as computer 

vision studies, which address crucial issues including 

national security, traffic management, and 

agricultural health monitoring. 

The development of artificial intelligence, especially 

in the domain of computer vision, has significantly 

increased the demand for more efficient and effective 

vision systems. As artificial intelligence evolves, it 
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has led to the creation of more sophisticated tools for 

a variety of tasks, such as object recognition, 

behavioral analysis, and scene understanding. 

Research in AI and deep learning, particularly 

focusing on applying these technologies for the 

benefit of humanity and simplifying daily life, has 

been particularly successful in high-demand tasks 

such as surveillance and object detection, which 

require intense focus. These innovations have not 

only ensured more efficient use of human resources 

but also minimized human errors and negligence in 

critical tasks. In recent years, researchers have 

focused on enhancing the capabilities of deep 

learning algorithms. Notably, deep learning 

architectures such as VGG16 and VGG19 have 

demonstrated impressive success in image 

recognition and classification tasks. These models, 

with their deep architectures comprising multiple 

layers, are highly effective in learning complex image 

features and improving performance in challenging 

classification problems. 

This study aims to evaluate the performance of 

VGG16 and VGG19 architectures for military aircraft 

classification using the MTARSI dataset. The 

MTARSI dataset contains high-resolution images of 

military aircraft taken from various angles, making it 

an ideal resource for identifying different aircraft 

types and models. In this research, object recognition 

and classification tasks were performed by using 

VGG16 and VGG19 models, starting from pre-

trained weights and fine-tuned transfer learning 

techniques. Preprocessing steps, including resizing 

and normalization, were applied to the dataset images 

before training. On the other hand, the aim of this 

study is to investigate the effectiveness of the VGG16 

and VGG19 architectures in military aircraft 

classification using satellite imagery. By analyzing 

the performance of these models, we aim to 

demonstrate the potential of deep learning methods in 

improving the accuracy and efficiency of military 

aircraft classification systems. 

The application of artificial intelligence (AI) and deep 

learning algorithms in the defense industry has led to 

significant advancements, particularly in areas such 

as military aircraft recognition using satellite 

imagery. In recent years, the focus has shifted 

towards using satellite images and remote sensing 

data to improve aircraft classification systems. 

Traditional image recognition methods, such as SIFT 

(Scale-Invariant Feature Transform) combined with 

Bag of Words (BOW), and HOG (Histogram of 

Oriented Gradients) with Support Vector Machines 

(SVM), have been widely used for this purpose. 

While these methods have provided some success, 

they are often computationally expensive and are 

sensitive to changes in image resolution and viewing 

angles. These techniques also struggle with 

distinguishing between similar-looking objects, 

which makes the task of recognizing military aircraft 

particularly challenging. 

With the rapid development of deep learning 

methods, particularly Convolutional Neural 

Networks (CNNs), new solutions have emerged to 

improve classification tasks. CNN architectures like 

VGG16 and VGG19, known for their ability to learn 

complex image features, have shown remarkable 

performance in various computer vision tasks, 

including object classification, scene recognition, and 

more. These deep learning models can process large 

volumes of data and automatically extract important 

features from images without requiring hand-crafted 

feature engineering. 

Recent studies have demonstrated the effectiveness of 

CNNs, particularly VGG architectures, in the 

classification of military aircraft from satellite 

imagery. For instance, Chen et al. [1] proposed a 

Region Locating Network (RLN) to improve the 

Faster R-CNN framework. This RLN strategy is 

designed to identify regions, such as runway and 

apron areas, where aircraft are typically located. They 

used a dataset of 265 images from 12 different 

airports, totaling over 6,000 annotated aircraft, to 

train the model. Their approach achieved a detection 

accuracy of 53.64%. To enhance the training dataset, 

they applied data augmentation techniques, including 

flipping the images horizontally and vertically. 

Luo and Shi [2] addressed the problem of efficient 

aircraft localization in remote sensing images using a 

simple yet effective object proposal method. Their 

approach involved generating a small set of bounding 

boxes likely to contain the objects of interest (in this 

case, aircraft) and applying HOG features with an 

SVM classifier for detection. The model achieved an 

80% detection accuracy on test data from 20 airport 

images collected from Google Earth, with image sizes 

ranging from 1000 × 1000 to 2000 × 2000. 

Another related study, by Zhang et al. [3], explored 

the integration of traditional computer vision methods 

with deep learning to improve the accuracy of aircraft 

recognition. The researchers combined SIFT features 

with a CNN classifier, resulting in a notable 

improvement in the accuracy of aircraft detection in 

satellite images. They also introduced a novel data 

augmentation method that generated realistic 

synthetic images to increase the variety of the training 

dataset, further boosting the model’s performance. 
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These advancements in deep learning and computer 

vision have significantly contributed to the 

improvement of military aircraft recognition systems, 

enhancing both the accuracy and efficiency of such 

tasks. By utilizing pre-trained deep learning models 

and transfer learning, these systems can be further 

fine-tuned to achieve better results, especially in 

highly specialized fields like defense and national 

security. 

In conclusion, the integration of artificial intelligence 

and deep learning algorithms has revolutionized the 

defense industry and various other industrial 

applications. Projects that explore and implement 

such technologies are paving the way for future 

advancements, contributing to a safer and more 

efficient world. The success of models like VGG16 

and VGG19 in military aircraft classification 

demonstrates the potential of deep learning methods 

in enhancing national security and defense systems, 

reducing human error, and improving operational 

efficiency. 

2.  Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) are a type of 

Multi-Layer Perceptron (MLP), characterized by 

multi-layered detectors. Cells in the visual center are 

divided into subregions to encompass the entire 

image, with simple cells focusing on edge-like 

features, and complex cells having broader receptors 

concentrating on the entire visual field. The CNN 

algorithm, an advanced neural network, is inspired by 

the visual center of animals. The mathematical 

convolution operation here can be thought of as a 

neuron’s response to stimuli within its receptive field 

[3,4,5]. CNN consists of one or more convolutional 

layers, a subsampling layer, and one or more fully 

connected layers, similar to a standard multi-layer 

neural network, following that [6]. The LeNet 

architecture, introduced by Yann LeCun in 1988 and 

illustrated in Figure 1, underwent continuous 

improvements until the late 1990s [7]. Within the 

LeNet network, the lower layers consist of 

consecutively placed convolution and maximum 

pooling layers, while the subsequent upper layers 

align with the structure of fully connected traditional 

Multi-Layer Perceptron (MLP). Convolutional 

Neural Network (CNN) algorithms have diverse 

applications across various domains, such as image 

and audio processing, natural language processing 

(NLP), and biomedical research. Notably, CNN has 

excelled in the field of image processing, achieving 

state-of-the-art results. In a study focusing on the 

MNIST dataset, Cireşan has significantly reduced the 

error rate by using CNN [8]. Another investigation by 

Cireşan and colleagues, involving the MNIST and 

NORB datasets, showcased the rapid learning 

capabilities of CNN, surpassing conventional 

methods [9]. 

 

Figure  1 : Demographics of the study participants. 

In 2014, top-ranking teams in the ImageNet 

Competition, dealing with millions of images and 

hundreds of object classes in object classification and 

detection, employed modified versions of CNN 

algorithms. A subsequent study in 2015 highlighted 

CNN’s ability to capture faces at wide angles, 

including upside-down faces. The network underwent 

training on a database comprising 200,000 images 

with faces at various angles and orientations, along 

with an additional 20 million images without faces 

[10].  

The evolution and success of CNN algorithms, 

demonstrated through these studies, underscore their 

versatility and effectiveness across a spectrum of 

applications, contributing significantly to 

advancements in image processing and related fields.  

CNN models have shown versatility beyond image 

processing and can be applied to various NLP 

problems. Exceptional results were achieved in 

semantic parsing [11], query generation [12], 

sentence modeling [13], classification [14], and 
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prediction problems [13]. CNN algorithms have also 

been employed in drug discovery. AtomNet, 

developed by Atomwise in 2015, was the first deep 

neural network designed for drug design. Trained on 

3D representations of chemical reactions, the system 

was used to discover new biomolecules for diseases 

such as Ebola and sclerosis [16]. 

2.1. Visual Geometry Group 

The Visual Geometry Group (VGG) is a research 

group at the University of Oxford, and VGG 

represents a series of deep learning models developed 

by this group. VGG models, particularly the ones 

used for image classification tasks on large datasets 

like ImageNet, have achieved high accuracy. A 

distinctive feature of VGG models is their deep 

architecture in convolutional neural networks (CNN). 

For example, the VGG16 model has a 16-layer 

structure, consisting of 13 convolutional layers and 3 

fully connected layers. This depth allows the model 

to effectively learn complex features. 

VGG models use convolutional layers to identify 

different features in an image. These convolutional 

layers enable the model to understand the patterns in 

the image by creating feature maps. VGG models 

trained on extensive datasets often offer the ability to 

use their pre-trained weights for transfer learning or 

fine-tuning. This feature allows for a quick and 

effective start in new tasks. VGG models have shown 

significant success in various computer vision tasks, 

such as image classification, object detection, and 

localization. Their impressive performance in 

ImageNet competitions highlights the impact of VGG 

in both industry and research domains. 

The VGG, or Visual Geometry Group, represents a 

typical design for a deep Convolutional Neural 

Network (CNN) characterized by numerous layers. 

The term “deep” refers to the significant layer count, 

with VGG-16 or VGG-19 having 16 or 19 

convolutional layers, respectively. The VGG 

architecture serves as the foundation for constructing 

innovative models for object identification. As a deep 

neural network, VGGNet surpasses benchmarks 

across various tasks and datasets beyond ImageNet. It 

continues to be one of the most employed 

architectures for image recognition in use today. 

Figure 2 shows the VGG architecture structure. 

 

Figure  2 : VGG architectures. 
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2.2.1. VGG 16 

The convolutional neural network model known as 

VGG, or VGGNet, specifically with 16 layers, is 

commonly referred to as VGG16. This model was 

developed by A. Zisserman and K. Simonyan at the 

University of Oxford. The research paper titled “Very 

Deep Convolutional Networks for Large-Scale Image 

Recognition” presents the model released by these 

researchers. 

The VGG16 model attains a top-5 test accuracy of 

approximately 92.7 percent on ImageNet. ImageNet, 

a dataset comprising over 14 million photos across 

nearly 1000 categories, served as the testing ground. 

VGG16 emerged as one of the most favored models 

during ILSVRC2014. Its superior performance over 

AlexNet is attributed to the substitution of multiple 

3x3 kernel-sized filters for larger ones. The training 

process for the VGG16 model spanned several weeks, 

utilizing Nvidia Titan Black GPUs. 

With 16 layers, VGGNet-16 excels in classifying 

images into 1000 distinct object categories, including 

items like keyboards, animals, pencils, mice, etc., as 

mentioned earlier. The model accommodates images 

with a resolution of 224 by 224 pixels. Figure 3 shows 

the VGG16 architecture structure.  

 

Figure  3 : VGG16 architecture. 

2.2.2. VGG 19 

The VGG19 model, also known as VGGNet-19, 

follows the same fundamental concept as the VGG16 

model, except it features 19 layers. The numbers “16” 

and “19” correspond to the model’s weight layers, 

specifically the convolutional layers. In contrast to 

VGG16, VGG19 incorporates three additional 

convolutional layers. 

3.  Dataset Preparation 

In this experimental study, the choice of utilizing the 

Multi-type Aircraft of Remote Sensing Images 

(MTARSI) dataset over traditional datasets like 

Pascal VOC, MS COCO, CIFAR, ImageNet, and 

MNIST stems from several critical considerations, 

elucidating the rationale behind the selection of 

specific aircraft types, namely “A-10”, “B-52”, “C-

21”, and “F-22”. Additionally, example photos can be 

seen in Figures 4, 5, 6, and 7. 

The MTARSI dataset offers a unique advantage due 

to its specialized focus on remote sensing images of 

various aircraft types, specifically curated from 

Google Earth satellite imagery. With a total of 9,385 

meticulously collected images, spanning 20 distinct 

aircraft types across 36 airports, MTARSI represents 

a comprehensive and diverse collection that presents 

a rich landscape for training and validating object 

recognition and detection models. 

The decision to narrow down the selection to “A-10”, 

“B-52”, “C-21”, “F22” aircraft types is founded upon 

the availability of a substantial number of images for 

these specific categories within the MTARSI dataset. 

By focusing on these aircraft types, which are well-

represented within the dataset, the study aims to 

ensure a robust and extensive training and validation 

process. 

 

Figure  4 : A-10 aircraft. 

Furthermore, the careful curation and labeling of each 

image by seven specialists in the field of remote 

sensing image interpretation underscore the high 

quality and reliability of the MTARSI dataset. This 

meticulous labeling process enhances the credibility 

and accuracy of the dataset, mitigating potential 

ambiguities or inconsistencies in object annotations. 
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Figure  5 : B-52 aircraft. 

Moreover, the selection of these specific aircraft 

types aligns with the objectives of the study, which 

may prioritize certain types of aircraft based on their 

prevalence, significance, or relevance to specific 

applications or domains. For instance, “A-10”, “B-

52”, “C-21”, and “F22” aircraft types may hold 

particular importance in military or aviation-related 

contexts, thereby justifying their inclusion in the 

experimental investigation. 

By leveraging the MTARSI dataset and focusing on 

these specific aircraft types, the study aims to 

contribute valuable insights and advancements to the 

field of object recognition and detection, particularly 

in the domain of remote sensing imagery analysis. 

This targeted approach not only harnesses the 

richness and diversity of the dataset but also ensures 

the relevance and applicability of the findings to real-

world scenarios and applications. 

The table provided outlines the distribution of data 

samples across the “Train”, “Validation” and “Test” 

sets for each of the selected aircraft types: “A-10”, 

“B-52”, “C-21”, “F-22”. These values play a crucial 

role in ensuring the efficacy and reliability of the 

experimental study conducted by using the MTARSI 

dataset. 

 

Figure  6 : C-21 aircraft. 

The Train set comprises the largest portion of data 

samples and is utilized for training the deep learning 

models. The aircraft types and their numbers in the 

“training” set are as follows: 324 for “A-10”, 432 for 

“B-52”, 392 for “C-21”, 672 for “F-22”. This 

distribution ensures that the models have access to a 

substantial amount of training data, facilitating the 

learning process and enabling them to capture diverse 

patterns and characteristics associated with each 

aircraft type. 

 

Figure  7 : F-22 aircraft. 

Following the training phase, the Validation set is 

employed to fine-tune model parameters and monitor 

performance during training iterations. The 

Validation set contains a smaller subset of data 

samples compared to the Train set, serving as an 

independent evaluation mechanism to gauge the 

generalization capabilities of the models. The aircraft 
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types and their numbers in the “validation” set are as 

follows: 59 for “A-10”, 55 for “B-52”, 49 for “C-21”, 

84 for “F-22”. 

Finally, the Test set is utilized to assess the overall 

performance and generalization ability of the trained 

models on unseen data. The Test set is crucial for 

evaluating the models’ effectiveness in accurately 

recognizing and detecting aircraft types under real-

world conditions. The aircraft types and their 

numbers in the “test” set are as follows: 59 for “A-

10”, 55 for “B-52”, 49 for “C-21”, 84 for “F-22”. 

Overall, this meticulous partitioning of data into 

Train, Validation, and Test sets ensures a rigorous 

and systematic evaluation of the deep learning models 

trained on the MTARSI dataset. By leveraging these 

carefully curated datasets, the study aims to achieve 

robust and reliable results in the domain of object 

recognition and detection for remote sensing images 

of various aircraft types. 

4.  The Proposed Aircraft Recognition 

Approach 

In this study, a project was conducted for the 

recognition of military aircraft using VGG16 and 

VGG19 models. The MTARSI dataset was utilized 

throughout the project, following several stages as 

depicted in Figure 8. These stages comprise two main 

phases: “data preparation”, “training and testing”. 

The initial stage, data preparation, involves several 

steps. First, the MTARSI dataset was thoroughly 

examined to ensure its suitability for training 

Convolutional Neural Networks (CNNs) for aircraft 

recognition. Relevant data were extracted from the 

dataset, focusing on obtaining a representative 

sample of images for various aircraft classes. The 

extracted data were then categorized into different 

classes of aircraft to facilitate supervised learning, 

which is crucial for training the CNN models to 

differentiate between various types of aircraft. 

Finally, the data were divided into three subsets: 

training data (80%), validation data (10%), and test 

data (10%). Training data was used to train the CNN 

models, validation data to validate the model during 

training and adjust hyperparameters, and test data to 

evaluate the final performance of the trained model. 

 
 

Figure  8 : Flowchart of the proposed aircraft recognition approach. 
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The second stage, model training and testing, 

encompasses several sub steps. A suitable software 

environment was set up, including the installation of 

necessary libraries and frameworks such as 

TensorFlow and Keras. Initial parameters for the 

VGG16 and VGG19 models were set, and to prevent 

overfitting, the maximum epoch value was set to 10. 

The models were then trained by using the training 

data, which involved feeding the images into the 

models and optimizing the parameters through 

backpropagation. The performance of the models was 

evaluated by using the validation data, monitoring 

metrics such as accuracy and loss, and necessary 

adjustments were made to the models. Based on the 

evaluation results, parameters were fine-tuned, and 

the models were re-trained to improve the 

performance. Finally, the models were tested by using 

the test data, generating a confusion matrix and 

calculating test accuracy to assess the overall 

performance of the models. 

The final trained models were evaluated by using the 

test data. The confusion matrix provided insights into 

the classification performance across different 

aircraft classes, and the test accuracy metric helped in 

quantifying the overall effectiveness of the models. 

The results indicated that both VGG16 and VGG19 

models were successful in recognizing military 

aircraft with high accuracy, demonstrating the 

potential of CNNs in satellite image analysis for 

aircraft recognition. 

In conclusion, the presented method successfully 

implemented VGG16 and VGG19 models for the 

recognition of military aircraft using satellite images 

from the MTARSI dataset. Through a structured 

approach involving data preparation, model training, 

and testing the models were optimized, and they 

demonstrated robust performance. Future work could 

explore the integration of additional data 

augmentation techniques and the use of other 

advanced CNN architectures to further enhance 

recognition accuracy. 

5.  Experimental Results and Discussions 

In this study, deep learning models, specifically 

VGG-16 and VGG-19, were trained on the MTARSI 

dataset to classify aircraft images. The VGG-16 

model demonstrated excellent performance, 

achieving an accuracy of 99.31% on the training set 

and 96.35% on the validation set (Figure 9). These 

results reflect both a strong fit to the training data and 

a robust generalization capability, indicating that the 

VGG-16 model successfully learned to classify 

images from the MTARSI dataset. However, given 

the widespread use of these architectures in similar 

studies, it is essential to explore novel modifications 

or techniques that could further differentiate the 

approach and improve its performance beyond the 

existing methods. 

In comparison, the VGG-19 model, with its deeper 

architecture, also demonstrates excellent 

performance. Achieving a training accuracy of 

99.62% and a validation accuracy of 98.96% (Figure 

9), VGG-19 shows a strong fit to the training data and 

robust generalization to unseen data. While the VGG-

19 model provides slightly higher accuracy than 

VGG-16, the marginal performance increase raises 

questions about the trade-off between model 

complexity and computational resources. The added 

depth of VGG-19 allows for more complex feature 

extraction, but future studies should investigate 

whether this increase in accuracy is substantial 

enough to justify the higher computational cost 

associated with deeper architectures. 

These findings demonstrate that both VGG-16 and 

VGG-19 architectures can be effectively utilized for 

aircraft classification on the MTARSI dataset, each 

offering distinct advantages. While VGG-16 is more 

computationally efficient, with fewer layers and 

faster training times, VGG-19’s deeper architecture 

enables more nuanced feature extraction, which could 

improve classification accuracy in more complex 

tasks. However, given the extensive use of these 

architectures in similar studies, future work could 

explore modifications, such as incorporating 

advanced regularization techniques or hybrid models, 

to further enhance the performance of these networks, 

particularly in specialized image datasets like 

MTARSI. 

In recent years, deep learning models have 

revolutionized the field of computer vision, achieving 

unprecedented performance across a wide array of 

tasks. The Visual Geometry Group (VGG) 

architecture family has become one of the most 

influential approaches for image classification, 

delivering remarkable results on benchmark datasets 

such as ImageNet. Despite the success of VGG 

models in standard applications, there is an ongoing 

need to innovate and optimize these architectures for 

specific domains, such as satellite imagery or 

specialized datasets like MTARSI. Exploring 

modifications, such as layer-wise fine-tuning or novel 

data augmentation strategies, could further enhance 

their performance and applicability. 
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     (a) VGG-19                                                           

 

 (b) VGG-16 

Figure  9 : Training accuracy and Training loss for VGG-16 

and VGG-19. 

On a separate test dataset, VGG-19 achieved an 

accuracy of 85.03%, slightly surpassing VGG-16, 

which reached an accuracy of 84.71%. This result 

underscores the advantage of deeper architectures 

like VGG-19, which are capable of capturing more 

complex features from the data. However, the small 

difference in performance between the two models 

raises important questions regarding the trade-off 

between network depth and computational efficiency. 

Future research could explore alternative methods, 

such as model pruning or the use of lighter 

architectures, to maintain or even surpass these 

accuracy levels while reducing training time and 

resource usage. 

 

(c) VGG-19 

 

(d) VGG-16 

 

In conclusion, our extensive experiments demonstrate 

that deep learning models, particularly VGG-19, 

significantly outperform traditional image processing 

methods across all evaluation metrics. The superior 

performance of these models, achieving accuracy 

rates of up to 85.03%, reinforces the paradigm shift 

towards deep learning approaches in modern image 

classification tasks. These findings have important 

implications for both theoretical understanding of 

deep architectures and practical applications in real-

world scenarios. 
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Figure  10 : Confusion matrix for VGG-16. 

The performance results of two different deep 

learning models (VGG-16 and VGG-19) are shown 

in the confusion matrices. Figure 10 presents the 

results of the VGG-16 model. In this model, there 

were 59 correct predictions for the A-10 class, 44 for 

the B-52 class, 44 for the C-21 class, and 58 for the 

F-22 class. Overall, the model demonstrated good 

classification performance although some classes 

exhibited confusion. Figure 11 displays the results of 

the VGG-19 model. In this model, there were 59 

correct predictions for the A-10 class, 41 for the B-52 

class, 45 for the C-21 class, and 62 for the F-22 class. 

The VGG-19 model performed better than VGG-16, 

particularly for the F-22 class, but it achieved slightly 

lower success for the B-52 class. Both models 

managed to predict the A-10 class exceptionally well. 

 

Figure  11 : Confusion matrix for VGG-19. 

Table 1 presents the accuracy rates of various 

machine learning (ML) and deep learning (DL) 

models across four distinct classes: A-10, B-52, C-21, 

and F-22. As highlighted in recent studies, deep 

learning models consistently outperform traditional 

machine learning approaches in classification 

accuracy. Specifically, convolutional neural networks 

(CNNs), such as VGG-16 and VGG-19, show 

exceptional performance across nearly all classes 

when compared to traditional methods like SIFT + 

BOWN, HOG + SVM, ScSPM, and LLC. These 

findings are consistent with recent advancements in 

deep learning-based image classification, which have 

demonstrated improved accuracy in complex tasks,

Table 1: Algorithms’ comparison results. 

Method A-10 B-52 C-21 F-22 

SIFT [17] + BOWN 0.49 0.56 0.60 0.48 

HOG[18] + SVM 0.56 0.60 0.58 0.53 

ScSPM [19] 0.61 0.61 0.60 0.51 

LLC [20] 0.59 0.63                      0.63 0.59 

VGG-16 (The proposed model) 1.00  0.80 0.89 0.69 

VGG-19 (The proposed model) 1.00 0.74 0.91 0.73 

Several traditional machine learning techniques were 

evaluated for image classification across the four 

classes. The SIFT [17] + BOWN method, which 

combines Scale-Invariant Feature Transform (SIFT) 
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for feature extraction and Bag-of-Words (BOWN) for 

classification, achieves accuracy rates of 49% for A-

10, 56% for B-52, 60% for C-21, and 48% for F-22. 

The Histogram of Oriented Gradients (HOG) [18] 

combined with Support Vector Machines (SVM) 

achieves 56% for A-10, 60% for B-52, 58% for C-21, 

and 53% for F-22. The ScSPM [19] method, using 

spatial pyramid matching with sparse coding, reaches 

61% for A-10, 61% for B-52, 60% for C-21, and 51% 

for F-22. Lastly, the LLC [20] method, which 

employs locality-constrained linear coding, achieves 

accuracy rates of 59% for A-10, 63% for B-52, 63% 

for C-21, and 59% for F-22. The hyperparameters, 

including the number of clusters for SIFT and kernel 

choice for SVM, are discussed in the experimental 

results section. 

In terms of deep learning models, both VGG-16 and 

VGG-19 achieve significantly higher accuracy across 

all classes compared to traditional methods. The 

VGG-16 model achieves a perfect accuracy rate of 

100% for A-10, 80% for B-52, 89% for C-21, and 

69% for F-22. Similarly, the VGG-19 model reaches 

100% accuracy for A-10, 74% for B-52, 91% for C-

21, and 73% for F-22. These results align with the 

findings in recent literature, where VGG architectures 

were demonstrated to outperform other deep learning 

models in similar classification tasks. The choice of 

hyperparameters, such as learning rate, batch size, 

and the number of layers, plays a crucial role in model 

performance and is further detailed in the 

experimental results section. 

Performance analysis by class reveals that the VGG-

16 and VGG-19 models achieve the highest accuracy 

in the A-10 class, both attaining 100%, while the 

traditional SIFT + BOWN method demonstrates the 

lowest accuracy of 49%. In the B-52 class, the VGG-

16 model yields the highest accuracy of 80%, whereas 

the SIFT + BOWN method achieves the lowest at 

56%. The C-21 class sees the VGG-19 model lead 

with an accuracy of 91%, while the HOG + SVM 

method results in the lowest accuracy of 58%. Lastly, 

in the F-22 class, the VGG-19 model achieves the 

highest accuracy of 73%, with the lowest accuracy of 

48% again observed for the SIFT + BOWN method. 

These results highlight the clear advantages of deep 

learning models, particularly VGG-19, in achieving 

higher accuracy across all classes. 

In conclusion, deep learning models, especially the 

VGG-16 and VGG-19 architectures, significantly 

outperform traditional machine learning methods 

across all four classes. The VGG-19 model stands 

out, achieving the highest accuracy across all classes, 

including a perfect 100% accuracy for the A-10 class. 

The superior performance of these models, 

particularly in complex image classification tasks, 

emphasizes the potential of deep learning in 

overcoming the limitations of traditional methods. 

Unlike previous studies that primarily focused on 

individual models, this study demonstrates the clear 

advantages of VGG-16 and VGG-19 in a multi-class 

classification scenario, positioning them as preferred 

choices for machine learning applications in similar 

domains. 

Table 2 presents a comparison of the accuracy rates 

achieved by various image classification methods. 

Traditional image processing and machine learning 

techniques, such as SIFT [17] combined with Bag-of-

Words of Visual Words (BOVW) and Histogram of 

Oriented Gradients (HOG) [18] with Support Vector 

Machines (SVM), yield relatively lower accuracy 

rates of 53.25% and 56.75%, respectively. Other 

conventional methods, such as ScSPM [19] and LLC 

[20], demonstrate slightly higher performance, 

achieving accuracy rates of 58.25% and 61.00%, 

respectively. These results reflect the limitations of 

traditional approaches in handling more complex 

image classification tasks. 
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Table 2: Accuracy comparison. 

Method Accuracy 

SIFT [17] + BOWN                53.25% 

HOG[18] + SVM                56.75% 

ScSPM [19]                58.25% 

LLC [20] 61.00% 

VGG-16 (The proposed model) 84.71% 

VGG-19 (The proposed model) 85.03% 

 

In contrast, deep learning models demonstrate a 

marked improvement in performance. Specifically, 

our experiments with the VGG-16 and VGG-19 

models yield accuracy rates of 84.71% and 85.03%, 

respectively. These results underscore the superior 

capability of deep learning approaches in image 

classification tasks when compared to traditional 

methods. The higher accuracy achieved by these 

models is consistent with recent research highlighting 

the advantages of deep learning in complex 

classification problems. The success of deep learning 

models can be largely attributed to their deep, layered 

architectures and the large-scale datasets they are 

trained on, which enable these models to learn and 

distinguish complex patterns in images with greater 

efficiency. In particular, the VGG-19 model, with its 

deeper architecture, exhibits a slight performance 

advantage over VGG-16 in terms of accuracy. This 

reflects the potential of deeper models to capture 

more intricate features and improve classification 

outcomes. 

In conclusion, deep learning models, particularly the 

VGG-19 architecture, have demonstrated superior 

accuracy rates compared to traditional image 

processing methods. This reinforces the growing 

evidence supporting the effectiveness of deep 

learning techniques in image classification tasks, 

especially in handling complex data and achieving 

high-performance results. The findings of this study 

contribute to the increasing body of research 

advocating for the use of deep learning in practical 

classification applications. 

 

 

6.  Conclusions 

In this study, we investigated the application of VGG-

16 and VGG-19 architectures for military aircraft 

classification using satellite imagery, achieving 

accuracies of 84.71% and 85.03% respectively. 

Additionally, our experiments showed that maximum 

efficiency was reached at 10 epochs, demonstrating 

efficient model convergence. While these results 

demonstrate improvement over traditional methods 

such as SIFT+BOWN (53.25%) and HOG+SVM 

(56.75%), it is important to acknowledge that our 

approach primarily utilized standard implementations 

of established architectures without significant novel 

modifications. The performance metrics across 

different scenarios varied considerably, with the 

highest accuracy achieved for A-10 classification 

(1.00) and lower performance for B-52 (0.74) and F-

22 (0.73) classifications, suggesting room for 

improvement in handling certain aircraft types. Our 

comparative analysis reveals that while the results are 

promising, the improvements are incremental rather 

than transformative in nature. 

The study's limitations highlight several opportunities 

for future research directions, including the 

development of custom architectural modifications 

specifically designed for satellite imagery analysis, 

integration of domain-specific preprocessing 

techniques, and exploration of hybrid approaches 

combining traditional computer vision methods with 

deep learning. Furthermore, the field would benefit 

from investigation into more recent architectural 

innovations and the incorporation of domain-specific 

knowledge into model design. Looking ahead, we 

believe that advancing this research area requires 

moving beyond standard implementations to develop 

novel methodological approaches that specifically 
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address the unique challenges of satellite-based 

aircraft classification. This could include developing 

specialized layers or modules within the neural 

network architecture, implementing advanced data 

augmentation techniques specific to aerial imagery, 

and creating more robust feature extraction methods 

that better handle variations in aircraft orientation and 

atmospheric conditions. While our current results 

demonstrate the viability of deep learning approaches 

for military aircraft classification, they also 

underscore the need for more innovative solutions to 

push the boundaries of what is possible in this 

specialized domain. 
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