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Abstract 

Loss functions are crucial in training generative adversarial networks (GANs) and shaping the 

resulting outputs. These functions, specifically designed for GANs, optimize generator and 

discriminator networks together but in opposite directions. GAN models, which typically 

handle large datasets, have been successful in the field of deep learning. However, exploring 

the factors that influence the success of GAN models developed for limited data problems is 

an important area of research. In this study, we conducted a comprehensive investigation into 

the loss functions commonly used in GAN literature, such as binary cross entropy (BCE), 

Wasserstein generative adversarial network (WGAN), least squares generative adversarial 

network (LSGAN), and hinge loss. Our research focused on examining the impact of these 

loss functions on improving output quality and ensuring training convergence in single-image 

GANs. Specifically, we evaluated the performance of a single-image GAN model, SinGAN, 

using these loss functions in terms of image quality and diversity. Our experimental results 

demonstrated that loss functions successfully produce high-quality, diverse images from a 

single training image. Additionally, we found that the WGAN-GP and LSGAN-GP loss 

functions are more effective for single-image GAN models.  
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1. Introduction 

Generative models are a key component of machine learning and aim to generate new data that follow certain 

distributions. Deep generative models excel at modelling complex data distributions using deep neural networks. These 

models are capable of learning complex patterns and correlations in training data and can produce data that resemble 

real-world examples [1, 2]. GANs, which are among the deep generative modelling approaches, have demonstrated very 

successful results in studies in the field of artificial intelligence as an innovative and dynamic method for generative 

modelling [3]. The success of GAN architecture relies on the complex interaction between two neural networks known 

as generator and discriminator. These neural networks are trained, using the same loss function in the GAN framework 

[3, 4]. Appropriate and effective loss functions are critical to unravelling the complexities of GAN training, addressing 

inherent challenges, and pushing the boundaries of generative modelling. 

GANs are capable of generating a variety of purpose-specific datasets. The potentials of GAN models on low data 

regimes (e.g., a single natural image) such as data augmentation and synthetic data generation have been widely studied 

in the literature. Generating high-resolution, realistic, diverse image samples from a single training image (as limited 

data) has various challenges include capturing complex details, maintaining consistency, and mod collapse [1, 2, 4-8]. 

These challenges have been overcome with single-image GAN models that combine specialized deep neural network 

architectures with different GAN structures. Additionally, single-image GAN models enable many applications such as 

image inpainting, paint-to-image, super-resolution, retargeting, artistic style transfer, image-to-image translation, and 

animation. These models have an important place in literature in terms of enabling the generation of high-quality, diverse 

images from a single natural image [9-11]. 

In GANs, loss functions play a vital role in guiding the training process and shaping the generated outputs. These loss 

functions are used in a competitive manner between the generator and discriminator networks. The joint loss function 

helps the generator produce data that are indistinguishable from real samples, while the discriminator correctly classifies 

real and generated (fake) data [3-6]. The choice of loss functions in GANs significantly impacts the training stability, 

convergence, and the quality of the generated samples, with each loss function offering a different trade-off in terms of 

stability, convergence, and ease of optimization. 

In our research, we examined how different loss functions impact the performance of a GAN model that generates high-

quality, diverse image samples from a single natural image. Specifically, we tested various loss functions commonly 

used in the literature on the SinGAN model, which served as the basis for our study. Our findings revealed that loss 

functions have varying levels of effectiveness on single-image GANs. The paper is organized as follows: Section 2 

provides a detailed explanation of the GAN loss functions used. Section 3 presents a quantitative and qualitative analysis 

of the results obtained by using different loss functions with the SinGAN model. The final section evaluates the findings 

and discusses their implications for future study. 

2. Related Work 

Generating diverse images from single natural training image is one of the complex problems being studied today 

Traditional generative models generally work on large datasets. However, Ulyanov et al. (2019) showed that with the 

Deep Image Prior (DIP) model that starts training with randomly valued weights and could learn the necessary and 
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sufficient information from a single training image [13]. Shocher et al. (2019) introduced InGAN, an unsupervised 

conditional GAN trained on a single image that captures the internal statistics of that image. InGAN can synthesize 

image samples of different sizes, shapes, and aspect ratios that have the same internal patch distribution as the training 

image [14]. 

Shaham et al. (2019) proposed the SinGAN model that learns image patches in different dimensions, rather than treating 

the entire image as a whole [12]. SinGAN consists of fully convolutional GANs connected in a pyramid structure. It 

functions with scaled training, where each GAN scale accepts a scaled version of the training image as input. The 

generator at each scale takes input from a lower scale, adds random noise, and produces a new image. Only the lowest 

scale’s generator, which creates the smallest-sized image, uses solely noise input. A patch discriminator [15] is used to 

differentiate between the images produced at each scale and the corresponding real images. Hinz et al. (2021) introduced 

ConSinGAN, a model with a pyramid structure similar to SinGAN, but with differences in training methods and the 

internal structure of the generator [16]. ConSinGAN uses feature maps enriched with more information, rather than 

generating images at each scale. Additionally, ConSinGAN trains distinct scales with varying learning rates, unlike 

ProGAN [17], which trains only the final layer. Granot et al. (2021) proposed Generative Patch Nearest-Neighbor 

(GPNN), a model that creates new images from a single training image without employing GANs. GPNN uses a nearest-

neighbor search to measure patch similarities within the training image [18]. 

Loss functions in GANs are vital for enhancing training stability, sample quality, and convergence. Goodfellow et al. 

(2014) adopted the Binary Cross Entropy (BCE) loss function in their GAN model to optimize the probability of 

correctly distinguishing real from generated samples [3]. Although BCE is successful, it may face problems such as 

convergence limitation and mode collapse. To address these challenges, Arjovsky et al. (2017) introduced the 

Wasserstein Generative Adversarial Network (WGAN) model, which employs the Wasserstein distance to measure data 

distribution similarity [19]. Gulrajani et al. (2017) further tackled the weight restriction issue in WGAN by proposing 

the Wasserstein GAN with Gradient Penalty (WGAN-GP). The Lipschitz continuity introduced by WGAN-GP has 

notably enhanced the stability and efficiency of the GAN training process [20]. Mao et al. (2017) developed the Least 

Squares Generative Adversarial Network (LSGAN) model, which employs least squares loss in the form of Mean 

Squared Error (MSE) to improve training stability and model performance by minimizing sensitivity to noise [21]. Lim 

et al. (2017) utilized hinge loss, typically used in support vector machines, to improve GAN training. Hinge loss seeks 

to make the discriminator more discriminative by enforcing a margin around the real/fake data decision boundary and 

ensures a more consistent and robust gradient flow during backpropagation [22]. 

3. Methodology 

Figure 1 illustrates the multi-scale architecture of the SinGAN model. This model aims to generate realistic, high-quality 

image samples based on a single training image while preserving the training image's global structure. It employs 

hierarchically trained PatchGANs (Markovian discriminators). The training process begins by scaling the training image 

(𝑅𝑒𝑎𝑙 = {𝑅𝑒𝑎𝑙0, 𝑅𝑒𝑎𝑙1, ⋯ , 𝑅𝑒𝑎𝑙𝑛}) (𝑛 is the scale number), which is then used as the training data for each scale of 

the GAN model ({𝐺0, 𝐷0}, {𝐺1, 𝐷1}, … , {𝐺𝑛, 𝐷𝑛}). At each scale, only {𝐺𝑛, 𝐷𝑛} pairs that work at that scale are trained. 

The Generator (𝐺0) at the smallest scale (𝑛 = 0) learns to generate new images from only noise map. Generators at 
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larger scales (𝑛 ≥ 0) use scaled versions of the image generated from previous scales as inputs, along with noise sampled 

from a normal distribution. Training is conducted sequentially from the smallest scale to the largest, with each scale of 

the GAN model trained one at a time. The generator and discriminator networks across all scales share identical 

structures, each comprising 5 convolution layers. Each layer is composed of 3x3 kernels, batch normalization, and 

LeakyReLU activation functions (exceptionally, activation function of last layer of generators is Tanh for all scales). 

Additionally, the generator networks include residual connections that combine input data with output data. Weighted 

WGAN-GP and L2 summation are utilized as loss functions [12]. 

 

Figure  1 : Multi-scale architecture of SinGAN [12]. 

In our study, we examined four different loss functions for the single-image GAN model (SinGAN): the vanilla GAN 

loss function (Binary Cross Entropy, BCE), the Least Squares GAN (LSGAN) loss function, the HingeGAN loss 

function, and the Wasserstein GAN with Gradient Penalty (WGAN-GP) loss function used by SinGAN. We compared 

the results of these loss functions with those obtained by using the WGAN-GP loss function in SinGAN. The overall 

loss function for SinGAN models is defined as the weighted sum of adversarial and reconstruction functions, as shown 

in Equation (1) and (2). ℒ𝑎𝑑𝑣 represents the adversarial loss function for the generator and discriminator networks and 

is analyzed by using BCE, LSGAN, HingeGAN, and WGAN-GP. ℒ𝑟𝑒𝑐  ensures that the generator can accurately produce 

the training image at any scale. 

𝓛 = 𝓛𝒂𝒅𝒗 + 𝟏𝟎 × 𝓛𝒓𝒆𝒄                                                                                   (1) 

𝓛𝒓𝒆𝒄 = ‖𝑮(𝒛) −𝒙‖𝟐
𝟐                                                                                      (2) 

BCE is designed to address the adversarial aspects of GANs by enhancing the discriminator's classification performance. 

Its primary goal is to push the generator, trained against the discriminator, to produce data that closely resemble real 

examples. However, the standard BCE used in traditional GANs has several limitations. For instance, when working 

with multimodal data, the generator may concentrate excessively on certain modes, resulting in a lack of diversity in the 
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generated samples, a phenomenon known as mode collapse. Additionally, BCE does not guarantee Nash equilibrium, 

which is critical for stable convergence. Nonetheless, when the gradient flow is maintained, BCE supports effective 

training of both generator and discriminator networks. In the context of single-image GANs, where the training data 

exhibit low mode sparsity and are easily classifiable, it is important to evaluate the performance of BCE [3, 23, 24]. 

Table 1 presents the vanilla BCE loss function as applied to the patch discriminator, which aims to capture the 

distribution of trained patches in single-image GAN models. 

WGAN-GP employs a loss function commonly used in GAN models to provide a more stable training process. As shown 

in Table 1, WGAN redefines traditional GAN loss by using a more reliable metric to measure the disparity between the 

true and generated distributions. The objective is to minimize this gap, thereby enhancing their similarity. By replacing 

the Jensen-Shannon divergence with the Wasserstein distance, WGAN effectively mitigates issues such as mode 

collapse and training instability [19, 23]. WGAN-GP enhances the original WGAN by incorporating a gradient penalty 

- equation (3) - that enforces a Lipschitz constraint on the discriminator network. This ensures that the generator 

maintains Lipschitz continuity with fewer parameters and operates more efficiently. Though the gradient penalty 

calculation is computation-intensive and may slow down WGAN-GP, it improves the convergence properties of the 

conventional GAN training process and enables the generation of high-quality, diverse samples [20, 24]. 

The LSGAN, as outlined in Table 1, uses mean squared error (MSE) loss to compare real and generated data 

distributions. Its primary objective is to penalize synthetic samples that deviate significantly from real data while still 

being on the correct side of the decision boundary. LSGAN aims to generate more gradients and penalize instances far 

from the decision boundary [21]. The MSE loss modifies the generator's objective to minimize the mean squared error 

between real and generated data. This approach fosters a more consistent and stable training process, enhancing the 

quality and variety of the generated samples. 

Table 1 : Loss functions in generator and discriminator networks. 

Loss 

Function 
Generator Discriminator 

BCE ℒ𝐺 = −𝔼 [𝑙𝑜𝑔 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐷(𝐺(𝑧))))] ℒ𝐷 = −𝔼 [𝑙𝑜𝑔 (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷(𝑥)))] − 𝔼 [𝑙𝑜𝑔 (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐷(𝐺(𝑧))))] 

WGAN ℒ𝐺 = −𝔼[𝐷(𝐺(𝑧))] ℒ𝐷 = 𝔼[𝐷(𝑥)] − 𝔼[𝐷(𝐺(𝑧))] 

LSGAN ℒ𝐺 = 𝔼 [(𝐷(𝐺(𝑧)) − 1)
2

] ℒ𝐷 = 𝔼[(𝐷(𝑥) − 1)2] + 𝔼 [𝐷(𝐺(𝑧))
2

] 

Hinge ℒ𝐺 = = −𝔼[𝐷(𝐺(𝑧))] ℒ𝐷 = 𝔼[𝑚𝑎𝑥(0,1 − 𝐷(𝑥))] + 𝔼 [𝑚𝑎𝑥 (0,1 + 𝐷(𝐺(𝑧)))] 

The hinge loss function uses a margin around the decision boundary to improve discrimination between training image 

(real) and generated samples (fake). This enhances the discriminator network's ability. This margin-based approach 

supports a robust training process and prevents the generator from easily fooling the discriminator. As shown in Table 

1, the hinge loss function is similar to the Support Vector Machines (SVM) formulation [22]. It stabilizes the training 

process, even with noisy or low-quality data. Therefore, the hinge loss function is preferred for low-quality or 

inconsistent datasets. However, multiple training sessions may be necessary to properly determine the margin 

hyperparameter [7, 23]. 
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𝐺𝑃 = 𝜆𝐸 [(||𝛻𝐷(𝛼𝑥 + (1 − 𝛼)𝐺(𝑧))||
2

− 1)
2

]                                                          (3) 

Equation (3) defines the gradient penalty (GP). Our experiments demonstrated that omitting GP in the loss functions 

significantly reduces model convergence. Thus, we applied the GP penalty to all loss functions in this study. 

4. Findings 

4.1. Unconditional Generation 

Our study employs SinGAN as a training model. During the training process, we used the default values of SinGAN. 

The generator and discriminator networks at each scale were trained for 2000 iterations, with parameters updated at each 

iteration. LeakyReLU activation was used in all layers except the final layer of the generator network, which used Tanh 

activation. Convolution blocks at the coarsest scale contained 32 cores, doubling every 4 scales. The learning rate was 

set to 𝑙𝑟 = 5𝑒 − 4, with a weight reduction of 0.1 after every 1600 iterations. The coefficients for adversarial and 

reconstruction loss functions were set to 𝛼1 = 1 and 𝛼2 = 10, respectively [12]. All experiments were conducted on 

an Intel i7-10700KF CPU and an NVIDIA TITAN X Pascal GPU. 

Fourteen images with distinct patterns were selected from the web to compare loss functions using a single training 

image. Most of these images contain repetitive patches, which facilitate modeling patch distributions. For each training 

image, 100 new images were generated post-training, and measurements were conducted on these images. Performance 

evaluation was conducted by using the Single Image Fréchet Inception Distance (SIFID) metric [12]. The diversity of 

the generated images was assessed by using the Multi-Scale Structural Similarity Index Measure (MS-SSIM) [25] and 

Learned Perceptual Image Patch Similarity (LPIPS) [26] metrics. Fréchet Inception Distance (FID) [6] is widely used 

to evaluate the quality and diversity of generated images. It measures the similarity between real and fake images based 

on the extracted feature maps. SIFID, a modified version of FID, evaluates single-image GANs by analyzing internal 

feature map distributions from the Inception network's convolution layer before the second pooling layer. A low SIFID 

value indicates a high similarity between real and fake images. MS-SSIM, an advanced version of the single-scale 

Structural Similarity Index (SSIM), is used for image quality assessment. It incorporates changes in image resolution 

and viewing conditions, providing more flexibility and better performance compared to single-scale methods. It extracts 

three key features from an image: brightness, contrast, and structure, to compare two images. LPIPS, a deep network-

based image similarity metric, is developed to mimic image patch similarity based on human perception. It evaluates the 

similarity between two images by measuring the distance between image patches. Low or high LPIPS values indicate 

whether the image patches are perceptually similar or dissimilar. 

Figure 2 presents a visual comparison of the loss functions for images randomly selected from the 14 training images. 

These images indicate that all models successfully learn the patch statistics of the training image. The capability of 

GANs to learn patch statistics is fundamental to their ability to generate visually convincing images. This learning 

process is quantitatively evaluated, as shown in Figure 2, which presents a detailed comparison of the performance of 

various models based on different loss functions. These quantitative results corroborate the visual observations from 

Figure 2, highlighting that all models exhibit a commendable ability to learn and reproduce the fine-grained details 
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present in the training images despite variations in the loss functions employed. This visual comparison provides an 

insightful overview of the effectiveness of different loss functions in guiding the GANs during training. 

Figure  2 : Random image samples generated by using loss functions. 

Training image BCE WGAN LSGAN HingeGAN 

 

    

     

 

    

 

    

     

 

    

 

    

     

 

    
 

Table 2 lists the quantitative results of the loss functions. According to the SIFID values, WGAN-GP and LSGAN-GP 

achieved the best results, indicating that these loss functions better optimize the SinGAN model to produce realistic, 

high-quality images. For MS-SSIM, all models had close results, but WGAN-GP performed better. For LPIPS, the 

performance range was narrower, with LSGAN-GP outperforming the others. 
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Table 2 : Quantitative results of Loss Functions. 

Loss function SIFID(↓) MSSSIM(↓) LPIPS(↑) 

WGAN-GP 0.05 0.52 0.40 

BCE-GP 0.08 0.55 0.40 

LSGAN-GP 0.05 0.61 0.43 

HingeGAN-GP 0.06 0.57 0.41 

4.2. Applications 

We examined the performance of single-image GAN models for different loss functions across various applications. In 

this context, we performed image harmonization and image editing applications, which are the primary applications 

where single-image GAN models are typically tested [12].  

Training image BCE WGAN 

   
Harmonization LSGAN HingeGAN 

   
Training image BCE WGAN 

   
Harmonization LSGAN HingeGAN 

   

Figure  3 : Harmonization results with different loss functions. 

Image harmonization involves integrating an external object added to the training image into the image based on the 

structural characteristics of the training image. For this, we input the harmonized image (with an object added to the 

training image) to the trained GAN model at different scales during the test phase. The final image is generated by the 

GAN operating at the last scale. As noted in SinGAN, the scale at which the harmonized image is input affects the 

realism of the final image [12]. Figure 3 shows the harmonization results obtained from the scale that produces the most 

realistic output image. According to this, it is observed that Single-image GAN models trained with different loss 
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functions produce outputs with different characteristics. The visual results support that all loss functions produce 

successful outputs. 

Training image BCE WGAN 

   

Editing LSGAN HingeGAN 

   
Training image BCE WGAN 

   
Editing LSGAN HingeGAN 

   

Figure  4 : Editing results with different loss functions. 

In the image editing application, a selected patch within the training image is placed in a different location within the 

image. It is expected from the trained GAN model to blend the patch into new location within the training image as 

seamlessly as possible. Accordingly, we trained a single-image GAN model with four different loss functions on two 

different images. During the test phase, we followed the same process as in the harmonization application and provided 

the edited images as input to the GAN models. Figure 4 presents the obtained visual results. The results indicate that the 

loss functions achieve visual success in this application. 

4.3. Limitations 

Single-image GAN models are suitable for applications in many fields. They can be used for various purposes in areas 

where collecting a large number of images is difficult (e.g., healthcare, military). For example, some features in image 

editing applications (i.e. photoshop) used by humans can also be accomplished by using single-image GAN models. 

Additionally, in the military, different versions of a rare map environment can be generated to create simulation 

environments, which is one of the potential application areas of single-image GAN models. However, a critical challenge 

persists in the domain of single-image GANs: the maintenance of semantic integrity in generated images. Semantic 

integrity refers to the preservation of meaningful and coherent structures within an image, which is crucial for generating 

images that are not only visually appealing but also contextually accurate. Despite the successful learning of patch 

statistics, single-image GANs often struggle to maintain this semantic integrity, leading to the generation of images that 

may appear visually plausible but lack coherent and meaningful content. User tests conducted in studies [11,12,16] 

support this observation. Therefore, there is a need to improve single-image GAN models to enhance the realism of the 
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generated images. This limitation restricts the use of single-image GAN models in sensitive applications. Despite all 

this, the ability to generate new images from a single training image for different purposes in various fields highlights 

the high potential of this research area. 

5. Conclusion 

The effectiveness of GAN models on large datasets is well-established. However, developing successful GAN models 

for limited data has been challenging until the advent of SinGAN and its derivatives. Most existing GAN models have 

focused on improving performance through modifications to network architectures and training procedures. This study 

investigates the impact of loss functions on single-image GAN models rather than focusing on changes to network 

architectures or training methods. Understanding the pros and cons of different loss functions is crucial for optimizing 

GAN architectures. To this end, we employed four different loss functions during the training of a single-image GAN 

model. Our quantitative results showed that WGAN-GP and LSGAN-GP are particularly suitable for single-image 

GANs. Thus, this study is significant in evaluating the influence of loss functions on single-image GANs. We expect 

our findings to guide the selection of the most effective loss functions for future single-image GAN models. 
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Appendix 

Training images and generated images to evaluate the performance of loss functions 

Training image BCE WGAN LSGAN HingeGAN 
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