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Abstract 
 
Automated guided vehicles are transportation systems that are widely used in factories, 

warehouses, and distribution centers. It is of great importance to ensure the control and 

coordination of vehicles for safe and efficient transportation in multi-vehicle systems. In this 

study, a control strategy is proposed to enforce collision avoidance of automated guided 

vehicles operating in a shared zone and overlapping route environment. In the proposed 

method, while finite state machines are used to model the movement of automated guided 

vehicles in the environment, the Q-learning method, one of the most common reinforcement 

learning algorithms, is used for collision avoidance. The presented approach uses the 

decentralized node-based approach to reduce computational complexity. The proposed method 

has been validated through simulation performed with vehicle applications that can move both 

unidirectional and bidirectional. The simulation results show that our presented approach can 

avoid potential collisions and greatly increase overall efficiency. 
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1. Introduction 

Nowadays, with the widespread use of Industry 4.0 and the Internet of Things, the concepts of smart factories and 

smart production methods have become very important. In smart production methods, which have the capacity to 

produce more flexible and faster than conventional production methods, product or part transportation between 

machines is provided by automated guided vehicles (AGVs). These vehicles, which can carry various load 

capacities, are frequently used in production and assembly factories, smart warehouses, port terminals, and 

distribution centers. AGVs provide many advantages to businesses by increasing the automation of production 

processes, reducing costs, increasing efficiency, and optimizing the use of human labor. With the increase in 

production volume, the number of AGVs used in facilities also increases. In systems that use multiple AGVs, it is 

of great importance for the safety and efficiency of the system to assign appropriate tasks to the vehicles and to 

fulfill their movements by avoiding collisions. The complexity of the structure of these systems makes system 

control more difficult. Therefore, much research has been carried out in recent years to ensure efficient and safe 

operation of the systems. Although research is generally in areas such as route planning, collision avoidance, 

vehicle task assignment and planning, and vehicle positioning, collision avoidance and task assignment are at the 

forefront of research. Studies have covered a wide range of areas such as centralized or decentralized control 

methods, grid-based or node-based methods, and classical or artificial intelligence-based methods, for AGVs that 

can operate in unidirectional, bidirectional, or multidirectional. While classical methods with centralized control 

were generally applied for simple environments in the early studies related to AGVs, later on, control methods 

applied to more complex systems, control methods with distributed structure and artificial intelligence-based 

control methods started to be included in the studies. 

In multi AGV systems, the changes between states can be modeled as event-based. Such systems are called Discrete 

Event Systems (DES) [1]. Methods such as finite state machines (FSM), Petri nets, directed graphs, etc. are used 

in DES modeling. FSM and Petri nets are the most widely used methods due to their modeling capability and 

flexible solution methods. 

There are several studies in the literature that use DES for collision avoidance and zone control in systems with 

multiple AGVs. Fanti [2] proposes a new control method for avoiding deadlocks and collisions of multiple AGVs 

by modeling AGVs with colored-timed Petri nets. A survey on deadlock control methods for automated 

manufacturing systems based on directed graphs, automata and Petri nets approaches is presented by Fanti and 

Zhou [3].  Wu and Zhou [4] propose a Petri net modeling method for deadlock avoidance in an automated 

manufacturing system with multiple AGVs. A FSM modeling and deadlock avoidance for safe and efficient 

coordination of multiple mobile robots is presented in [5]. In another study, which provides supervised control of 

AGVs in flexible manufacturing systems, FSM are used for high-level control of the system [6]. Fanti et al. [7, 8], 

in their studies conducted in 2015 and 2018, proposes decentralized methods for the control and coordination of 

AGV systems. In these studies, they performed a task search for the AGVs and determined the paths to avoid 

deadlocks and collisions. In the study conducted by Wan for collision avoidance in AGV systems, a maximum-

allowance controller is designed using labeled Petri nets [9]. In Malopolski's work, a new method is proposed for 

AGVs with unidirectional, bidirectional, and multidirectional mobility by dividing the environment into grids and 



 
 

Coban and Gelen.  J Inno Sci Eng 8(2):179-198 
 

181 

collision and deadlock avoidance for AGVs is realized [10].  Zajac and Malopolski [11] developed a more efficient 

structured online control policy for AGVs with unidirectional, bidirectional, and multidirectional mobility by using 

a grid partitioning approach and showed that this method can be used in systems with both centralized and 

decentralized control architectures. Luo et al. [12] design a Petri nets-based maximum-allowance controller for 

collision avoidance in a system with multiple AGVs. In order to avoid active and passive deadlocks, an event-

triggered colored elementary net (ETCEN) based method is presented for motion coordination of multiple AGV 

systems [13]. Chen et al. [14] developed a new method with a combination of node and grid methods for the control 

and coordination of multiple AGV systems and it is observed that the system performance and efficiency improved 

compared to node-based or grid-based methods.  In a study on zone control using supervised control theory for 

bidirectional AGVs, a new method is developed to reduce system complexity and avoid vehicle deadlocks [15]. 

Reinforcement learning-based methods have also been widely used for the coordination and control of mobile 

robots or AGVs. Especially in studies focusing on task assignment and route planning of vehicles, deep 

reinforcement learning and multi-agent reinforcement learning methods come to the forefront as the complexity of 

the system increases. In order to determine the routes of mobile robots in port terminals and avoid deadlocks, a 

method developed with the Q-learning technique is presented [16]. In this study, a method is developed to minimize 

the waiting time as well as find the shortest routes for robots. Nagayoshi et al. [17] developed a reinforcement 

learning-based decentralized method for route planning of multiple AGV systems. A reinforcement learning-based 

scheduling method is presented to reduce the product production time and the waiting time of machines and AGVs 

in systems with multiple machines and multiple AGVs [18]. Hu et al. [19] developed a deep reinforcement learning-

based scheduling method for scheduling AGVs in flexible work systems. A deep reinforcement learning-based 

method is presented to ensure the navigation of robots in multi-mobile robot systems and to realize an optimal 

coordination between robots [20]. In this study, a reward function that can be applied to different reinforcement 

learning algorithms is proposed and it is observed that this method is successful in both trained and unknown 

environments. Zhou et al. [21] developed a reinforcement learning-based method for real-time routing of automated 

guided vehicles in container terminals. In this study, a Q-learning method is proposed to find the shortest route 

based on real-time state information including vehicle locations, destination locations, orientations, and vehicle 

counts, and it is observed that this method provides a stable and efficient solution. A combination of Petri nets and 

deep reinforcement learning methods for route planning and coordination of multiple AGV systems is presented 

[22]. In this study, a deep reinforcement learning based solution is presented by using Markov Decision Processes 

(MDPs) while modeling the system with P-timed Petri nets. A study based on multi-agent reinforcement learning 

for optimal route planning, AGV coordination and control in warehouses with multiple AGVs is presented [23]. 

MDPs and deep reinforcement learning methods are used in a study for real-time planning of a manufacturing 

system with numerically controlled machines and AGVs [24]. Zhang et al. [25] compare the advantages and 

disadvantages of centrally controlled and decentralized controlled AGV systems, investigated AGV scheduling 

algorithms, and evaluated AI-based decision-making algorithms. A study of collision-free optimal route planning 

for multiple AGVs in automated container terminals is presented [26]. 

As can be seen from the studies in the literature, the most common problems in AGV systems are task assignment 

to AGVs and collision avoidance. The complexity of the methods proposed in existing studies leads to high 

performance requirements. Therefore, it is necessary to develop more comprehensible solutions with lower 
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performance requirements. Due to the complexity of collision avoidance algorithms for both classical methods and 

AI-based methods, in order to contribute to the need for a simpler and innovative method, a new method for 

collision avoidance based on FSM and Q-learning is proposed in this study. In the proposed method, FSM are used 

in the motion modeling phase due to its high modeling capability and simplicity, while the system is controlled by 

reinforcement learning method due to its innovative and efficient solutions. The proposed method is validated by 

simulation studies on both unidirectional and bidirectional vehicle systems and the results are discussed. 

The rest of the paper is organized as follows. Section 2 gives basic information about FSM and Q-learning. Section 

3 describes the proposed method for collision avoidance in AGV systems. Section 4 demonstrates applications of 

the proposed modeling and control methods for AGVs providing unidirectional and bidirectional motion. Section 

5 shows the simulation results applied to validate the proposed method. Finally, Section 6 evaluates the results 

obtained from the study and concludes the paper with an outlook for future work. 

2. Preliminaries 

2.1. Finite State Machines 

Finite state machines are abstract machines used in system modeling that consist of a finite number of states, 

transitions between states and actions. In state machines, which is one of the formal language theories, states store 

the instantaneous information of the system, while transitions show the state change in the system. The realization 

of transitions is defined within certain rules and the system moves from the current state to the next state. The 

action is the description of the activity of the system during the state or transition. In this study, system modeling 

is performed using FSM. Figure 1 shows a basic FSM model. 

 

Figure 1: Finite state machines. 

In the model shown in Figure 1, s0, s1 and s2 indicate the states of the system, while e1 and e2 indicate transitions. 

If event e1 occurs while the system is in state s0, the system transitions to state s1. When event e2 occurs while the 

system is in state s1, the system transitions to state s2. If event e1 occurs while the system is in state s2, the system 

remains in state s2, while if event e2 occurs, the system transitions to state s0. The working logic of FSM can be 

explained in this way. 
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2.2. Reinforcement Learning 

Reinforcement learning is a machine learning approach that learns what needs to be done to achieve a given goal. 

Reinforcement learning allows an agent to interact with its environment and observe the results of that interaction. 

As a result of these observations, it tries to learn what actions to take by receiving a positive or negative reward. 

The goal here is to ensure that actions are performed in the most ideal way by achieving the highest amount of 

reward. This method is used in many fields such as robotics, game programming, process control problems, 

resource management, and statistics. Modeling with machine learning is usually modeled as a MDPs, which 

requires prior knowledge about the artificial intelligence system. Reinforcement learning algorithms, on the other 

hand, do not require prior knowledge about the MDP and can be used when exact methods are insufficient. 

In reinforcement learning algorithms, the correctness of the decisions made by artificial intelligence as a result of 

its interactions with the environment is tried to be controlled with a reward or punishment system. The actions 

performed by the agent are trained in line with the reward gained, and it is tried to understand how correct or 

incorrect the actions performed are. The goal of the agent is to gain the highest reward throughout the training. 

There are five basic elements in the reinforcement learning algorithm. These are agent, state, action, value, and 

reward. The agent represents the trained artificial intelligence, while the state represents the situation the agent is 

in. Action indicates the actions that the agent can perform, while value indicates how valuable the agent's state is. 

Finally, the reward represents the amount of reward the agent will gain or lose as a result of the actions it takes in 

the situation. The basic block diagram of the reinforcement learning algorithm is presented in Figure 2. 

 

Figure 2: Reinforcement learning block diagram. 

Looking at the basic block structure of reinforcement learning in Figure 2, the agent takes an action to move from 

its current state within the framework of a policy. As a result of this action, it expects a reaction from the 

environment. These reactions consist of the new state that is traversed by the occurrence of the action and the 

reward received from this action. Based on the rewards received, the agent is trained and realizes whether the 

actions it takes are right or wrong. This method aims to maximize the reward and train the agent in the best way 

possible. 

Reinforcement learning involves many learning algorithms. Two of the most popular algorithms are Q-learning 

and Deep Q-learning. Both algorithms work on a state→action→reward→state logic. In the Q-learning algorithm, 

the desired or undesired places for the agent to go are determined and written in the reward table. The experience 

of the agent in each iteration on the way to the reward is stored in a table called the Q-table. Initially, the agent 

moves randomly. As soon as it finds a reward or punishment, it updates the Q table and thus keeps it in its memory. 

By continuously performing these operations, the agent learns its environment and can make the right decisions. 
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The difference of the deep Q-learning algorithm from the Q-learning algorithm is that artificial neural networks are 

used instead of Q-tables. 

Q-learning is a model-free and value-based learning algorithm. Value-based algorithms update the value function 

based on an equation. In the Q-learning method, Q values are updated using the Bellman equation. The 'Q' stands 

for quality and represents how useful a certain action is in earning rewards in the future. The Bellman equation that 

will implement the Q-learning algorithm and update the Q values is defined as in Equation 1. 

t+1 t t t t t t t t t+1 t t t
a

Q (s ,a )=Q (s ,a )+α. R(s ,a )+γ.maxQ (s ,a)-Q (s ,a ) 
 

                                                   (1) 

In Equation 1, '
t t tQ (s ,a ) ' represents the current Q value, ' t t+1

a
maxQ (s ,a) ' represents the maximum predicted reward 

value, '
t tR(s ,a ) ' represents the reward value, and '

t+1 t tQ (s ,a ) ' represents the new Q value. In this equation, the 

coefficient 'α' is the learning rate, while the coefficient denoted by 'γ' is the discount factor, which determines the 

importance of future rewards. The learning rate is a parameter that determines how fast the network applies the 

information it has learned. When this ratio is small, learning is slow, while a large ratio may cause oscillation 

problems and the performance of the network may decrease. Therefore, it is important to find a balance in the 

choice of learning rate. A value between 0 and 1 is chosen for the learning rate. The discount factor is a value 

between 0 and 1 and is usually chosen close to 1 in order to give more importance to future rewards. While 'r' in 

the equation represents the reward received as a result of the action taken, the corresponding Q value is calculated 

according to the equation for each action taken. Using this equation, the Q table is updated according to the state 

and actions, allowing the agent to learn the environment. The flow diagram of the Q-learning algorithm is given in 

Figure 3. 

 

Figure 3: Flowchart of learning algorithm. 

According to the algorithm given in Figure 3, first a table Q with all elements consisting of zero is created. Then 

an action is selected and this action is performed. The reward obtained as a result of this action is determined and 

the Q table is updated by calculating Q values from the Q-learning function equation. After certain iterations, the 

learning is completed and a good Q table is obtained. This Q table contains the states and the Q values of the actions 

corresponding to these states. The action with the highest Q values corresponding to the states represents the most 

appropriate action to be selected. Thus, the optimal actions are determined for each state in the system.
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3. Proposed Method 

In the solution method developed for the development of collision avoidance algorithms and simulation 

applications of AGVs within the scope of the study, the environment model of the system is first determined. 

According to this environmental model, FSM models are created for each vehicle. Q-tables are obtained from the 

FSM models of the vehicles by Q-learning method. From the generated Q tables, the actions that each vehicle 

should perform are determined and the controller is developed. The developed controller is verified in simulation 

applications. 

For the modeling and control studies of systems with AGVs, firstly, a platform with two vehicles is studied. This 

platform is divided into two types as unidirectional and bidirectional mobility of the AGVs. Within the scope of 

the study, controller design is realized for both types of operation. The block diagram of the proposed method for 

the design of these controllers is shown in Figure 4. 

 

Figure 4: Block diagram of the proposed method. 

The block diagram in Figure 4 shows the proposed control method for both vehicles on the working platform. 

Based on the state, action, and reward information received from the environment, each vehicle is modeled with 

FSM and a Q-learning algorithm is generated. From the Q-learning algorithm, the actions that the vehicles should 

perform in response to their states are determined and sent to the controller. Control signals containing the actions 

that the vehicles should perform are sent to the vehicles by the controller and new states are observed. With this 

cycle, system control is achieved. 

4. Applications 

For the modeling and control studies of systems with AGVs, a platform with two vehicles is studied. This platform 

is divided into two types as unidirectional and bidirectional according to the mobility of the AGVs. Vehicles with 

unidirectional operation type can stop at the positions shown as nodes on their routes and follow a forward line 

between these nodes, while bidirectional AGVs can move forward, stop and move backward between nodes. The 

nodes represent the positions of the vehicles. In this study, it is assumed that the position of the vehicles at the 

nodes is detected through a radio frequency (RF) signal or a QR code placed at the node.
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4.1. Unidirectional AGV System 

Figure 5 shows the platform determined for unidirectional AGV system. 

 

Figure 5: Working platform of unidirectional AGVs. 

 

The blue arrows in Figure 5 indicate the direction of movement of AGV1, while the red arrows indicate the direction 

of movement of AGV2. While AGV1 moves on the blue and black nodes and transports parts from Station1 to 

Station2, AGV2 moves on the red and black nodes and transports parts from Station3 to Station4. The nodes shared 

by the two vehicles are indicated in black and this area is called the collision zone. It is defined that AGV1 starts 

its movement from point P1, follows the nodes on its route, returns to point P1 and completes its mission. AGV2 

is defined to start its movement from point P13 and return to point P13 by following the nodes on its route and 

complete its task. The vehicles are expected to perform their movements simultaneously without being at the nodes 

in the collision zone. 

4.1.1. Modeling of Unidirectional AGV System with Finite State Machines 

In order to prevent collisions in the AGV system shown in Figure 5, a decentralized control study is carried out. In 

this method, control mechanisms are created separately for both AGVs and the movements that the vehicles need 

to perform are controlled. Q-learning method, one of the reinforcement learning algorithms, is used for the control 

of the vehicles in the study. First of all, the modeling of the AGVs with FSM is performed. Based on these models, 

the working platform of the vehicles is created and states, next states and rewards are determined according to the 

actions that could be taken. The Q table to be used for AGV control is updated using the Bellman equation and the 

maximum Q value in the actions corresponding to the states in the Q table obtained is assigned as the action that 

should occur in that state.
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The model shown in Figure 6 is created for AGV1 in a unidirectional working environment. While creating this 

model, three states are defined for each location of AGV1. These states are when AGV2 is outside the collision 

zone, when AGV2 is near the collision zone and when AGV2 is inside the collision zone. Since there are 12 

positions for the movement of AGV1, the total number of states is determined as 36. The state changes of the 

system are provided by transitions. In unidirectional operation, three transitions are determined for AGV1. The first 

transition indicates that AGV1 is waiting, the second transition indicates that AGV1 moves one node forward, and 

the third transition indicates that AGV2 changes its state in the collision zone. 

 

Figure 6: Finite state machine model for unidirectional AGV. 

In the model shown in Figure 6, states S0 to S11 indicate that AGV1 is located at positions between P1 and P12, 

respectively, while AGV2 is located outside the collision zone. States between S12 and S23 likewise represent 

AGV1 being located at positions between P1 and P12, while AGV2 is located at positions P15 or P19 near the 

collision zone. States between S24 and S35 indicate that AGV1 is located at positions between P1 and P12, while 

AGV2 is located within the collision zone. In the model in Figure 6, the transition t0 indicates that AGV1 is waiting 

for an action, the transition t1 indicates that AGV1 moves one node forward, and the transition t2 indicates that 

AGV2 changes state in the collision zone.
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The model in Figure 6 used for AGV1 can also be used for AGV2, which has a similar type of operation and the 

same number of nodes. In the route between P13 and P20 shown in Figure 5, there are 12 nodes where the 

movement of AGV2 takes place. In this model, states between S0 and S11 indicate that AGV2 is located between 

P13 and P20 respectively, while AGV1 is outside the collision zone. States between S12 and S23 likewise represent 

AGV2 being located at positions between P13 and P20, while AGV1 is located at P3 or P9 near the collision zone. 

States between S24 and S35 indicate that AGV2 is located between P13 and P20, while AGV1 is located within 

the collision zone. In the model in Figure 6, the transition t0 indicates the action that AGV2 is waiting for, the 

transition t1 indicates the action that AGV2 moves one node forward, and the transition t2 indicates that AGV1 

changes state in the collision zone. 

4.1.2. Q-learning Algorithm for Unidirectional AGV System 

Q-learning algorithm, which is one of the reinforcement learning methods, is created according to the FSM model 

in Figure 6 for the control of AGV1 and AGV2 with unidirectional mobility. The rewards used in this algorithm 

are determined as shown in Table 1. 

Table 1: Rewards for unidirectional AGVs. 

AGV Actions Reward / 

Punishment 

Waiting with no vehicles in or near the collision zone -1 

Action that the vehicle cannot perform -12 

Entering the collision zone with a vehicle inside -15 

Waiting for the other vehicle to leave the area while there is a vehicle in the collision zone 3 
Moving forward when no other vehicle is nearby 3 

Complete the movement and return to the starting point 10 

 

In Table 1, the action specified as the action that the vehicle cannot perform is t2. The action t2 given in the model 

is an action that the other vehicle cannot control because it is an action that shows the change of state in the collision 

zone, and it is intended to prevent this action from occurring by keeping the punishment value high. However, since 

the state may change in the collision area by the other vehicle, this action is defined in the model and used in the 

Q-learning algorithm. 

For the Q-learning algorithm, first, a reinforcement learning environment is created in accordance with the 

reward/punishment values given in Table 1 and the model given in Figure 6. In this environment, a Q-learning 

algorithm is created separately for each of the two AGVs and the Q tables are determined. For the cases of arriving 

near the collision zone at the same time, AGV1 is given priority. According to this priority, in case both vehicles 

are near the collision zone at the same time, the AGV1 will move and enter the collision zone, while the AGV2 

will wait for the AGV1 to leave the zone. Once AGV1 leaves the collision zone, AGV2 will move. For the Q-

learning algorithm to perform these operations, the hyperparameters must be selected appropriately. The main 

hyperparameters to be chosen in the Q-learning algorithm are the learning rate, discount factor and epsilon. The 

choice of these parameters represents how well the model can learn. The learning rate and discount factor are 

mentioned in Section 2. The epsilon value is a parameter that determines the probability of an agent choosing 

random actions. The epsilon takes a value between 0 and 1 and the larger the epsilon value, the more likely the 

agent is to choose random actions. This can lead to less utilization of the learned knowledge and therefore lower 
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performance. That is, if the epsilon value is chosen too high, the agent will make more explorations, but these 

explorations may ignore the learned knowledge and lead to less accurate actions. If the epsilon value is too small, 

the agent will be less likely to choose random actions, reducing the opportunity to test and optimize its learned 

knowledge. Therefore, it is important to find a balance in the choice of the epsilon value. The choice of 

hyperparameters can be determined by trial and error or by various algorithms. One of these selection algorithms 

is the grid search algorithm.  The grid search algorithm is a method used to optimize the performance of a machine 

learning model. It is a search algorithm that tries different values for various hyperparameters of the model and 

determines which hyperparameters give the best performance. In this study, the discount factor value is chosen as 

a constant 0.95 and a grid search algorithm is used to select the learning rate and epsilon hyperparameters. In this 

algorithm, a Q-learning algorithm is created for nine learning rates varying between 0.1 and 0.9 in 0.1 increments 

and nine epsilon values varying in the same way and Q tables are analyzed. As a result of the examination of the Q 

tables, it is determined that the model learned the environment well at values where the learning rate is 0.1 and 

epsilon is 0.4 for both AGVs and hyperparameters are selected. According to these hyperparameters, the Q-table 

for AGV1 is shown in Figure 7 and the Q-table for AGV2 is shown in Figure 8. 

 

 

Figure 7: Q table for unidirectional AGV1. 
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Figure 8: Q table for unidirectional AGV2. 

 

The rows of the Q tables in Figure 7 and Figure 8 show the states of the vehicles and the columns show their actions. 

The column corresponding to the maximum value in each row in this table represents the action to be performed in 

that state. In this way, the control method is developed for both AGVs. 

 

4.2. Bidirectional AGV System 

In AGVs with bidirectional movement capability, vehicles perform backward movement in addition to stopping at 

nodes and forward line following movement between nodes. For vehicles with this type of operation, the actions 

of moving forward, moving backward and stopping are defined. Figure 9 shows the working platform of AGVs 

with bidirectional operation type.
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Figure 9: Working platform of bidirectional AGVs. 

 

The blue arrows in Figure 9 indicate the direction of movement for AGV1, while the red arrows indicate the 

direction of movement for AGV2. While AGV1 moves on the blue and black nodes and transports parts from 

Station1 to Station2, AGV2 moves on the red and black nodes and transports parts from Station3 to Station4. The 

nodes shared by the two vehicles are indicated in black and this area is called the collision zone. It is defined that 

AGV1 starts its movement from point P1, follows the nodes on its route, returns to point P1 and completes its 

mission. AGV2 is defined as starting its movement from point P13, following the nodes on its route and returning 

to point P13 and completing its mission. The only difference of this type of operation from the unidirectional type 

is that the vehicles have the option to move backward. In both unidirectional and bidirectional AGVs, vehicles 

should not be in the collision zone at the same time. 

4.2.1. Modeling of Bidirectional AGV System with Finite State Machines 

In order to prevent collisions in the AGV system shown in Figure 9, a decentralized control study is carried out. In 

this method, as in the unidirectional type of operation, separate control mechanisms are created for both AGVs and 

the movements that the vehicles need to perform are controlled. The Q-learning method is used for the control of 

the vehicles in the study. First of all, the modeling of the AGVs with FSM is performed. Based on these models, 

the working platform of the vehicles is created and states, next states, and rewards are determined according to the 

actions that could be taken. The Q table to be used for AGV control is updated using the Bellman equation and the 

maximum Q value in the actions corresponding to the states in the Q table obtained is assigned as the action that 

should occur in that state. 

For the AGV1 in bidirectional operation environment, the model shown in Figure 10 is created. While creating this 

model, three states are defined for each location of AGV1. These states are when AGV2 is outside the collision 
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zone, when AGV2 is near the collision zone and when AGV2 is inside the collision zone. Since there are 12 

positions for the movement of AGV1, the total number of states is determined as 36. The state changes of the 

system are provided by transitions. In the bidirectional system, four transitions are determined for AGV1. The first 

transition indicates the action that AGV1 is waiting, the second transition indicates the action that AGV1 moves 

one node forward, the third transition indicates that AGV2 changes its state in the collision zone, and the fourth 

transition indicates the action that AGV1 moves one node backward. 

 

Figure 10: Finite state machine model for bidirectional AGV. 

In the model shown in Figure 10, states between S0 and S11 indicate that AGV1 is located at positions between P1 

and P12 respectively, while AGV2 is located outside the collision zone. States between S12 and S23 likewise 

represent AGV1 being located at positions between P1 and P12, while AGV2 is located at positions P15 or P19 

near the collision zone. States between S24 and S35 indicate that AGV1 is located at positions between P1 and 

P12, while AGV2 is located within the collision zone. In the model in Figure 10, the transition t0 indicates the 

action that AGV1 is waiting for, the transition t1 indicates the action that AGV1 moves one node forward, the 

transition t2 indicates that AGV2 changes state in the collision zone, and the transition t3 indicates the action that 

AGV1 moves one node backward.
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The model in Figure 10 used for AGV1 can also be used for AGV2, which has a similar type of operation and the 

same number of nodes. In the route between P13 and P20 shown in Figure 9, there are 12 nodes where the 

movement of AGV2 takes place. In this model, states between S0 and S11 indicate that AGV2 is located between 

P13 and P20 respectively, while AGV1 is outside the collision zone. States between S12 and S23 likewise represent 

AGV2 being located at positions between P13 and P20, while AGV1 is located at positions P3 or P9 near the 

collision zone. States between S24 and S35 indicate that AGV2 is located between P13 and P20, while AGV1 is 

located within the collision zone. In the model in Figure 11, the transition t0 indicates the action that AGV2 is 

waiting for, the transition t1 indicates the action that AGV2 moves one node forward, the transition t2 indicates 

that AGV1 changes state in the collision zone, and the transition t3 indicates the action that AGV2 moves one node 

backward. 

4.2.2. Q-learning Algorithm for Bidirectional AGV System 

The Q-learning algorithm is created according to the FSM model in Figure 10 for the control of AGV1 and AGV2 

with bidirectional mobility. The rewards used in this algorithm are determined as shown in Table 2. 

Table 2: Rewards for bidirectional AGVs. 

AGV Actions Reward / 

Punishment 

Waiting with no vehicles in or near the collision zone -1 

Moving backward when no other vehicle is nearby -3 

Action that the vehicle cannot perform -12 

Entering the collision zone with a vehicle inside -15 

Waiting for the other vehicle to leave the area while there is a vehicle in the collision zone 3 

Moving forward when no other vehicle is nearby 3 

Exiting the collision zone by moving backward when there is a vehicle in the collision zone 3 

Complete the movement and return to the starting point 10 

 

The action that the vehicle cannot perform in Table 2 refers to action t2, as stated in the unidirectional study. The 

t2 action given in the model is an action that the other vehicle cannot control, as it is an action that shows the change 

of situation in the collision zone, and it is intended to prevent this action from occurring by keeping the penalty 

value high. However, since the state may change in the collision area by the other vehicle, this action is defined in 

the model and used in the Q-learning algorithm. 

For the Q-learning algorithm in vehicles with bidirectional operation type, a reinforcement learning environment 

is created in accordance with the reward/punishment values given in Table 2 and the model given in Figure 10. 

Separate Q-learning algorithms are created and Q-tables are determined for both AGVs in this environment. For 

the cases of arriving near the collision zone at the same time, the priority is again given to the AGV1. According 

to this priority, in case both vehicles are near the collision zone at the same time, the AGV1 will move and enter 

the collision zone, while the AGV2 will not move and wait for the AGV1 to leave the zone. Once AGV1 leaves 

the collision zone, AGV2 will move. Unlike the unidirectional system, even if there is a vehicle in the collision 

zone, the vehicle entering the zone will exit the zone by moving backwards. For the Q-learning algorithm to perform 

these operations, the hyperparameters should be chosen appropriately. As in the unidirectional study, the discount 

factor value is chosen as a constant 0.95 and a grid search algorithm is used to select the learning rate and epsilon 

hyperparameters. 
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In this algorithm, a Q-learning algorithm is created for nine learning rates varying between 0.1 and 0.9 in 0.1 

increments and nine epsilon values varying in the same way and Q tables are analyzed. As a result of examining 

the Q tables, it is determined that the model learned the environment well at values where the learning rate is 0.1 

and epsilon is 0.4, as in the unidirectional study for both AGVs, and hyperparameters were selected. According to 

these hyperparameters, the Q-table for AGV1 is shown in Figure 11 and the Q-table for AGV2 is shown in Figure 

12.  

 

                 

                    Figure 11: Q table for bidirectional AGV1.                              Figure 12: Q table for bidirectional AGV2. 

 

 

In the Q tables shown in Figure 11 and Figure 12, the rows represent the states of the vehicles and the columns 

represent their actions. The column corresponding to the maximum value in each row in this table represents the 

action to be performed in that state. In this way, the control method is developed for both AGVs. 
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5. Results and Discussion 

In order to validate the proposed method, simulation applications have been carried out for unidirectional and 

bidirectional AGVs. Using the Robotics System Toolbox in the Matlab&Simulink software, AGV modeling has 

been done and a working environment has been created. Q tables containing the actions that will control the vehicles 

are added as the block that decides the actions in the model and data are obtained through simulations. Figure 13 

shows the conditions of the unidirectional AGVs in the collision zone. 

 

 

Figure 13: States of unidirectional AGVs in collision zone. 

 

In the graph in Figure 13, the presence of vehicles in the collision zone is shown as 0 or 1. If the collision zone 

status of the vehicle is 1, the vehicle is inside the collision zone, and if it is 0, the vehicle is outside the collision 

zone. Therefore, when the collision zone status of the vehicles in Figure 13 is analyzed, it is seen that AGV1 and 

AGV2 are not in the collision zone at the same time throughout the operation. AGV1 always enters the collision 

zone before AGV2 and the vehicles are never in the collision zone in the same time period. Both vehicles move on 

their own routes for a certain period of time and no collision occurs during these movements. These results confirm 

that the method proposed in this study is suitable for unidirectional AGVs. 

Figure 14 shows the collision occurrence of bidirectional AGVs in the collision zone within the scope of the study. 
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Figure 14: States of bidirectional AGVs in collision zone. 

 

In the graph shown in Figure 14, the presence of vehicles in the collision zone is shown as 0 or 1. As in 

unidirectional operation, if the collision zone status of the vehicle is 1, the vehicle is inside the collision zone, and 

if it is 0, the vehicle is outside the collision zone. Therefore, when the collision zone status of the bidirectional 

vehicles in Figure 14 is analyzed, it is seen that AGV1 and AGV2 are not in the collision zone at the same time 

throughout the study. AGV1 always enters the collision zone before AGV2 and the vehicles are never in the 

collision zone in the same time period. Both vehicles move on their own routes for a certain period of time and no 

collision occurs during these movements. These results confirm that the method proposed in this study is suitable 

for bidirectional AGVs. 

6. Conclusion 

In this study, an effective modeling and control method is proposed for collision avoidance of AGVs operating in 

an environment with a shared work zone and overlapping routes. For unidirectional and bidirectional vehicles, a 

decentralized node-based method is used to reduce the complexity of the model and simplify the control of the 

system. In the study, finite state machines are used for AGV modeling and Q-learning algorithm, one of the methods 

of reinforcement learning, is used for collision avoidance. The proposed method is validated with simulations of 

unidirectional and bidirectional vehicles. By using this method, AGVs operating in industrial environments can 

perform their movements and tasks without collisions. Future work is planned to improve the proposed 

methodology to provide a scalable control strategy for AGVs operating in environments with a larger number of 

vehicles and more complex conflicting routes. 
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