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Deep Learning-Based Damage Assessment in Cherry Leaves 

   
Abstract 

This study aims to utilize deep learning methods for detecting diseases in cherry leaves to 

enhance agricultural productivity. While the detection of leaf diseases is currently performed 

by expert personnel, and the process can be quite time-consuming. Therefore, the primary 

objective of this study is to use deep learning-based disease detection applications to increase 

cherry production and enable early disease diagnosis. Additionally, the study investigates the 

impact of datasets on performance using two different datasets - one existing (PlantVillage 

Dataset) and one created for the study (Kozlu Dataset). Furthermore, the study examines the 

impact of hybrid architectures, combining convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), in addition to transfer learning methods and classical 

CNNs. On the PlantVillage dataset, AlexNet, VGG-16, MobileNet-V2, Inception-V3, and 

CNN models were compared. Due to the low performance of AlexNet and the long training 

time of VGG-16, MobileNet-V2, Inception-V3, CNN, and two different CNN+RNN models 

were compared on the Kozlu dataset. Based on the average results, the MobileNet-V2 model 

achieved the highest accuracy, approximately 99%, and the highest F1-score, also around 

99%, in both datasets. The methods were observed to perform somewhat better on the 

PlantVillage dataset compared to the Kozlu dataset. Additionally, hybrid models (CNN+RNN) 

were found to achieve higher performance than the classical CNN model. These findings 

indicate promising outcomes for deep learning models in cherry leaf disease detection. In the 

study, the best results were obtained by the MobileNet-V2 model and the CNN + LSTM 

model, with an average accuracy of approximately 96%. In future studies, the reliability of 

this study can be increased by using more diverse datasets, and disease detection performance 

can be enhanced by using different deep learning methods, leading to reduced disease 

detection times.  
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1. Introduction 

With the increasing global food demand, improving agricultural production and increasing efficiency have become 

critical issues. Detecting diseases in plant leaves and fruits is important for enhancing this efficiency. Agricultural 

workers typically observe leaf and fruit diseases with the naked eye, a method that is time-consuming and requires 

experienced personnel. Moreover, disease detection becomes even more challenging on large farms, where the process 

is further complicated and prolonged. To address these challenges, deep learning-based disease detection applications 

have been introduced in agriculture [1]. 

Moreover, damage to plant leaves can prevent plants from obtaining nutrients through photosynthesis, leading to their 

death [2]. It is known that unhealthy cherry tree leaves result in undersized fruits. Additionally, cherry fruits from trees 

with fallen or diseased leaves tend to wrinkle or have lower quality before ripening. Many diseases in cherry leaves can 

reduce fruit yield. For example, in the advanced stage of leaf spot disease, the plant's leaves may fall off, leaving only 

the fruit on the cherry tree. As a result, these fruits are often of poor taste, underdeveloped, and of low quality. Another 

example is powdery mildew disease, which is described as a powdery appearance seen throughout the green areas of the 

plant. Moreover, cherry leaf powdery mildew disease is usually observed in plants in high humidity areas. The disease, 

which starts from the upper parts of the plant's leaf and spreads, is a disease that surrounds the leaf by turning white like 

flour, leading to leaf and even fruit dropping [3]. Thus, early detection of diseases in leaves is important to prevent the 

progression of these diseases. 

One of the methods that can be used for early detection is deep learning, which has made significant progress in recent 

years in various areas such as handwriting recognition, autonomous vehicles, earthquake prediction, and classification. 

Similarly, using artificial intelligence methods, leaf diseases can be detected, and plants can be protected through early 

diagnosis. A review study on plant disease detection and classification using deep learning methods explains the 

importance of deep learning models in increasing accuracy in detecting plant diseases [4]. 

Furthermore, for example, in a study on maize disease classification, a model developed using Convolutional Neural 

Networks (CNNs) can detect three different diseases in maize leaves. One of the techniques used for recognizing plant 

leaf diseases with the help of computer vision is disease detection through extracting color features from images [5]. 

Consequently, convolutional neural networks enable the classification and recognition of images by extracting color 

features. 

Additionally, in the literature, there are disease detections using convolutional neural networks on different plant species. 

A study found in the literature was conducted to increase the diversity in datasets regarding cherry leaf diseases. Studies 

were aimed to contribute by training convolutional neural networks both with and without transfer learning methods. 

According to a study conducted in India on rice leaves, they achieved a success rate of 58% with the VGG-16 model 

[6]. Moreover, in this study, both the VGG-16 model and MobileNet-V2, Inception-V3, Long Short-Term Memory 

(LSTM) method, and Bidirectional LSTM method were used, and the success rate was aimed to be increased. Specific 

data augmentation processes and color spaces were applied to increase the success rate. Various examples of these 

processes are also available in the literature. 



 

Bozcu and Cubukcu.  J Inno Sci Eng 8(2):160-178 

162 

 

In these examples, Support Vector Machines (SVMs) are one of the widely used machine learning algorithms [7]. Except 

this model, Extreme Learning Machines (ELM), and K-Nearest Neighbor (KNN) were used as classifiers. Additionally, 

deep learning (DL) models such as ResNet-50, GoogleNet, ResNet-101, and SqueezeNet were used. In many studies, 

transfer learning models such as AlexNet, GoogleNet, VGG-16, MobileNet, are observed to be used [4]. The datasets 

used also have an impact on success. 

Proposed study mainly focuses on contributing to the literature by classifying common diseases such as potassium 

deficiency and powdery mildew, and healthy leaves, using deep learning methods. Additionally, the study investigates 

the impact of datasets on performance using two different datasets. Another novelty of the study is the investigation of 

the impact of hybrid models by using together CNN with Recurrent Neural Networks (RNN) on performance. 

In the continuous parts of this study, which enabling to contribute to the literature with new examples and comparisons, 

methodology, results and discussion, and conclusion sections are given respectively. 

2. Methods 

In this study, disease diagnosis in cherry leaves was performed using different deep learning methods on two datasets.  

The first dataset used in this study is the open-source PlantVillage dataset, where AlexNet, VGG-16, Inception-V3, 

MobileNet-V2, and CNN models were applied to detect healthy and powdery mildew-infected cherry leaves. In the 

second dataset, named Kozlu and created for this study, healthy leaves, leaves with potassium deficiency, and leaves 

with powdery mildew were detected using Inception-V3, MobileNet-V2, CNN, CNN + LSTM, and CNN + BiLSTM 

models. All methods were executed on Google Colab using a T4 GPU with a 25 GB RAM capacity. This study developed 

a code using the Python 3 programming language and built on the Google Compute Engine. The following section 

provides details about the materials and methods used in the study.  

2.1. Datasets 

In this study, in addition to using the PlantVillage dataset, a new dataset was created from cherry leaves obtained from 

cherry orchards in Kozlu village, Eskişehir. To increase the diversity of the created dataset and contribute to the 

generalization ability of the models, images belonging to the powdery mildew class from PlantVillage [8] were added 

to our new dataset, which was created based on literature research.  

2.1.1. PlantVillage Dataset 

PlantVillage is an open-source dataset containing approximately 54,000 images of 14 different types and 38 separate 

categories of healthy and disease cases [8], [9]. To meet the need for a verified large dataset to build a reliable image 

classification system, a project called PlantVillage was launched, collecting thousands of plant images, including healthy 

and diseased ones [10]. Experiments were conducted on this dataset using only two classes: leaves with powdery mildew 

disease and healthy leaves. In the training class, there are 1866 healthy leaves and 1683 leaves with powdery mildew 

disease. In the validation class, there are 456 healthy leaves and 421 leaves labeled with powdery mildew. Samples of 

PlantVillage Dataset shown in Fig 1. 
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Figure  1 : PlantVillage Dataset samples 

2.1.2. Kozlu Dataset 

The Kozlu dataset samples illustrated in Fig. 2. was derived from images collected from cherry orchards in Kozlu 

Village, Eskişehir and shared publicly on Kaggle [11]. This study photographed thousands of cherry leaves at a one-day 

interval. An agricultural engineer labelled the obtained images. To enhance the data diversity for the Kozlu dataset, 

consisting of three classes, powdery mildew disease was included from the PlantVillage dataset. In addition to leaves 

affected by powdery mildew disease, the dataset includes leaves with potassium deficiency and healthy leaves. The 

dataset comprises a total of 1438 images, with 478 images of powdery mildew-infected leaves, 480 images of leaves 

with potassium deficiency, and 480 images of healthy leaves. Data augmentation was applied to the training dataset in 

the studies, resulting in an augmented number of examples of 7898. A test dataset was separated at a 9% ratio. 

 

Figure  2 : Kozlu Dataset samples 

To maintain consistency in the analysis and training processes, images from the PlantVillage and Kozlu datasets were 

resized to uniform pixel dimensions. This preprocessing step ensured that all images were adjusted to the same width 

and height, standardizing them to a consistent resolution. The key characteristics of these two datasets are provided in 

Table 1. 
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Table 1 : The main features of Kozlu and PlantVillage dataset. 

Feature Kozlu Dataset PlantVillage Dataset 

Number of Samples 1438 4426 

Healthy Samples 478 2322 

Powdery Mildew Sample 480 2104 

Potassium Deficiency Samples 480 0 

Image Size 256x256 pixels 256x256 pixels 

Bit Depth 32-bit 24-bit 

 

2.2. Data Preparation and Preprocessing 

Resizing visual data is a critical preprocessing step that involves resampling the original images to a specific size to 

enhance processing and analysis efficiency. In this study, images initially sized at 3472x4624 pixels were resized to 

256x256 pixels. Expert support was enlisted to accurately label the images into healthy and diseased classes. 

Following the labeling, data augmentation was applied. Parameters were defined using the ImageDataGenerator class, 

with rotation set to 20%, width and height shift to 0.2, shear to 0.2, and zoom to 0.2. These parameters were used to 

augment images for each class, creating a diversified dataset. Brown spots were emphasized on the augmented dataset 

using the highlight_damaged_areas function. This function is designed to reveal brown spots by masking a specific color 

range in the images. The process begins by converting the images to the YUV color space. Then, a defined color range 

is used to create a mask on the image. This masking process highlights only the areas with pixels in the specified color 

range, making the brown spots more prominent and allowing for better examination of the relevant areas. The function 

ensures consistent highlighting by being applied to all images in the training and test datasets. 

Data augmentation was applied to each image in the training dataset using the datagen.flow function, which created a 

specified number of augmented images for each original image. Data augmentation enhances the model's ability to adapt 

to different conditions and variations, increasing its resilience to overfitting. This process aims to improve the model's 

performance on real-world data. The datasets created through these processes were used in this study. 

2.3. Deep Learning Models 

In this study, various deep-learning models were used for the best performance. The used models include AlexNet, 

VGG-16, Inception-V3, MobileNet-V2, CNN + LSTM, and CNN + BiLSTM. This section includes the features of the 

models used.  

2.3.1. AlexNet 

AlexNet is a convolutional neural network architecture that won the 2012 Large Scale Visual Recognition Challenge 

[12]. This competition aims to enhance accuracy in various visual recognition challenges by competing research teams 

against each other. AlexNet tested on ImageNet, a large labeled image collection containing approximately 15 million 

high-resolution labelled photographs. AlexNet's architecture consists of a total of eight weighted layers; five of them are 

convolutional layers, and three are fully connected layers. Rectified Linear Unit (ReLU) activation is used at the end of 
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each consecutive layer, and a softmax distribution is generated. Dropout is applied in the first two fully connected layers. 

Additionally, max-pooling is performed after the first, second convolutional layers, and the fifth convolutional layer 

[13].  

In this study, when using AlexNet, the necessary Python libraries and modules are first imported, and preparation is 

made for data processing and model creation, and the dataset is divided into training, validation, and test data. Various 

data augmentation operations (rotation, shifting, brightness adjustment) are applied to increase the diversity of the 

training data. Various Keras callback functions (Early Stopping, Learning Rate Reduction, Model Checkpoint) are 

defined to monitor and optimize the training process.   

2.3.2. VGG-16 

This network architecture, produced similar to AlexNet principles, takes 224x224x3 images in RBG format as input. 

3x3 size filters are used in the convolution layer. The VGG-16 architecture, introduced in 2014, consists of 16 layers in 

total, 13 of which are convolutional and 3 of which are full connection. The softmax classifier is used in the last layer 

of the architecture. Unlike the VGG-16 architecture, 3 more convolution layers were added to the VGG-19 architecture 

and it was designed as a total of 19 layers, 16 of which are convolution layers [14]. Fig. 3 presents the layers of the VGG 

architecture [15].  

 

Figure  3 : VGG architecture 

In this study, the VGG-16 transfer learning model was customized. Initially, the VGG-16 model was imported with pre-

trained weights on the ImageNet dataset, excluding the classification layer. Subsequently, to maintain the learned 

weights unchanged, the trainability of the VGG-16 model was disabled after determining the size of the input data. 

Finally, new layers, including flattening, fully connected, and classification layers, were then added to the architecture.   
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2.3.3. Inception-V3 

Guan et al. employed the Inception-V3 network architecture in their experiments, a multi-layered model featuring three 

types of Inception modules [16]. These modules, known as Inception A, Inception B, and Inception C, excel at 

distinguishing data features and have shown promising results in plant classification studies [17]. The TensorFlow 

library, developed by Google, provides high flexibility for utilizing transfer learning methods, as noted by Kumar et al. 

opening avenues for deep learning-based research in image recognition and classification tasks [18]. The Inception-V3 

model, illustrated in Fig. 4, boasts a versatile architecture comprising convolutional, maximum pooling, concatenation, 

dropout, fully connected, and average pooling layers  [19]. This architecture has been observed to enhance feature 

extraction effectiveness and aid in interpreting image features [20].  

 

Figure  4 : Inception-V3 architecture 

In this study, the Inception-V3 architecture was enhanced with an average pooling layer and additional fully connected 

layers. To activate transfer learning, the layers of the Inception-V3 model were frozen, preventing them from learning. 

This ensured that the model retained its previously learned information. The Adam optimization method was employed, 

and categorical cross-entropy was chosen as the loss function. Following training, the model was utilized to predict the 

classes of the provided images. 

2.3.4. MobileNet-V2 

The initial version of the MobileNet architecture, introduced by Howard et al. performs a depthwise convolution in the 

first layer, followed by the addition of a 1x1 pointwise convolution layer in the first version of MobileNet [21]. The 

pointwise convolution layer combines a single output filter for each image channel. All operations are completed within 

a single block, and the MobileNet-V1 architecture comprises a total of 13 such blocks. In contrast, MobileNet-V2 



 

Bozcu and Cubukcu.  J Inno Sci Eng 8(2):160-178 

167 

 

incorporates a single block that includes an expansion layer (1x1), a depthwise convolution layer (3x3), and a projection 

layer (1x1) instead of two convolution layers. The MobileNet-V2 structure consists of a total of 17 blocks. In a study by 

Barman et al., the MobileNet-V2 architecture was utilized to differentiate citrus leaf diseases from healthy citrus leaves 

[22]. It was observed that MobileNet-V2 operates much faster than traditional CNN architectures [21]. 

In this study, the MobileNet-V2 model is extended with two fully connected layers containing 128 and 64 neurons, 

respectively, followed by a global average pooling layer. After each fully connected layer, a batch normalization layer 

and a dropout layer are added. The Adam optimizer is utilized, and "categorical_crossentropy" is selected as the loss 

function. 

2.3.5. Classical CNN 

In the designed CNN architecture, the input layer consists of a convolutional layer that produces 32 feature maps using 

3x3 filters with ReLU activation. Following this, a MaxPooling2D layer is added to reduce image dimensions and 

prevent overfitting, with a dropout rate of 20%. Similarly, the second and third Convolutional Layers are added, using 

MaxPooling2D and Dropout layers to further reduce feature maps and prevent overfitting. After these Convolutional 

Layers, a Flatten layer is used to flatten the output, followed by fully connected layers containing 64 and 128 neurons, 

respectively, with ReLU activation functions. For the final classification layer, softmax activation is applied. During 

training, the model uses a learning rate of 0.001 with the Adam optimization algorithm, and the loss function selected is 

categorical cross-entropy. 

2.3.6. CNN+LSTM 

In the CNN+LSTM model illustrated in Fig. 5, similar to the CNN model, data is initially processed by a convolutional 

layer with 32 filters of size 3x3 and an input size of [224, 224, 3]. The CNN layers are responsible for extracting features 

from the images. Subsequently, a max-pooling layer reduces the dimensions, and a Dropout layer is added to mitigate 

overfitting. These layers are repeated three times in the same sequence, with the convolutional layers using 32, 64, and 

128 filters respectively, and all convolutional layers employing the ReLU activation function. All max-pooling layers 

are set to 2x2, and the dropout rates are adjusted to 0.2, 0.2, and 0.4 respectively. After appropriate data resizing, the 

processed data is fed into a 128-cell LSTM layer. Finally, a fully connected layer with a softmax activation function is 

utilized at the end of the model to complete the classification process. 

 

Figure  5 : CNN + LSTM model architecture 



 

Bozcu and Cubukcu.  J Inno Sci Eng 8(2):160-178 

168 

 

2.3.7. CNN+BiLSTM 

In this approach, as depicted in Fig. 6, the layers and parameters used in the CNN+LSTM model remain the same, except 

for the substitution of the LSTM layer with a BiLSTM layer. The BiLSTM layer in this method is configured with 128 

cells.  

 

Figure  6 : CNN +BiLSTM model architecture 

 

Some characteristics of the deep learning methods used in this study are presented in Table 2 [23], [24], [25], [26].  

Table 2 : Some characteristics of the deep learning methods 

Architecture 
Year 

Introduced 
Depth (Layers) 

Parameters 

(approx.) 

Top-1 

ImageNet 

Accuracy 

Key Features/Innovations 

AlexNet 2012 8 60 M 62.5% Deep convolutional neural network 

model consists of ReLU activations 

and densely connected layers. 

VGG-16 2014 16 138 M 71.5% A very deep architecture with small 

filter sizes and the use of max 
pooling. 

Inception-V3 2015 100+ 23.8 M 77.2% Nested convolutional layers, parallel 

convolutions, reduced 

dimensionality 

MobileNet-V2 2018 70+ 3.47 M 74.7% Lightweight architecture, linear 

activations, profiled filters 

CNN + LSTM - 3 convolutional 

and pooling 

layers, 1 LSTM 

layer 

- - Integration of an LSTM layer on top 

of a convolutional neural network 

base 

CNN + 

BiLSTM 

- 3 convolutional 

and pooling 

layers, 1 BiLSTM 

layer 

- - Integration of a bidirectional LSTM 

layer on top of a convolutional 

neural network base 

 

2.4. Comparison Metrics 

To compare the deep learning methods used, accuracy, precision, recall, and F1-score metrics which are widely used in 

literature were employed [27], [28], [29]. These metrics were calculated by subtracting the true positive, false negative, 

false positive, and true negative values obtained from the confusion matrix. An example of the appearance of these 

values in a confusion matrix is shown in Fig. 7 [30]. 
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Figure  7 : Confusion matrix 

True Positive (TP): When the classifier correctly identifies a healthy leaf sample, it is referred to as true positive. For 

example, when the classifier correctly detects that there are no signs of disease on the leaf, it represents a true positive.  

The leaf actually has powdery mildew disease. 

True Negative (TN): When the classifier correctly identifies a healthy leaf sample, it is referred to as true negative. For 

example, when the classifier correctly detects that there are no signs of disease on the leaf, it represents a true negative.  

The leaf does not actually have powdery mildew disease. 

False Positive (FP): When a healthy leaf is incorrectly labeled as diseased by the classifier, it is referred to as false 

positive. For example, when a leaf is incorrectly labeled as diseased despite having no signs of disease, it creates a false 

positive scenario. An example is when a healthy leaf is predicted to have powdery mildew disease. 

False Negative (FN): When a diseased leaf is incorrectly predicted as healthy by the classifier, it is referred to as false 

negative. For example, when a leaf has clear signs of disease but is incorrectly labeled as healthy by the classifier, it 

creates a false negative scenario [31]. An example is when a leaf is predicted not to have powdery mildew disease when 

it actually does. 

Accuracy, precision, recall, and F1-score are calculated as shown in the equations 1-4 [27], [28], [29].   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                        (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
                           (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 +𝐹𝑁
                            (3) 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = 𝟐 𝐱 
 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝒙 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+ 𝑹𝒆𝒄𝒂𝒍𝒍
                       (4) 

 

3. Results 

This section presents the comparison of deep learning methods based on two datasets used in the study. The detection 

of healthy and powdery mildew-infected cherry leaves in the PlantVillage dataset, the models AlexNet, VGG-16, 

Inception-V3, MobileNet-V2, and CNN were employed. In the Kozlu dataset, healthy leaves, leaves with potassium 

deficiency and leaves with powdery mildew were detected using the Inception-V3, MobileNet-V2, CNN, CNN + LSTM, 

and CNN + BiLSTM models. The CNN + LSTM and CNN + BiLSTM methods could not be applied to the PlantVillage 

dataset due to insufficient RAM resources in the Google Colab environment. All deep learning methods were executed 
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with 30 epochs and 3 repetitions on both datasets. In the rest of this section, the results obtained for 2 different datasets  

are presented in separate sections.  

3.1. PlantVillage Dataset Results 

In the PlantVillage dataset, the goal was to determine whether the leaves were healthy or affected by powdery mildew 

by applying AlexNet, VGG-16, Inception-V3, MobileNet-V2, and Classical CNN models. The complexity matrices of 

the results are shown in Fig. 8. In the complexity matrix, 0 values indicate diseased leaves, and 1 values indicate healthy 

leaves. The red sections represent incorrect predictions by the models, while the green sections represent correct 

predictions. 

 

 

     

Figure  8 : Confusion matrix of PlantVillage dataset results 

 

As depicted in Fig. 8, AlexNet resulted in the worst performance with 338 incorrect predictions, while MobileNet-V2 

achieved the best outcome with only 9 incorrect predictions. Both Inception-V3 and MobileNet-V2 models successfully 

predicted all diseased leaves correctly. Furthermore, the Classical CNN model made more correct predictions than 2 

transfer learning models but fewer correct predictions than the other 2 models. The accuracy, F1-scores, precision, and 

recall results for the models based on 3 repetitions are shown in Table 3 and graphical representation of the mean results 

for the PlantVillage dataset illustrated in Fig. 9. 
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Table 3 : The results of deep learning models on the PlantVillage dataset. 

  Accuracy F1-scores Precision Recall 

AlexNet 

Worst 0.5986 0.5882 0.6193 0.5986 

Mean 0.6065 0.6008 0.6194 0.6065 

Best 0.6145 0.6135 0.6195 0.6145 

VGG-16 

Worst 0.9817 0.9817 0.9819 0.9817 

Mean 0.9828 0.9828 0.9830 0.9828 

Best 0.9840 0.9840 0.9842 0.9840 

MobileNet-V2 

Worst 0.9814 0.9874 0.9876 0.9875 

Mean 0.9897 0.9917 0.9920 0.9918 

Best 0.9932 0.9932 0.9932 0.9932 

Inception-V3 

Worst 0.9133 0.9124 0.9257 0.9133 

Mean 0.9190 0.9182 0.9290 0.919 

Best 0.9247 0.9241 0.9343 0.9247 

Classical CNN 

Worst 0.9738 0.9700 0.9700 0.9700 

Mean 0.9738 0.9700 0.9700 0.9700 

Best 0.9738 0.9700 0.9700 0.9700 

 

 

Figure  9 : Graphical representation of the mean results for the PlantVillage dataset 

Upon reviewing the results of the three repetitions in Table 3 for the PlantVillage dataset, it is observed that the 

MobileNet-V2 model exhibits the best performance with an average F1-score of 0.9817. In contrast, the AlexNet model 

performs the poorest with an average F1-score of 0.6008. The Inception-V3 model stands out with lower accuracy and 

higher loss values compared to MobileNet-V2. The Classical CNN model demonstrates a stable performance with 

generally high accuracy and low loss values. These findings highlight the superiority of the MobileNet-V2 model and 

the consistent performance of the Classical CNN model. However, it is evident that the performance of the Inception-

V3 model lags behind the other models. 
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3.2. Kozlu Dataset Results 

Based on the results obtained from the PlantVillage dataset, AlexNet was not considered for evaluation on the Kozlu 

dataset due to its low accuracy rate. Similarly, the VGG-16 model was not compared on the Kozlu dataset due to its 

lengthy training time. Instead, to examine the impact of CNN+RNN hybrid models on performance, CNN+LSTM and 

CNN+BiLSTM models were tested on the Kozlu dataset. The complexity matrices for the results of this study are shown 

in Fig. 10.  

 

 

 

Figure  10 : Confusion matrix of Kozlu dataset results 
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As can be understood from the complexity matrices, all five models have achieved promising results. Overall, the models 

predict powdery mildew disease with great success, but they also occasionally confuse leaves with potassium deficiency 

with healthy leaves. The accuracy, F1-scores, precision, and recall results for the models based on 3 repetitions are 

shown in Table 4 and graphical representation of the mean results for the Kozlu dataset illustrated in Fig.11. 

Table 4 : The results of deep learning models on the Kozlu dataset. 

  Accuracy F1-scores Precision Recall 

MobileNet-V2 

Worst 0.9833 0.9833 0.9833 0.9833 

Mean 0.9868 0.9893 0.9893 0.9867 

Best 0.9903 0.9933 0.9933 0.9900 

Inception-V3 

Worst 0.9431 0.9400 0.9433 0.9433 

Mean 0.9431 0.9417 0.9450 0.9433 

Best 0.9431 0.9433 0.9466 0.9433 

Classical CNN 

Worst 0.9597 0.9566 0.9633 0.9600 

Mean 0.9597 0.9583 0.9633 0.9600 

Best 0.9597 0.9600 0.9633 0.9600 

CNN + LSTM 

Worst 0.9625 0.9600 0.9633 0.9633 

Mean 0.9646 0.9634 0.9633 0.9650 

Best 0.9667 0.9667 0.9633 0.9667 

CNN + BiLSTM 

Worst 0.9611 0.9600 0.9633 0.9600 

Mean 0.9632 0.9633 0.9650 0.9633 

Best 0.9653 0.9666 0.9666 0.9667 

 

 

 

Figure  11 : Graphical representation of the mean results for the Kozlu dataset 
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The results presented in Table 4 include information obtained by evaluating the performance of different deep learning 

models using various metrics. Among the models examined, MobileNet-V2 stands out as the top-performing model. In 

the best-case scenario, the MobileNet-V2 model achieved an accuracy of 99.03%, a loss of 0.0410, an F1-score of 

99.33%, precision of 99.33%, and recall of 99.00%. The results obtained by other models are also promising. Even the 

lowest-performing model, Inception-V3, demonstrated successful performance with an accuracy of 94.31%, a loss of 

0.1714, an F1-score of 94.00%, precision of 94.33%, and recall of 94.33%. 

Furthermore, the CNN + LSTM and CNN + BiLSTM models, included in the dataset for evaluating hybrid models, 

outperformed the Classical CNN model. Considering that they achieved better performance compared to the transfer 

learning method Inception-V3 and were also trained faster, they are considered useful models. 

4. Discussion 

Based on the results obtained, the MobileNet-V2 transfer learning model has achieved the highest success in diagnosing 

diseases from cherry leaves. It has also been observed that adding RNN layers to CNN architectures enhances their 

performance. Similar observations were made for both datasets used in this study. However, the performance rates in 

the Kozlu dataset, which consists of real-life images, were lower compared to the PlantVillage dataset, which was 

produced in a laboratory environment. Since the Kozlu dataset was created specifically for this study, there is no 

opportunity for comparison with existing literature. Conversely, numerous studies have utilized the PlantVillage dataset 

for disease detection in agricultural products. 

In a study aimed at detecting diseases in tomatoes using the PlantVillage dataset, the VGG-16 model achieved a 77.2% 

accuracy, MobileNet reached 63.75%, and the InceptionV3 model achieved 63.4% [32]. Another study, which compared 

its own methods with transfer learning models for tomato disease detection, reported that InceptionV3 achieved 94.58% 

accuracy, MobileNetV1 reached 82.7%, and MobileNet-V2 reached 92.1% accuracy [33]. In a study called "Attention 

Embedded Residual CNN for Disease Detection in Tomato Leaves," the proposed ResNet18-based model detected 

tomato diseases with 99.25% accuracy [34]. Similarly, in a study on detecting diseases in apples, AlexNet achieved 

91.19% accuracy, ResNet-20 achieved 92.76%, and VGG16 achieved 96.32% accuracy [35]. In another study on 

detecting diseases in corn leaves, combining the features of EfficientNetBO and DenseNet121 models resulted in 

98.56% accuracy [36]. In a survey of crop leaves, a proposed CNN-based model achieved 98.61% accuracy [37], while 

the study called "VGG-ICNN: A Lightweight CNN Model for Crop Disease Recognition" reported a 96.21% accuracy 

rate for detecting corn diseases [38]. The comparison of these studies using the PlantVillage dataset and this study are 

presented in Table 5. 
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Table 5 : The comparison of some studies using the PlantVillage dataset 

Study Task Dataset Method Accuracy 

This study Cherry leaf disease detection 
PlantVillage 

(Cherry) 

AlexNet, VGG-16, MobileNet-

V2, Inception-V3, CNN 

61.45%, 98.4%, 

99.32%, 92.47%, 

97.38% 

Agarwal et al. 

[32] 
Tomato leaf disease detection 

PlantVillage 

(Tomato) 

VGG-16, MobileNet, 

InceptionV3 

77.2%, 63.75%, 

63.4%  

Thangaraj et al. 

[33] 

Embedded Residual CNN for 

Disease Detection in Tomato 

Leaves 

PlantVillage 

(Tomato) 

InceptionV3, MobileNetV1, 

MobileNet-V2 

94.58%, 82.7%, 

92.1% 

Karthik et al. [34] Tomato leaf disease detection 
PlantVillage 

(Tomato) 

ResNet18-based proposed 

model 
99.25% 

Reddy and Rekha 

[35] 
Apple leaf disease detection 

PlantVillage 

(Apple) 
AlexNet, ResNet-20, VGG16  

91.19%, 92.76%, 

96.32% 

Amin et al. [36] Corn leaf disease detection 
PlantVillage 

(Corn) 

Combining the features of 

EfficientNetBO and 
DenseNet121 models 

98.56%  

Gao et al. [37] Crop disease detection PlantVillage  CNN-based proposed model 98.61% 

Thakur et al. [38] Crop disease detection PlantVillage  
VGG-ICNN: A Lightweight 
CNN Model 

96.21% 

 

In most of the reviewed studies, transfer learning methods and proposed approaches achieve over 90% accuracy on 

various crops. The 99.32% accuracy of MobileNet-V2 in this study is particularly promising compared to the other 

studies reviewed. It is also observed that similar methods can produce different results across studies. This is expected, 

as each study's performance depends on various factors such as the number of samples used, parameters, and iterations. 

Additionally, data preprocessing steps have a direct impact on the studies' performance. For instance, in our study, 

highlighting the brown spots on the leaves was found to increase accuracy. 

Beyond achieving high performance, another primary objective of our study was to create a real-world dataset and 

compare it with a dataset created in a laboratory environment. First, we created and publicly shared a comprehensive 

dataset. Given that the performance on our dataset was lower compared to the PlantVillage dataset, we believe real-

world datasets are more reliable. This belief is reinforced by another study that compared a real-world dataset with the 

PlantVillage dataset and made a similar observation [39]. 

5. Conclusion 

This study aims to detect diseases in cherry leaves to enable early diagnosis in agricultural production and increase 

productivity. The PlantVillage and Kozlu datasets, comprising images from cherry orchards in Eskişehir Kozlu Village, 

were utilized. In the PlantVillage dataset, AlexNet, VGG-16, Inception-V3, MobileNet-V2, and CNN models were 

employed, while in the Kozlu dataset, Inception-V3, MobileNet-V2, CNN, CNN + LSTM, and CNN + BiLSTM models 

were utilized to diagnose leaf diseases and compare the methods' performances. 

Due to its lowest accuracy rate of 61%, the AlexNet model was not applied to the Kozlu dataset, while the VGG-16 

model, despite achieving high success, was not implemented due to its lengthy training time. The Inception-V3 model 

demonstrated a high accuracy rate, with the MobileNet-V2 model achieving the highest accuracy rate, surpassing the 

other models. One of the proposed models in the study, the CNN model, accurately classified both powdery mildew 

disease and healthy leaves. 
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In the Kozlu dataset, Inception-V3, MobileNet-V2, CNN, LSTM, and BiLSTM models were examined. The MobileNet-

V2 and CNN models achieved successful results with high accuracy rates. Particularly, the MobileNet-V2 model 

exhibited the highest performance in all classes. Although the CNN + LSTM and CNN + BiLSTM models also achieved 

good results, they demonstrated slightly lower performance than other models in some classes. It was observed that 

adding LSTM or BiLSTM layers to the end of the CNN layers enhanced performance. 

A limitation of the study was the inability to use CNN + LSTM and CNN + BiLSTM models in the PlantVillage dataset 

due to their high RAM requirements. Another constraint was the limited number of gardens that could be used to create 

the Kozlu dataset. 

In future studies, the reliability of the models can be enhanced by utilizing larger and more diverse datasets. Additionally, 

studies can be conducted with different deep learning architectures, and the results can be compared. More detailed 

analyses can be conducted on the training times and memory usage of the models, which can contribute to the 

development of more effective and faster models. 
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