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Abstract: The dynamics of solid material dissolving in a solvent are fundamentally described by the Noyes-Whitney 

equation. For the purpose of simulating intricate processes with memory effects and non-local behaviors, fractional calculus 
offers a strong foundation. We explore the effects of memory and non-locality on dissolution kinetics by solving the Noyes-
Whitney equation using fractional derivatives. By means of mathematical analysis, we provide insights into the dissolving 
processes in chemical engineering and pharmaceutical applications by clarifying the behavior of the Noyes-Whitney equation 
with proportional fractional derivative. In this study, after discussing the characteristics and theories of the proportional 
fractional derivative on a time scale, we solve the proportional fractional Noyes-Whitney dynamic equation in the presence of 
the initial condition and give several examples on various time scales via the proportional fractional derivative. 
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Noyes-Whitney Dinamik Denkleminin Çözümlerinin Oransal Kesirli Türeve Göre İncelenmesi 

 
Öz: Katı maddenin bir çözücü içinde çözünmesinin dinamiği temel olarak Noyes-Whitney denklemi ile tanımlanır. 

Karmaşık süreçleri hafıza etkileri ve yerel olmayan davranışlarla simüle etmek amacıyla kesirli analiz güçlü bir temel sunar. 
Noyes-Whitney denklemini kesirli türevler kullanarak çözerek hafızanın ve yerel olmamanın çözünme kinetiği üzerindeki 
etkilerini araştırıyoruz. Matematiksel analiz yoluyla, Noyes-Whitney denkleminin orantılı kesirli türevle davranışını açıklığa 
kavuşturarak kimya mühendisliği ve farmasötik uygulamalardaki çözünme süreçlerine ilişkin bilgiler sağlıyoruz. Bu çalışmada 
oransal kesirli türevin özelliklerini ve teorilerini zaman ölçeğinde verdikten sonra oransal kesirli Noyes-Whitney dinamik 
denklemini başlangıç koşulunun varlığında ve oransal kesirli türev üzerinden çeşitli zaman ölçeklerinde birkaç örnek vererek 
çözüyoruz. 
 
Anahtar kelimeler: Noyes-Whitney dinamik denklemi, kesirli hesap, oransal kesirli türev. 
 
1. Introduction 
 

Numerous industrial and scientific operations depend heavily on the kinetics of a solid substance's dissolution 
in a solvent. Based on variables including surface area, diffusion coefficient, and concentration gradient, the 
Noyes-Whitney equation [15,23,26,30,32,33] offers a standard model for explaining dissolution rates. We 
introduce a proportional fractional derivative to the Noyes-Whitney equation in this study, inspired by the non-
local behaviors and memory effects found in dissolution events. 

 
The classical fractional derivative operators [1,10,11,17,19,24,25,27,34] are extended by the new 

conformable fractional derivative, named proportional fractional derivative [4,5,18], with parameters 𝜅" and 𝜅#. 
If 𝑃" is the unit operator and 𝑃# is the classical differential operator, then the differential operator 𝑃%	is called a 
proportional derivative where 𝛽 ∈ [0,1]. In order to overcome some constraints of the current fractional calculus 
operators and offer a more adaptable framework for characterizing the behavior of complex systems with 
fractional-order dynamics, the conformable fractional derivative was developed. 

 
With respect to parameters 𝜅" and 𝜅#, the proportional fractional derivative is defined as follows:  

Definition 1.1 [5] Assume that 𝛽 ∈ [0,1], 	𝜅", 𝜅#: [0,1] × ℝ  → ℝ"
2  are continuous functions and that  
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                                         3

lim
%→"7

 𝜅"(𝛽, 𝑡) = 0,								 lim
%→"7

 𝜅#(𝛽, 𝑡) = 1,

lim
%→#=

 𝜅"(𝛽, 𝑡) = 1,									 lim
%→#=

 𝜅#(𝛽, 𝑡) = 0,

𝜅"(𝛽, 𝑡) ≠ 0, 𝛽 ∈ (0,1],			𝜅#(𝛽,  𝑡) ≠ 0, 𝛽 ∈ [0,1),

                                               (1.1) 

are true. In this situation, if the function 𝜑 is differentiable at 𝑡 and 𝜑′= A
AB
𝜑, then the differential operator 𝑃% 

defined by  

                                                           𝑃%𝜑(𝑡)=𝜅#(𝛽, 𝑡)𝜑(𝑡) + 𝜅"(𝛽, 𝑡)𝜑D(𝑡),                                                   (1.2) 

is said to be proportional.  

It is possible to modify the behavior and characteristics of the proportional fractional derivative operator by 
varying the parameters 𝜅" and 𝜅#. With respect to linearity, commutativity, and the chain rule, the proportional 
fractional derivative with parameters 𝜅" and 𝜅# inherits some of the beneficial characteristics of conventional 
fractional derivatives. Furthermore, when modeling complicated systems [8,31] with fractional-order dynamics, it 
provides increased flexibility and adaptability. There are several applications of this fractional derivative in the 
domains of signal processing, physics, engineering, biology, and finance [3,7,9,16,21,22,28]. Among the 
phenomena displaying fractional-order behavior include viscoelasticity, anomalous diffusion, fractional-order 
control systems, and so on. The features and behavior of this derivative are investigated through mathematical 
modeling and analysis, utilizing experimental validation, numerical simulations, and analytical techniques. The 
fractional derivative operator can be tailored to the unique properties of the system under study because to the 
flexibility offered by the parameters 𝜅" and 𝜅#. In comparison to conventional fractional calculus operators, the 
proportional fractional derivative with parameters 𝜅" and 𝜅# offers greater flexibility and versatility, making it a 
useful tool for characterizing and comprehending the dynamics of complex systems with fractional-order behavior. 
 

A time scale 𝕋 is a closed, nonempty subset of the real numbers that denotes the domain of evolution of a 
dynamic process. It offers a comprehensive framework for researching dynamic processes and systems that change 
throughout different kinds and durations of time. Time scales having irregular or non-uniform time intervals can 
be modeled using continuous, discrete, or hybrid time scales. Since its introduction by Stefan Hilger in 1988 [20], 
time scale calculus has grown to be an essential tool for the study of dynamic systems with a wide range of temporal 
features. Numerous disciplines, including engineering, physics, biology, economics, and finance, can benefit from 
the use of time scale calculus. It is applied to population dynamics, mathematical biology, control theory, signal 
processing, and other fields to model and understand dynamic systems.  

 
A basic equation used to characterize the rate at which a solid material dissolves into a solvent is the Noyes-

Whitney equation, sometimes referred to as the Noyes-Whitney equation of dissolution kinetics. It offers a 
numerical connection between the dissolution rate and other process-influencing variables.  

 
The aim of the study is to obtain analytical solutions of the fractional derivative Noyes-Whitney Dynamic 

Equation with proportional delay. The formula for the Noyes-Whitney problem is  
                                                        AF

AB
= 𝛿(𝑅I − 𝑅),				𝑅(0) = 0.                                                              (1.3) 

The solubility of the substance, or the concentration of its saturated solution, is represented by 𝑅; the concentration 
at the expiration of the time 𝑡 is represented by 𝑅I; and 𝛿 is a constant. This indicates that the solution profile, as 
derived from the integration of Eq. (1.3), is exponential and reaches the plateau value 𝑅I in an indefinite amount 
of time: 

                                                                             𝑅 = 𝑅IL1 − 𝑒NOBP.                                                               (1.4) 
 

In this article, we consider the proportional fractional Noyes-Whitney dynamic equation 
 

                                                                            𝑃%𝑅(𝑡) = 𝛿(𝑅I − 𝑅)(𝑡).                                                         (1.5) 
Firstly, we will give some properties and theories about the proportional fractional derivative on a time scale, and 
then we will find the solution of Eq. (1.5) with the initial condition and give some examples on different time 
scales.  
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2. Preliminaries 
 
Some basic definitions and features of proportional fractional calculus theories will be covered in this part. 

Firstly, let us denote on a time scale 𝕋 by 𝜇, 𝜌 and 𝜎 the graininess function, the backward and forward jump 
operators, respectively, and additionally note that 𝕋T=𝕋 − {𝑚} if there is a maximum 𝑚 point of 𝕋; else, 𝕋T=𝕋. 
Detailed information about time scale calculation can be found in [2,6,12-15,23,26,30,33].  

The proportional delta derivative of the function 𝜑 : 𝕋 → ℝ of order 𝛽 ∈ [0, 1] at point 𝑡 ∈ 𝕋T will now be 
defined.  

Let us define  
                    𝔍(𝕋)=Y 𝜑 : 𝕋 → ℝ  :  𝑃%𝜑(𝑡) exists and is finite for all 𝑡 ∈ 𝕋TZ, 
as the collection of all proportional delta differentiable functions [29]. 
 
Theorem 2.1 [29] Let 𝜑 : 𝕋 → ℝ be a function, 𝑡 ∈ 𝕋T;	𝜅" and 𝜅# be continuous functions that fulfill the 
conditions (1.1). In this case 

                        𝑃%𝜑(𝑡)=𝜅"(𝛽, 𝑡) 𝜑\(𝑡) + 𝜅#(𝛽, 𝑡) 𝜑(𝑡),                                  (2.1) 
defines the 𝛽-th order proportional derivative of 𝜑 at point 𝑡 where 𝛽 ∈ [0, 1]. 
 
Lemma 2.2 [29] If 𝜑#, 𝜑] : 𝕋 → ℝ are proportional delta differentiable at the point 𝑡 ∈ 𝕋T and 𝜅" and 𝜅# satisfy 
the conditions (1.1) and are continuous functions, then the following properties are provided: 
(i)   𝑃%[𝜌𝜑# + 𝜍𝜑]]=𝜌𝑃%[𝜑#] + 𝜍𝑃%[𝜑]],  all 𝜌, 𝜍 ∈ ℝ; 

(ii)  𝑃%[𝜑#𝜑]]= 𝜑#_𝑃%[𝜑]] + 𝑃%[𝜑#]𝜑] − 𝜑#_𝜑]𝜅#(𝛽, . ); 

(iii) 𝐷a bcd
ce
f= gh[cd] ceiN cdgh[ ce]

 cecei
+ cdi

cei
𝜅#(𝛽, . ),     𝜑]𝜑]_ ≠ 0. 

Definition 2.3 [29] Let 𝛽 ∈ [0, 1] and 𝜅", 𝜅# : [0, 1] 𝑥 𝕋 → ℝ"
2	be continuous functions that fulfill (1.1). 𝑝: 𝕋 → ℝ 

is regarded as being 𝛽-regressive if the requirement 

 1 + l(m) N nd(%, m)
no(%, m)

𝜇(𝜏) ≠ 0, all 𝑡 ∈ 𝕋T, 

is hold. The collection of all 𝛽-regressive and rd-continuous functions on 𝕋 is represented by ℜ%=ℜ%(𝕋).  

Definition 2.4 [29] Let 𝛽 ∈ (0, 1], 𝑝 ∈ ℜ%. Assume that 𝜅", 𝜅#		are continuous functions and 𝑝 𝜅",⁄   𝜅# 𝜅"⁄  delta 
integrable functions on 𝕋, and that (1.1) is satisfied.  

𝐸tl(𝑡, 𝑠)=exp yz
#

{(m)
𝐿𝑜𝑔 �1 + l(m) N nd(%, m)

no(%, m)
𝜇(𝜏) �

B

I
𝛥𝜏�,                                                                                       (2.2) 

𝐸t"(𝑡, 𝑠)=exp yz
#

{(m)
𝐿𝑜𝑔 �1 −  nd(%, m)

no(%, m)
𝜇(𝜏)�

B

I
𝛥𝜏�,  𝑠, 𝑡 ∈ 𝕋,  

defines the proportional exponential function on 𝕋 for operator 𝑃%, where Log is the fundamental logarithm 
function.  

  𝐸tl(𝑡, 𝑠)=exp yz �  l(m) N nd(%, m)
no(%, m)

 �
B

I
𝛥𝜏�,      𝜇(𝑡)  =  0,                                                                                      (2.3) 

 
Definition 2.5 [29] Let 𝑝  :  𝕋  → ℝ and 𝛽 ∈ (0, 1]. Let us use  ℜ%2 to define all positive 𝛽-regressive components 
of ℜ%, that is,  
 ℜ%2 = � 𝑝 ∈ ℜ%  :  1 + l(m) N nd(%, m)

no(%, m)
𝜇(𝜏) > 0, all  𝑡 ∈ 𝕋�. 

Theorem 2.6 [29] If 𝑝 ∈ ℜ%2 and 𝛽 ∈ (0, 1], the following properties are true: 

(i)  𝐸tl(𝜎(𝑡), 𝑠)= � 1 + l(B) N nd(%, B)
no(%, B)

 𝜇(𝑡)� 𝐸tl(𝑡, 𝑠); 
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(ii)  𝐸tl(𝑡, 𝑠)=
#

�t�(I, B)
; 

(iii)  𝐸tl(𝑡, 𝑠)𝐸tl(𝑠, 𝑟)=𝐸tl(𝑡, 𝑟); 

(iv)  𝐸tl\(𝑡, 𝑠)= �  l(B) N nd(%, B)
no(%, B)

�  𝐸tl(𝑡, 𝑠). 

Lemma 2.7 [29] Let 𝛽 ∈ (0, 1]		and 𝑝 ∈ ℜ%. For fixed 𝑠 ∈ 𝕋, 

𝑃%�𝐸tl(. , 𝑠)� = 𝑝(𝑡)𝐸tl(. , 𝑠), 

and for the proportional exponential function 𝐸t", 

 𝑃% y z c(m)�to(B, _(m))
no(%, m)

B

�
 𝛥𝜏�=𝜑(𝑡).                                                                                                                    (2.4) 

 
Definition 2.8 [29] Assume that 	𝜑 ∈ 𝐶�A(ℝ), 𝛽 ∈ (0, 1],		and 𝑡" ∈ 𝕋. The indefinite proportional integral (anti 
derivative) is defined as 

 ∫  𝑃%𝜑(𝑡)𝛥a𝜏 =𝜑(𝑡) + 𝑐𝐸t"(𝑡, 𝑡"), 		∀𝑡 ∈ 𝕋 , 𝑐 ∈ ℝ, 

with respect to Lemma 2.7 

        ∫ 𝜑(𝜏)𝐸t"(𝑡, 𝜎(𝜏)) 𝛥%𝜏
B
� = z   c(m)�

to(B, _(m))
no(%, m)

 𝛥𝜏,
B

�
  𝛥%𝜏=

#
no(%, m)

 𝛥𝜏,                                                            (2.5) 

describes the indefinite proportional integral (anti derivative) of 𝜑 on [𝑎, 𝑏]𝕋. 

Lemma 2.9 [29] Let 𝛽 ∈ (0, 1], 𝜑 ∈ 𝐶�A(ℝ), and 𝜅", 𝜅# be continuous functions and satisfy (1.1). Then, 

 𝑃% b�  𝜑(𝜏)𝐸t"(𝑡, 𝜎(𝜏)) 𝛥%𝜏
B

�
f=𝜑(𝑡).                                                                    (2.6) 

Lemma 2.10 [29] If 𝜑 ∈ 𝔍(𝕋),  

z  𝑃%  [𝜑(𝜏)]
B

�

 𝐸t"(𝑡, 𝜎(𝜏)) 𝛥%𝜏 = [𝜑(𝜏) 𝐸t"(𝑡, 𝜎(𝜏))]m��B  . 

Definition 2.11 [4] It is assumed that 𝜑  :  𝕋  → ℂ  is regulated. Afterward, for each 𝑔 ∈ H%(𝑓), where H%(𝑓) is 
the set of all complex numbers that fulfill 

𝜅" + 𝑓_𝑔(𝜇 − 𝜅#) ≠ 0,							 𝑔 − 𝜅# ∈ ℜ%, 

h = −	𝑔𝑓_ �1 + 𝜇
h − 𝜅#
𝜅"

�, 

the proportional fractional Laplace transform of 𝜑 is given as  

L%(𝜑)(𝑢) = z  𝜑(𝑢)𝑓_(𝑢)𝐸t�(𝑡,0) 𝛥%,�𝜏.					
�

"

 

Theorem 2.12  [4] Assume that 𝜑#, 𝜑]  :  𝕋  → ℂ are regulated; 𝛾#, 𝛾] ∈ ℂ. Thus, for 𝑢 ∈ H𝛽L𝜑1P ∩ H𝛽L𝜑2P, 

L%L𝛾1𝜑1 + 𝛾2𝜑2P(𝑢) = 𝛾1L%L𝜑1P(𝑢) + 𝛾2L%L𝜑2P(𝑢). 
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Lemma 2.13 [4]  (i)  L%(1)(𝑢) =
#
¢
𝐸t"(∞,0),				𝑢 ∈ H𝛽(1),		 

(ii)  L% �𝐸t¤(∞,0)� =
�to(�,0)
¢N¥

. 
 
 
3. Main Results 
 

Using the Laplace transform, solutions of the proportional fractional Noyes-Whitney problem 
 

                                                                     ¦ 𝑃
%𝑅(𝑡) = 𝛿(𝑅I − 𝑅)(𝑡),																																																																		(3.1)

																										𝑅(0) = 𝑅",																																																																			(3.2)		
 

 
for various time scales will be found in this section.  
 
Theorem 3.1 The solutions of the proportional fractional Noyes-Whitney problem (3.1)-(3.2) is  
 
                                                                    𝑅(𝑡) = 𝑅I + (𝑅" − 𝑅I)�̈�−O(𝑡,0),                                               (3.3)  
where 𝑅I(𝑡) = 𝑅I. 
 
Proof: Using the initial condition (3.2) and the proportional fractional Laplace transform of both sides of Eq. (3.1) 
can result in the discovery that     
 

L𝛽(𝑃%𝑅)(𝑢) = L𝛽(𝛿(𝑅I − 𝑅))(𝑢) 
                                                                                     = 𝛿(𝑅I − 𝑅)L𝛽(1)(𝑢) 
                                                                                     = 𝛿𝑅IL𝛽(1)(𝑢) − 𝛿L𝛽(𝑅)(𝑢), 
and then using lemma 2.13 

𝑢L%(𝑅)(𝑢) − 𝑅0𝐸t"(∞,0) = 	𝛿𝑅𝑠
𝐸t"(∞,0)

𝑢
− 𝛿L%(𝑅)(𝑢), 

 

L%(𝑅)(𝑢) =
𝛿𝑅𝑠 + 𝑅0𝑢
𝑢(𝑢 + 𝛿)

𝐸t"(∞,0), 

 
                                                                          = �F©

¢
+ FoNF©

¢2O
� �̈�0(∞,0). 

 
By applying the inverse proportional fractional Laplace transform to both sides,  

𝑅(𝑡) = 𝑅I + (𝑅" − 𝑅I)�̈�−O(𝑡,0), 
 
is found. 

                                                                                                     
Example 3.2 Let 𝕋 = ℤ, 𝜅#(𝛽, 𝑡) = (1 − 𝛽)3%/],		 𝜅"(𝛽, 𝑡) = 𝛽3(#N%)/].	In	 this	 case,	 the	 solution	 of	 the	
problem 

                                                              · 𝑃
#/]𝑅(𝑡) = −¸

]
(𝑅I − 𝑅)(𝑡),																																																																		(3.4)

																										𝑅(0) = 𝑅",																																																																										(3.5)		
 

is  
 
                                                                    𝑅(𝑡) = 𝑅I + (𝑅" − 𝑅I)exp[𝑡𝐿𝑜𝑔2].   
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Solution Since 𝜇(𝑡) = 1,	from the definition of the proportional fractional exponential function (4), we have 

𝐸tNO(𝑡,0) = exp

⎣
⎢
⎢
⎢
⎡

¾𝐿𝑜𝑔 ¿1 −
−32 +

3
2

3
2

 À

B

"

𝛥𝑢

⎦
⎥
⎥
⎥
⎤

 

                                                           = exp�∫ 𝐿𝑜𝑔2
𝑡

0
𝛥𝑢� 

                                                          = exp[𝐿𝑜𝑔2∑ 1𝑡−1
0 ] 

                                                          = exp[𝑡𝐿𝑜𝑔2]. 
Hence, the solution of (3.4)-(3.5) is given that 

       𝑅(𝑡) = 𝑅I + (𝑅" − 𝑅I)exp[𝑡𝐿𝑜𝑔2]. 
 

Example 3.3 Let 𝕋 = 3ℕo, 𝜅#(𝛽, 𝑡) = (1 − 𝛽),		𝜅"(𝛽, 𝑡) = 𝛽𝑡
Æh
𝟐 .	In this case, the solution of the problem is: 

                                                              ¦ 𝑃
#/¸𝑅(𝑡) = −(𝑅I − 𝑅)(𝑡),																																																																				(3.6)

																										𝑅(1) = 𝑅#,																																																																										(3.7)		
 

 
 
                                                                    𝑅(𝑡) = 𝑅I + (𝑅# − 𝑅I)3T.  
Solution: Since 𝜇(𝑡) = 2𝑡,	we get 

                                                                                  𝐸tNO(𝑡,1) = exp ÊË 1
2𝑢𝐿𝑜𝑔Ì1−

−1 + 13
2
3𝑡

2𝑡 Í
𝑡

𝑠

𝛥𝑢Î 

                                                           = exp yz 1

2𝑢
𝐿𝑜𝑔3

𝑡

0
𝛥𝑢� 

                                                          = exp�𝐿𝑜𝑔3∑ 1𝑡/3
1 � 

                                                          = exp b𝐿𝑜𝑔3∑ 13𝑘−1

30 f 

                                                          = exp[𝑘𝐿𝑜𝑔3],								 

                                                          = 3𝑘,								𝑡 = 3𝑘,			𝑘 ∈ ℕ, 

and the solution can be obtained as 

      𝑅(𝑡) = 𝑅I + (𝑅# − 𝑅I)3T.   
 
 
4. Conclusion  
Following a discussion of the properties and theories of the proportional fractional derivative on a time scale, we 
solve the proportional fractional Noyes-Whitney dynamic equation in this study while the initial condition is 
present. We then provide multiple examples using the proportional fractional derivative on different time scales. 
We provide light on the behavior of the Noyes-Whitney equation with proportional fractional derivative, so 
offering insights into dissolving processes in chemical engineering and medicinal applications. 
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