Electronic Letters on Science & Engineering 19(2) (2023) .. ; ¢z

Available online at dergipark.org.tr/else e-ESE
The Power of Computing in Memory for Searching Algorithm
Abdelkader LAZZEM"", Halit OZTEKIN?
'Department of Electrical-Electronics Engineering, Sakarya University of Applied Sciences, Sakarya, Tiirkiye
22500409008 @subu.edu.tr, ORCID: 0000-0003-0136-356X,

2 Department of Computer Engineering, Sakarya University of Applied Sciences, Sakarya, Tiirkiye
halitoztekin@subu.edu.tr, ORCID: 0000-0001-8598-4763

Abstract: This work focuses on the critical problem of search algorithm optimization to improve efficiency in a
variety of applications within the field of computing. Through the utilization of technology's ongoing advancements,
namely in the area of hardware acceleration, the research delves into different approaches meant to improve search
algorithm performance. It presents a methodical comparison between the hardware-based Binary Content
Addressable Memory (BiCAM)-based search algorithm and conventional software-based search algorithms like
Sequential and Binary. The Field-Programmable Gate Array (FPGA), selected for its unmatched adaptability in
hardware configurations, is used for implementation. By means of a thorough analysis, the study aims to identify the
advantages, disadvantages, and complexity of these algorithms. The overall objective is to contribute to the
continuing conversation in computer engineering and digital circuit design by providing nuanced insights into
algorithm choices that are suited to particular application objectives. Essentially, the study explores the conditions of
different FPGA-based search algorithms, offering a thorough comprehension to direct well-informed decisions for
the best results in a range of applications. From the obtained results, it is evident that the BICAM consumes more
power and utilizes more resources but excels in terms of time complexity, making it a favorable trade-off in certain
applications where speed is of greater importance.

Keywords: Search Operation, Field-programmable Gate Array (FPGA), Binary Search, Sequential Search, Binary
Content Addressable Memory (BiCAM)

Arama Algoritmasi icin Bellekteki Hesaplama Giicii

Ozet: Bu calisma, bilgisayar alanindaki gesitli uygulamalarda verimliligi artirmak igin kritik bir sorun olan arama
algoritmasi optimizasyonuna odaklanmaktadir. Arastirma, teknolojinin donanim hizlandirma alaninda devam eden
ilerlemelerinden faydalanarak, arama algoritmasi performansini artirmaya yonelik farkli yaklagimlar
incelemektedir. Donanim tabanl ikili Igerik Adreslenebilir Bellek (BiCAM) tabanli arama algoritmast ile Sirali ve
ikili gibi geleneksel yazilim tabanli arama algoritmalar1 arasinda metodik bir karsilastirma sunmaktadir. Donanim
konfigiirasyonlarindaki essiz uyarlanabilirligi nedeniyle segilen Alan Programlanabilir Kapi Dizisi (FPGA),
uygulama i¢in kullamilmistir. Caligma, kapsamli bir analiz yoluyla, bu algoritmalarin avantajlarini, dezavantajlarini
ve karmagikligini belirlemeyi amaglamaktadir. Genel amag, belirli uygulama hedeflerine uygun algoritma
secimlerine iliskin incelikli bilgiler saglayarak bilgisayar miihendisligi ve dijital devre tasariminda siiregelen
tartigmalara katkida bulunmaktir. Esasen arastirma, farkli FPGA tabanli arama algoritmalarinin kosullarini
arastirmakta ve bir dizi uygulamada en iyi sonuglar i¢in iyi bilgilendirilmis kararlar1 yonlendirmek igin kapsamli bir
kavrayis sunmaktadir. Elde edilen sonuglardan, BICAM'in daha fazla giig tiikettigi ve daha fazla kaynak kullandigs,
ancak zaman karmagiklig1 agisindan {istiin oldugu ve hizin daha 6nemli oldugu bazi uygulamalarda uygun bir degis
tokus (trade off) yaptig1 agiktir.

Anahtar Kelimeler: Arama Islemi, Alanda Programlanabilir Kap1 Dizisi (FPGA), Ikili Arama, Sirali Arama, ikili
Icerik Adreslenebilir Bellek (BiCAM)

Reference to this paper should be made as follows (bu makaleye asagidaki sekilde atifta bulunulmali):
Lazzem, A., Oztekin, H., ‘The Power of Computing in Memory for Searching Algorithm’, Elec Lett Sci
Eng, vol. 19(2), (2023), 71-89

* Corresponding author; Abdelkader Lazzem(22500409008@subu.edu.tr, lazzemabdk@gmail.com)

ISSN 1305-8614 © 2023 dergipark.org.tr/else All rights reserved.
71

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

1. INTRODUCTION

In the ever-changing world of computers and technology, the optimization of search algorithms
stands as a crucial endeavor, significantly contributing to the efficiency and effectiveness of
diverse applications. Search operations are a fundamental form of computer activity used in
many different applications [1,2], often consuming a significant amount of the total program
execution time. The continuous evolution of technology, particularly in the domain of hardware
acceleration, has led to inventive strategies aimed at enhancing the performance of search
algorithms. Essentially, the search operation is the basic process of finding specific information
or data within a larger dataset. This operation entails comparing a chosen search term with the
data stored in a particular data structure or database. If a match is found, the relevant information
is then retrieved. Different algorithms and techniques, like linear search, binary search, or hash
table search [3], are used to perform this search operation. While many software-based
approaches have been proposed to increase search speed, their efficiency may be constrained by
the structural limitations of memory /4-9/. Notably, these methods primarily focus on optimizing
software functionalities without direct alterations to the hardware infrastructure. As a result, the
scope of improvement may be restricted by the pre-existing hardware configurations. In this
context, the ongoing advancements in hardware acceleration technologies create opportunities
for significant improvements in the performance of search algorithms. This paper conducts a
comprehensive comparison of traditional software-based search algorithms like Sequential and
Binary with the hardware-based Binary Content Addressable Memory (BiCAM)-based search
algorithm, all implemented within the framework of a Field-Programmable Gate Array (FPGA).
The selection of FPGA as the implementation framework is motivated by its unparalleled
flexibility in customizable hardware configurations, facilitating the creation of efficient and
tailored solutions across a diverse range of applications. Through a systematic evaluation of
these algorithms, our goal is to identify the strengths, weaknesses, and performance nuances
associated with different search strategies. This analysis aims to guide the selection of algorithms
based on specific application needs, taking into account trade-offs and considerations for optimal

performance.

Briefly,This study investigates various search algorithms implemented on FPGA , aiming to
identify strengths, weaknesses, and guide algorithm selection based on specific application

needs.
The contributions made in this work can be summarized as follows:

e Objective: Enhancing efficiency in various applications through the optimization of search algorithms.

72

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

e Innovative Strategies: Exploring inventive approaches, particularly in hardware acceleration, to improve
algorithm performance.

¢ Fundamentals of Search Operations: Explaining the basic process of search operations, including the use
of different algorithms.

e Limitations of Software-Based Approaches: Highlighting constraints and drawbacks in software-based
methods, such as memory limitations and the exclusive focus on software optimization.

e Algorithmic Comparison: Conducting a thorough comparison between traditional software-based search
algorithms (Sequential and Binary) and the hardware-based BiCAM-based search algorithm within the
context of FPGA implementation.

e Rationale for FPGA Selection: Choosing FPGA as the implementation framework due to its flexibility in
customizable hardware configurations.

e Systematic Evaluation Goal: Identifying strengths, weaknesses, and performance difference associated
with different search strategies through systematic evaluation.

e Guidance for Algorithm Selection: Providing guidance for selecting algorithms based on specific
application needs, considering trade-offs for optimal performance.

The remainder of this work is organized as follows: Section 2 reviews relevant work in search

algorithms, summarizing key findings and approaches in the field. Section 3 introduces the

FPGA-based Content Addressable Memories (CAMs), detailing th FPGA-based CAMs features

and thier types. Sections 4 and 5 covers the implementation and evaluation of the proposed

approaches. Section 6 presents and discusses the results, while Section 7 concludes the work.

2. Related Works

In the field of computer science and information retrieval, Search algorithms are essential for
locating particular elements within datasets in the fields of computer science and information
retrieval. Many researchers have explored ways to speed up searches using various techniques in
both hardware and software. They often prioritize speed, measured in clock cycles. A
comprehensive literature review has been conducted to enhance our understanding of these
search techniques. Sequential search and binary search are two popular techniques among these
algorithms, each with unique features and uses. Balogun (2019) introduces the bilinear search
algorithm as a novel approach to address limitations observed in the linear search. Unlike the
unidirectional linear search, the bilinear search conducts searches from different directions in an
organized manner. The study evaluates five forms of bilinear search and linear search by
searching for specific numbers in a 50-element array. Results demonstrate that the bilinear
search, in its various forms, is more efficient than the linear search. Despite variations in the

number of search directions, the time efficiency of the modified linear search consistently

73

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

outperforms the traditional linear search. The time complexity of the modified linear search
algorithm is expressed as O(n/2), but when constants are disregarded, the complexity remains
O(n) [10]. Parmar and Kumbharana (2014) present a comparative analysis of linear search and
binary search algorithms, highlighting their implementation across diverse data structures. They
introduce a modified binary search specifically designed for linked linear lists. The analysis
reveals that, while binary search is generally more efficient, linear search may be preferable in
specific scenarios [11]. Arora et al. (2014) introduce the Two Way Linear Search algorithm, a
modified version of the linear search designed for finding a specific element in an unordered
array. Unlike binary search, ordering of the array is not required. The Two Way Linear Search
algorithm compares elements from both ends of the array to enhance search efficiency. The
implementation and analysis were conducted using MATLAB 8.0, comparing the CPU time
taken by both algorithms for input sequences of various lengths (10,000, 50,000, 100,000, and
5,000,000). Their results indicate that their introdued algorithm performs well for all input
values, particularly showing improved efficiency when searching for an element beyond the

middle of the array, while maintaining similar performance to linear search otherwise [12].

Irmayana et all (2021) have conducted a systematical study aimed to compare the
performance of linear, binary, and interpolation search algorithms by evaluating the search time
and number of passed-nodes for desired items in a dataset of 3946 records. Their results
demonstrated that the binary search algorithm surpassed both linear and interpolation searches,
requiring less time and fewer passed-nodes [7]. Nowak (2008) introduced a generalized version
of the classic binary search problem, extending it to learn more general binary-valued functions.
His study presented an algorithm that, based on queries that are maximally discriminating at each
step, can determine the correct function in a logarithmic number of steps, specifically when
certain geometrical relationships between the set of target functions and queries are satisfied
[13]. Jacob et al. (2017) presented a discussion on commonly used search algorithms: binary
search and linear search. They highlighted the respective advantages and disadvantages of each
method and introduced a novel algorithm that combines the strengths of both, offering an
effective way to search for a key element in an unsorted array within a limited time frame.
Unlike binary search, which requires sorted data, and linear search, which can be time-
consuming, the proposed algorithm overcomes these limitations and demonstrates improved
efficiency in searching unsorted arrays. Their results and analysis indicate that the combined
algorithm performs significantly faster than the individual techniques, making it applicable to

various input scenarios [14]. Tiong et al. (2017) propose a method for determining the maximum

74

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

power point (MPP) in a photovoltaic (PV) system under partial shaded conditions, employing the
Binary Search Algorithm. The Binary Search Algorithm facilitates MPP tracking by dynamically
adjusting search boundaries to eliminate infeasible regions. Their results show that the binary
search algorithm offers rapid convergence with zero steady-state oscillation, showcasing its
effectiveness in MPP tracking for partially shaded PV systems [15]. Jin and Finkel (2020)
implemented a binary search algorithm using OpenCL on an Intel Arria 10 FPGA platform,
focusing on irregular memory access patterns. They optimized the grid search in XSBench by
incorporating techniques like vectorization and kernel replication. To address computational
overhead, they grouped work-items into work-groups, resulting in a 1.75x performance
improvement in the grid search using the classic binary search on the FPGA. The study applied
these optimizations to the grid search in XSBench as a case study, demonstrating minimal
changes needed in the OpenCL host program [16]. Bennett Et all. (2015) introduce an Enhanced
Binary Search algorithm aiming to address inefficiencies like starvation and unnecessary space
searches in traditional binary search algorithms. By optimizing the search space, particularly
when the search key is outside that region, the Enhanced algorithm achieves a runtime of O(log
n). Comparative analysis with the traditional Binary Search algorithm across various input sizes
shows that the Enhanced Binary Search consistently outperforms, demonstrating an average
runtime of O(1) when the search key is outside the feasible search region. This enhancement
signifies faster search capabilities, highlighting the effectiveness of the Enhanced Binary Search
algorithm [17].

CAMs are also commonly employed techniques for searching. The main fundamental objective
of CAM is to have an exact matches between the stored information and the queried data.
However, there has been an increasing interest in approximate search and comparison for diverse
data-intensive applications. The adoption of FPGA-based CAMs is increasing, especially within
the field of computer engineering. This happen due to recent technological advancements and
the escalating demand for rapid information access, emphasizing the requirement for parallel
data access. Garzon et al. (2023) present a review study exploring the applications of
approximate CAM in various domains, including big data, genomics, and other data-intensive
applications. The study highlights the potential of approximate CAM in accelerating the
processing of large data workloads [18]. Oztekin (2022) introduces the utilization of CAM to
evaluate the digital circuit drawings, aiming to reduce the time complexity involved in scoring
hand-drawn or digitally created logic circuits. The study explores the integration of machine

learning methods for circuit diagnosis and the incorporation of netlist files into CAM,

75

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

demonstrating an enhanced verification speed compared to alternative algorithms. Despite the
increased resource consumption associated with CAM, the study views its faster logic circuit
evaluation process as a valuable trade-off. This work highlights the potential applications of
CAM in improving the efficiency of educational evaluation processes and encourages further
exploration of resource-efficient CAM types for this purpose [19]. Garzon et al. (2023) proposed
a design named AM4, which integrates spin-transfer torque magnetic tunnel junction (STT-
MTIJ)-based technologies, including Content Addressable Memory (CAM), Ternary CAM
(TCAM), approximate matching CAM (ACAM), and in-memory Associative Processor (AP).
This design holds potential applications in data-intensive scenarios [20]. Lazzem et al. (2023)
present a comparative study that evaluates two approaches for improving search operation speed
using FPGA-based BiICAM , a parallel computer memory. The two approaches involve utilizing
Flip-Flop (FF) and Block Random Access Memory (BRAM) as memory elements. Both
implementations show a consistent time complexity of O(1) for the search operation, regardless
of the number or length of entries. However, they diverge in terms of resource utilization and
power dissipation due to their hardware structures. Despite scalability concerns, both designs
offer speed enhancements suitable for time-sensitive applications, presenting a valuable trade-off
[21]. Oztekin et all. (2023) introduce a hardware-based approach to enhance the search operation
for Opcode tables in assemblers by replacing conventional RAM with BiCAM.
BZK.SAU.FPGA assembler was used as case study to demonstrate the effectiveness of parallel
search operations which can be implement within a single clock cycle, . The BICAM approach
exhibits a fixed time complexity of O(1) regardless of memory or input size, outperforming
software-based algorithms. While the BiCAM increases resource utilization and power
consumption due to its hardware structure, its speed enhancement makes it a reasonable trade-off

for time-sensitive applications, suggesting a novel assembler approach [22].

3. FPGA- BASED CONTENT ADDRESSABLE MEMORY

Field Programmable Gate Arrays (FPGAs) are programmable integrated circuits composed of
configurable logic blocks (CLBs) connected by programmable interconnects [23]. First released
in 1985 [24], FPGAs are widely recognized for their adaptability, as they can be used to create a
wide range of digital circuits at different levels of complexity. Using Hardware Description
Languages (HDL) such as Verilog or Very High Speed Integrated Circuit Hardware Description
Language (VHDL) [25], FPGAs are programmed to execute parallel processing tasks in a variety
of industries, including high-performance computing, data storage, wireless communications,

and image/video processing [26].

76

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

Content Addressable Memory (CAM) functions as a memory type that quickly stores and
retrieves data by employing a lookup-table function in a single clock cycle, utilizing dedicated
comparison circuitry [27]. Described as hardware-based search engines, CAMs are adapted for
applications requiring ultra-fast searching, achieved by comparing input data with stored data
content rather than addresses, returning the matching data's address in just one clock cycle [28].
CAMs operate by associating data directly with unique keys, enabling direct retrieval based on
content rather than memory addresses. CAMs typically consist of two main components:
registers and a memory array. Registers are directly connected to each corresponding bit in the
memory array and are primarily utilized for searching operations by by comparing their values
with the target data . The memory array, on the other hand, serves as the storage component.
CAM is often preferred over traditional memory types like Random Access Memory (RAM) in
scenarios prioritizing speed. Unlike RAM, which retrieves data based on addresses and may
require multiple clock cycles, CAM retrieves the address associated with a specific word in just
one cycle [27]. Fig. 1 illustrates the search operation comparison between RAM and CAM (The
choice of 64 bits is due to the memory block size used in many systems). In Table I, a summary
of the important differences between RAM and CAM is provided. Moreover, FPGA-based
CAMs are gaining popularity due to the hardware-like performance and software-like
reconfigurability of FPGAs, particularly in complex reconfigurable systems. There are two
primary categories of CAMs, each with a specific set of features. When working with binary
data, Binary CAM (BiCAM) is used to match whole words. In addition to its binary states,
Ternary CAM (TCAM) adds a "don't care" state for more flexible matching conditions [29, 30].
BiCAM can be preferred for search operations due to its fast parallel searching capabilities as it

is able to reduce search latency and suitabile to operate in complex reconfigurable systems.

Table I Summary of Differences Between RAM and CAM.
Memory Type RAM CAM

Application Utilized to execute programs and store the Utilized in applications where
necessary data for them while they execute | extremely quick searching is required

Suitability Appropriate for the sequential search Duitable for parallel searching
technique
Operation Address is provided, RAM returns the data | A search key is provided, returns the
that is stored at that address. address of the found data
Cost less costly than CAMs More expensive than RAM

77

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

Input Input

0 0x00 0 0x0 0x0

. 0x04 — 1 | oxo | oxa
0xB7 Output

> ’ 0xB 0x7

. 0x3 OxF

0x77
63 OXFE 0x7 0x7
63 OXF OxF

Conventional Memory (RAM)
Content Addressable Memory (CAM)

Fig. 1. Search operation RAM vs. CAM.

Although all these advantages offered by CAM are notable, it's important to acknowledge
potential drawbacks, including increased power dissipation and higher hardware costs. To
address these issues, various energy-saving designs and technologies for CAM have been
proposed in the literature [31-33]. The choice between the advantages and potential trade-offs

depends on the specific criteria and circumstances of the desired application.

4. Implementation

This study includes a comparison of three approaches: Sequential Search, Binary Search, and
BiCAM-based search. The first two approaches utilize traditional RAM as storage elements and
employ software-based algorithms to enhance computing system speed. In contrast, the third
approach incorporates BiICAM as a replacement for RAM, representing a hardware-based
enhancement. All proposed approaches are developed using the VHDL programming language
and implemented at the logic gate level through Altera's Quartus II software. The
implementation is carried out on the Cyclone® II 2C70 core FPGA board.

4.1. Sequential Search

Sequential search, referred to as linear search, is a straightforward searching algorithm that
checks each element one by one in a list or array until a match is found [34,35]. The search starts
at the first index of the list and moves through the list item by item until the desired element is
located or the end of the list is reached [34,35]. Mathematically, it can be expressed as List[i] for
1=20, 1, 2, ..., N, where i denotes the position of the current element being examined, and N
represents the total number of elements in the list. The algorithm can be simply represented in

pseudocode:

78

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

Algorithm I Sequential Searching Algorithm
Input: list of elements (List), Target element (TE)
Output: Index of the TE if found, or 0 if not found
Search words (W;) Sequentially,i=0, 1,2 N
If TE matches W; then
Match occurs and index of the TE is sent to output
else

Mismatch occurs and error is sent to output
end if

AR A I ey

This straightforward algorithm is simple to comprehend and apply due to its simplicity. It is
especially useful in situations with small datasets and a preference for algorithm simplicity over
search speed. Sequential search does not require the list to be pre-sorted, in contrast to certain
other algorithms. To implement this algorithm in VHDL, Algorithm I is utilized. Additionally, a
64x8 RAM is created and initialized with random values to implement the search process. In Fig.
2, a detailed explanation of the Sequential Search algorithm is provided to offer a clearer
understanding. Additionally, in Fig. 3, the RTL (Register-Transfer Level) Diagram illustrating
the VHDL code written for Sequential Search is presented.

Fig. 2. Sequential Search Explanation

rocess,

index~{95.64]

I
T&ssTRaRO| ||
= <) i
| I resut_indexi31. OHreg

result_index{31..0]

g
£
ﬁ, ﬁ
N
g
H

found~0

Fig. 3. The RTL Diagram of the Desgined Sequential Search.

79

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

4.2. Binary Search

One popular algorithm for quickly finding a target value in a sorted set of data is binary
search. Binary search, also known as logarithmic search, works by continually dividing the
search space in half to reduce the number of potential locations for the target [36,37]. It works
especially well with sorted arrays or lists, as it reduces the number of comparisons required to
locate an element. This makes it operate much more quickly than linear search algorithms,
especially when dealing with larger datasets, as it drastically reduces the search space with each
iteration. Mathematically, the formula for binary search entails iteratively dividing the search
space in half and adjusting the boundaries until the target is found or the search space is depleted

[36,37]. The formulaic representation is:

mid = low+2high (1)

It is important to note the due to the integer division the result may truncate to the lower side

which leds to overflow issues which can be avoided using the folwing formula:

. high—low
mid = low + =%

)

The algorithm can be simply represented in pseudocode below:

Algorithm II Binary Searching Algorithm

Input: Sorted list of elements (List), Target element (TE)
Output: Index of the TE if found, or 0 if not found

Set : low to 0, high to length of List — 1

If low <= high

Set : mid to low + (high - low) / 2

If If Listimid] equals TE then

Match occurs and index of the TE is sent to output

else if List[mid] < TE then

Set : low to mid + 1 and go to step 4

else

WXL RN

—_ —
—_ O

Set : high to mid — 1 and go to step 4

end if

else

Mismatch occurs and error is sent to output
end if

—_ = = =
[T N~ S B]

This algorithm is particularly useful in scenarios where data is pre-sorted, as in databases or
sorted arrays. Its advantages lie in its speed and efficiency, making it suitable for large datasets
and real-time applications. To implement this algorithm in VHDL, Algorithm II is utilized and a
64x8 RAM is created and initialized with random values. In Fig. 4, a detailed explanation of the
Binary Search algorithm is provided to offer a clearer understanding. Additionally, in Fig. 5, the

RTL diagram illustrating the VHDL code written for Binary Search is presented.

80

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

Low Mid (0x0B<OX3F, right half) High

| 000 [0x02 | 004 [0x09 | 0x08 [0x24 | 0x3F | oxsa [0w |
0 1 2 3 4 s 6§ 7 8

Low Mid(oxsF =0x3F) High

| 0x00 | 0x02 | 0x04 [009 [0x08 | 0x24 | oxaF | oxs4 | 0w |
o 1 2 3 4 5 6 71 38

Fig. 4. Binary Search Explanation.

Fig. 5. The RTL Diagram of Desgined Binary Search.

4.3. BiCAM -based Search

The BiCAM is a specialized type of parallel memory architecture. Its objective is to provide
an efficient, quick, and parallel search mechanism by searching for and retrieving data based on
its content. In BICAM, each memory location is associated with a unique key, and data is stored
based on its content rather than its address. The BICAM has two registers (Argument and key)
used during searching. The argument register stores the value targeted for the search, while the
search register is utilized for masking specific patterns that correspond to the desired matches in
the search process. There are three main types of memory in modern FPGAs that can be used for
designing BiCAM: Flip-Flops (FFs), Lookup Table RAM (LUT RAM), and Block RAM
(BRAM) [38,39]. In this work, an FF-based design was chosen for its simplicity [38,39].
BiCAM's search function works by matching the stored data with the argument (search key)
content. To identify the precise bit that needs to match, a mask (key) is used. The following is

the formula that BICAM uses for the match [40].

M=AF; + AF; +K &)

Where M is equal to the Output of the comparison circuit, Fq is the output of data, A is the value
of the argument register, and K is the value of the key register. The algorithm used to implement

the search operation can be simply represented in pseudocode below.

81

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

Algorithm III FF-based BiCAM Searching Algorithm
Input: Argument element (A), key element (k)
Output: content of the A if match, or 0 if not found
M=AF; + AF;+K
If M equal to 1 then
Match occurs and content is sent to output

else
Mismatch occurs and 0 is sent to output

end if

A AN A S e

The VHDL code is written according to Algorithm III, and a 64x8 FF-based BiCAM is created
and initialized with random values. For a better understanding, a detailed explanation of the FF-
based BICAM Search algorithm is given in Fig. 6 Moreover, the RTL diagram displaying the
VHDL code created for FF-based BiCAM search is shown in Fig. 7.

Match Flag

b[7] b[6] b(5] b[4] b[3] b[2] b[1] b[0]
| 0 | 0 | 1 [1 | 1 I 1 | 1 I i | Argument _register (0x3F)
Seardh: Lihas ;. | 1$ | I , ;. | I | I | ;_ | ; Key _register (OXFF)
(s — | [[[[[[I
oo o Do o) Lo el {o] =
. [I I I I I I [
v o Ho o o o o H o Ho ™
3 = = T i =
0 1

A 0x03
Hateh 4 0£|—| 15H 15H 1EH 1:}—{ OEH oi|—| 1}—&

T O o L T D

Match Line
sense Amps
(MLSAs)

Fig. 6. FF-based BiCAM Search Explanation.

—BICAM:MainBlock

Mode_SelE=D- Mode Sel
W_R> WR
e
esef
ey dsian — dini/ 0f CAM oull 7 (01 BICAM_out(7..0]
counter:counterd f - — in Komidatch Hlan adrsi /0 latch_Flag_adrs[7..0]
E — Addresi/ {
I\ (=3
res:!a'gwm o adwcounlf iy o GouE "]‘] i e
/ Aroumant realf G j
dec:decoder mam:ROM

rlock .
adaressis 0 0 UE

ani/ 01 doutls O

7.0
7.0l
7.0l
=

Addres|
Argument_reg
din|

Key_reg

Fig. 7. The RTL Diagram of designed FF-based BICAM.

5. Evaluation

Random values are used to initialize the RAM for both sequential and binary search, as well
as to initialize the BiCAM. Subsequently, one of these values is randomly selected to bed

searched for. In computer science, analyzing algorithms is essential to finding the best solution

82

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

for a particular issue. Even though there might be several algorithms available for a given
problem, figuring out which one is the most effective is still difficult. The correctness of an
algorithm determines its acceptability, whereas the execution time of the algorithm determines
its efficiency. Comparing algorithms based on the number of steps compared to the size of the
input is made easier by time complexity, which is expressed using the 'Big O' notation [41].
Time complexity for search operations is commonly expressed as a function of 'n', which stands
for the elements that are being searched. Three scenarios are taken into account in time
complexity analysis for search algorithms: best-case, average-case, and worst-case. This study
compares the time complexity of each of the chosen algorithms. The scenarios for these search

algorithms are compiled in Table II.

Table II Time complexity of the proposed algorithms.

Algorithm Best case Average case Worst case
Sequential search o(1) O(n) O(n)
Binary search o(1) O(log n) O(logn)
BiCAM Search O(1) o(1) o(1)

Examining Table II shows that, when compared to other traditional RAM-based methods, the
BiCAM search algorithm has the best time complexity value. Given that its access times are
constant O(1). To gain a comprehensive understanding of the proposed approaches, alongside
the time complexity analysis, an examination of source utilization and power efficiency was also

conducted.

6. Results and Discussion

After implementing the proposed algorithms, they were simulated using the ModelSim HDL
simulator. RAM and BiCAM were initialized with random values; however, it's important to
note that the RAM for binary search should be sorted, which may require additional time for
sorting. This sorting step is not considered in our work as we focus only on the search algorithm.
A search value was selected to be searched under various conditions. Fig. 8 illustrates some of
the simulation results of the proposed search algorithms. As expected the FF-based BICAM
search approach demonstrated a constant time complexity of O(1), meaning that a match could
be found in a single clock cycle, regardless of the BICAM configuration or input size. On the
other hand, the time complexity of sequential search is directly proportional to the array's length,
leading to a linear increase in the number of comparisons as the array size grows. Lastly, the

time complexity required for binary search is O (log n), indicating a logarithmic increase with

83

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

the length of the array, resulting in faster search times for larger arrays compared to linear
search. From Fig. 8. we can analyze the simulation results of linear, binary, and BiCAM-based
searching operations using memories of the same size and same initialized values. The target
value chosen for the search is 12, stored at address 18. In the case of linear search, it took 18
clock cycles to find the target, while binary search took 5 clock cycles. As expected, BICAM-
based search achieved the result in just one clock cycle. Additionally, values 34 and 03 were

chosen for demonstration purposes, showcasing the power of the BICAM-based search.

Start of Searching

v 1 2 3 4 5 6 7 g8 9 10 11 12 13 14 15 16 17 1§Match

fsequtionalsearch/ck SN Yy oy Yy Yy Yy Y N O Y Yy Yy Yy Y Y Ny Iy Ny Yy IO
[sequtionalsearch/reset 0 L
fsequtionalsearch/start 1 r
Isequhmdsearch@z(2]@
[sequtionalsearch ffound TRUE
fsequtionalsearchjresult_index 18 2147483648 118
[sequtionalsearch/busy —
[sequtionalsearch/ram_data
fsequtionalsearch/searching
[sequtionalsearch/RAM_DEPTH 64 64
[sequtionalsearch/KEY_WIDTH 8 |8
(@
Start of Searching
¢ 1 2 3 4 5 Match

/binarysearch/dk 1 ! 1 [| [1 [L I 1 [| [1 |
/binarysearchfreset |0 L

/binarysear 4 1 4
/bwrysearm 12 12
/bnarvseariég\d IRUE
/binarysearclfresul... | 18 -2147483648

J/binarysearch busy
J/binarysearchfram_...
J/binarysearch/searc... | FALSE

/oinarysearch/RAM... |64 64
JoinarysearchKEY_... |8 8

(b)

Start of Searching

l 1 | Match l 1 [Mmatch 1 Match

Jbicam_64x8/ck 1
Jbicam_64x8/W_R
Jbicam_64x8/Mode_Sel
/bicam_64x8/reset
am_64x8/Addres
/icam_64x8/Ar t_re
Joicam_64x8/din

L
!
7]

[12
00
E
§3x8/BICAM out 12 2
Jbicam_64x8/Match_Flag_adrs | 12 B 12
02
02
02
02

]
FIE

/bicam_64x8/SYNTHESIZED ...
Jbicam_64x8/SYNTHESIZED ...

/bicam_64x8/SYNTHESIZED_...
Jbicam_64x8/SYNTHESIZED_...

©

Fig. 8. Simulation results of the proposed search algorithm. (a) Sequential ;(b) Binary;(c) FF-based BICAM.

To gain a deeper understanding of the proposed methods, an analysis of source utilization

and power efficiency has been conducted in addition to the simulation results.

84

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

6.1. Source Utilization

Table III provides an overview of the source utilization analysis for the proposed approaches.
From the table, it is observed that the FF-based BiCAM approach exhibits a higher usage of
logical elements compared to the alternative approach, confirming our predictions. The FF-based
BiCAM integrates encoders and decoders into its architecture, utilizing FFs as the storage
element. In contrast, the alternative method relies on onboard memory bits specified by the

factory.

Table III Source utilization of proposed search algorithms.

Search Algorithm Type Sequential Binary FF-based BiCAM
Total Logic Elements 22 65 2,261
Dedicated Logic Registers 14 20 1,550
Total Combinational Functions 16 65 1,598
Total Registers 14 20 1550
Total Pins 45 45 60
Total Memory Bits 0 0 512

From the Table III As we can see that The FF-based BICAM algorithm stands out with
higher usage in total logic elements, dedicated logic registers,Total Pins,Total Registers,Total
Memory Bits ,and total combinational functions compared to Sequential and Binary algorithms.
Despite a relatively high usage of total logic elements, the FF-based BICAM demonstrates
noteworthy efficiency considering to the other approaches. This highlights the FF-based
BiCAM's efficiency and resource utilization strengths in comparison to Sequential and Binary

algorithms.

6.2. Power Consumption

A graph depicting the total thermal power dissipation obtained by powerplay power analyzer
tool of the proposed search algorithms is presented in Fig. 22. The illustration reveals that the
RAM-based technique consumes 19.8% less power compared to the BICAM-based approach.
The increased power consumption of the BiICAM-based approach is primarily related to the
utilization of numerous FFs and parallel comparison circuitry. This leads to additional power
dissipation since the compare operations circuitries are typically active for the majority of the
time, as discussed in section 3. This presents a significant challenge for designers aiming to

minimize power consumption in parallel-based compare operations. However, for time-sensitive

85

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

applications, the higher power dissipation of the suggested BiCAM may still represent a

reasonable trade-off for increased speed.

Total Thermal Power Dissipation

2
0 . | —
BiCAM Sequential Binary

Fig. 9. Total thermal power dissipation of the proposed search algorithms.

7. Conclusion

In the rapid evolution of computer science and engineering, the optimization of search
algorithms stands as a critical aspect to enhance application performance. This paper focuses on
comparing various FPGA-based search algorithms, including sequential, binary, and BiCAM-
based techniques. The fundamental search function is crucial for computer science applications
such as text and database searching. Besides the BiICAM, two traditional search algorithms,
sequential and binary search, are chosen to be examined. The sequential search represents a
straightforward and simple search. In contrast, binary search is a more sophisticated and
logarithmically efficient algorithm. The analysis focuses on the strengths and weaknesses of
these algorithms, particularly when implemented on FPGAs. An important point of exploration
in this paper is the introduction and examination of BICAM, a hardware-dependent technique for
search operations. BICAM, as part of CAM, facilitates parallel searching, eliminating the need
for sequential scanning and significantly enhancing search speed. The study explores various
FPGA-based search algorithms, highlighting the versatility of FPGA technology. The
construction of FPGA-based sequential, binary, and BiCAMs is discussed, presenting both
traditional approaches and a novel one. The evaluation metrics include time complexity, resource
utilization, and power efficiency. The results indicate that the FF-based BiICAM outperforms
other traditional search algorithms in terms of time complexity, as it can find a match within a
single clock cycle regardless of the size of the BICAM. However, due to its hardware structure
and parallelism, it may face challenges compared to other traditional methods. The binary search
exhibits better performance, but it requires pre-sorting. Thus, there exists a tradeoff when
choosing which algorithm to use. In conclusion, this paper provides insights into FPGA-based
search algorithms, highlighting the potential efficiency gains of BICAM. The proposed methods
contribute valuable perspectives to ongoing discussions in computer science, engineering, and

hardware design.

86

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

References

[1] Cho, S., Martin, J.R., Xu R., Hammoud, M.H., Melhem, R. (2007). CA-RAM: A High-Performance
Memory Substrate for Search-Intensive Applications. 2007 IEEE International Symposium on
Performance Analysis of Systems & Software, 230-241.

[2] Knuth, D.E. (1973). The Art of Computer Programming, Vol. 3 (Sorting and Searching), Addison-
Wesley, USA

[3] Schlesinger, R. (2009). Developing Real World Software, Jones & Bartlett Publishers
[4] Mano, M.M. (1993). Computer System Architecture. Pearson, USA
[5] Levitin, A. (2012). Introduction of the Design & Analysis of Algorithms. Addison-Wesley, USA

[6] Cao, Y., Qi, H., Zhou, W., Kato, J., Li, K., Liu, X., Gui, J. (2018). Binary Hashing for Approximate
Nearest Neighbor Search on Big Data: A Survey. IEEE Access 6, 2039-2054.

[7] Irmayana, A., Sy, H., Paulus, Y.T., Aini, N., Aryasa, K.B. (2021). A Systematic Comparative Study
of Linear, Binary and Interpolation Search Algorithms. 3rd International Conference on Cybernetics

and Intelligent System (ICORIS) 1-5.

[8] Sultana, N., Paira, S., Chandra, S., Alam, S.S. (2017). A brief study and analysis of different
searching algorithms. Second International Conference on Electrical, Computer and Communication

Technologies (ICECCT) 1-4.

[9] Fukac, T., Korenek, J. (2019). Hash-based Pattern Matching for High Speed Networks. IEEE z22nd
International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS) 1-5.

[10] Balogun, G.B. () A Modified Linear Search Algorithm. African journal of computing & ic 12(2), 43 —
54.

[11] Parmar, V. P., Kumbharana, C.K. (2015). Comparing Linear Search and Binary Search Algorithms to
Search an Element from a Linear List Implemented through Static Array, Dynamic Array and Linked
List. International Journal of Computer Applications,121 (3),13-17.

[12] Arora, N., Bhasin, G., Sharma, N. (2014). Two way Linear Search Algorithm. International Journal of

Computer Applications, 107, 6-8.

[13] Nowak, R. (2008). Generalized binary search. 2008 46th Annual Allerton Conference on
Communication, Control, and Computing, Monticello, IL, USA, 568-574.

[14] Jacob, A. E., Ashodariya, N., Dhongade, A. (2017). Hybrid search algorithm: Combined linear and
binary search algorithm," 2017 International Conference on Energy, Communication, Data Analytics

and Soft Computing (ICECDS), Chennai, India.1543-1547.

87

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

Tiong, M. C. , Daniyal, H., Sulaiman, M. H. , Bakar, M. S. (2017). Binary search algorithm as
maximum power point tracking technique for photovoltaic system under partial shaded
conditions,2017 IEEE Conference on Energy Conversion (CENCON), Kuala Lumpur, Malaysia, 10-
14.

Jin, Z., Finkel, H. (2020) Performance Evaluation of the Vectorizable Binary Search Algorithms on
an FPGA Platform. 2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures and
Algorithms (IA3), GA, USA, 63-67.

Bennett, E.O., Ejiofor, V.E., Akpan, R.I. (2015). Efficient algorithm for binary search enhancement.
22(1).

Garzon, E., Yavits, L., Teman, A., Lanuzza, M. (2023). Approximate Content-Addressable
Memories: A Review. Chips, 2(2),70-82.

Oztekin, H. (2022). BICAM-based automated scoring system for digital logic circuit diagrams. Open
Chemistry, 20(1), 1548-1556.

Garzon E, Lanuzza M, Teman A, Yavits L (2023) AM4: MRAM Crossbar Based
CAM/TCAM/ACAM/AP for In-Memory Computing. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 13(1), 408-421.

Lazzem, A., Oztekin, H., Pehlivan, 1. (2023). A case study: Understanding The Nature of Memories
Architectures in FPGAs to Built-up Bi-CAM. Miihendislik Bilimleri ve Arastirmalarn Dergisi, 5 (1),
47-56.

Oztekin, H., Lazzem, A. & Pehlivan, 1. (2023). Using FPGA-based content-addressable memory for

mnemonics instruction searching in assembler design. J Supercomput 79, 17386—17418.

Boutros, A. , Betz, V. (2021). FPGA Architecture: Principles and Progression. IEEE Circuits and
Systems Magazine, 21(2),4-29.

Trimberger, S. (1995). FPGA Technology: Past, Present, and Future”, ESSCIRC '95: Twenty-first

European Solid-State Circuits Conference,12-15.

Kasivinayagam, G., Skanda, R., Burli, A.G., Jadon S., Sidhu,R. (2022) Hardware Description
Language Enhancements for High-Level Synthesis of Hardware Accelerators, Advances in

Computing and Data Sciences,1613,1-12.

Gandhare, S., Karthikeyan, B. (2019). Survey on FPGA Architecture and Recent Applications”, 2019
International Conference on Vision Towards Emerging Trends in Communication and Networking

(ViTECoN),14.

Pagiamtzis, K., Sheikholeslami, A. (2006). Content-addressable memory (CAM) circuits and
architectures: a tutorial and survey. IEEE Journal of Solid-State Circuits 41(3),712-727.

88

(28]

(29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Lazzem et al / Elec Lett Sci Eng 19(2) (2023) 71-89

Sivakumar, SA., Swedha, A., Naveen, R. (2018) Survey of Content Addressable Memory.
International Journal of Creative Research Thoughts 6(1):1516-1526.

Jothi, D., Sivakumar, R. (2018) Design and Analysis of Power Efficient Binary Content Addressable
Memory (PEBCAM) Core Cells”, Circuits, Systems, and Signal Processing, 37(6),1422—1451.

Zackriya, M. V., Kittur, H. M. (2016). Precharge-Free Low-Power Content-Addressable Memory,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(8),2614-2621.

Wasmir, S.H., Venkata, T.M. , Sandeep, S., Anup, D. (2020). Low-Power Content Addressable
Memory Design using Two-Layer P-N Match-Line Control and Sensing.Integration, 75,73-84.

Chang, Y.J., Tsai,K. , Cheng, Y.C., Lu, M.R. (2020). Low-power ternary content-addressable
memory design based on a voltage self-controlled fin field-effect transistor segment. Computers &

Electrical Engineering 81:106528.

Jiang, S., Yan, P., Sridhar, R. (2015). A high speed and low power content- addressable =~ memory
(CAM) using pipelined scheme. 2015 28th IEEE International System-on-Chip Conference, 345-349.

Aremu, B. (2023). Introduction to Algorithms and Data Structures: A Solid Foundation for the Real

World of Machine Learning and Data Analytics. Nigeria: Ojula Technology Innovations.

Sultana, N., Paira, S., Chandra, S., Alam, S. K. S. (2017). A brief study and analysis of different
searching algorithms," 2017 Second International Conference on Electrical, Computer and

Communication Technologies (ICECCT), Coimbatore, India, 1-4.

Sanders, P., Mehlhorn, K., Dietzfelbinger, M., Dementiev, R. (2019). Sequential and Parallel
Algorithms and Data Structures: The Basic Toolbox. Germany: Springer International Publishing.

Search Algorithm: Fundamentals and Applications. (2023). One Billion Knowledgeable.

Irfan, M, Sanka, A.L, Ullah, Z., Cheung, R.C.C. (2021). Reconfigurable content-addressable memory
(CAM) on FPGAs: A tutorial and survey, Future Generation Computer Systems, 128, 451-465, 2021.

Pagiamtzis, K., Sheikholeslami, A. (2006). Content-addressable memory (CAM) circuits and
architectures: a tutorial and survey. IEEE Journal of Solid-State Circuits 41(3):712-727.

Sipser, M. (2012). Introduction to the Theory of Computation”, Cengage Learning .

Chatterjee, A., Kiao, U. (2021) Time Complexity Analysis (Coding Interviews: Algorithm and Data
Structure Proficiency), Independently published.

89

