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Comparison of Levenberg-Marquardt and Bayesian Regularization Learning 

Algorithms for Daily Runoff Forecasting 

 
A R T I C L E  I N F O  

 
A B S T R A C T  

 

In this study, Multilayer Perceptron (MLP) with Levenberg-Marquardt and 

Bayesian Regularization algorithms machine learning methods are compared 

for modeling of the rainfall-runoff process. For this purpose, daily flows were 

forecast using 5844 discharge data monitored between 1999 and 2015 of 

D21A001 Kırkgöze gauging station on the Karasu River operated by DSI. 6 

scenarios were developed during the studies. Our findings indicate that the 

estimated capability of the Bayesian Regularization algorithm were close to 

with Levenberg-Marquardt algorithm for training and testing, respectively. 

This study shows that different network structures and data representing land 

features can improve prediction for longer lead times. We consider that the 

ANN model accurately depicted the Karasu flows, and that our study will 

serve as a guide for more research on flooding and water storage.  
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1.  Introduction 

In order to estimate the rainfall-runoff response of 

catchments and forecast hydrological droughts and 

flood events that result in fatalities and financial loss, 

hydrological models are essential applications [1]. To 

determine water capacities, countries establish a 

sparse hydrometric data collection network on the 

surface of rivers. However, estimating water capacity 

is not an easy work because of the complexity of 

physical parameters affecting stream flows. This 

complicated system, and the limits to existing 

hydrological information create significant 

uncertainty. The accuracy and capability of flow 

estimation models may have a direct effect on 

decisions related to water resources management. 

That’s why; new estimation methods can be 
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investigated to improve the existing ones. Machine 

learning is a term used to refer to the area of artificial 

intelligence that is data-based and contains traits that 

enable self-adaptability. In recent years, artificial 

neural network (ANN), is a widespread artificial 

intelligence method while solving some problems of 

hydraulic and water resource engineering. While 

physical models are expensive to build and need 

elaborate input data, a data-driven model such as 

ANN is simpler to use and depends just on the 

availability of climate data [2].  The study findings 

display that ANN can more accurately forecast when 

it is compared with both the traditional regression 

techniques and the current physical-based models, 

using a wider range of conditions [3-21]. Within the 

context of hydrological forecasting, the latest 

experiments demonstrate that ANNs can be a 

promising alternative for simulating the flow. ANN 

captures the behaviour of a system by using a training 

algorithm that minimizes the error function when 

finding the most suitable connection weights.  

The principal objective of the study is to compare the 

performance of the artificial intelligence techniques, 

Multilayer Perceptron (MLP) with training 

algorithms of Levenberg-Marquardt (LM) and 

Bayesian Regularization (BR) in the forecasting of 

daily flows. For this purpose, D21A001 Kırkgöze 

gauging station on the Karasu River, a branch of the 

Euphrates River, one of the major water sources of 

Turkey, was selected for case study. Daily runoff 

forecasting for Euphrates-Tigris Basin is worth to be 

studied due to encountered frequent flood and 

drought times in the basin at the past. 6 different 

scenarios were developed for the forecasts and the 

optimal scenario was identified.  

2.  Methodology 

2.1. Study site 

The Euphrates-Tigris basin covers approximately 

127304 km2 area and it has 1009.87 m height. The 

average rainfall in the Euphrates-Tigris Basin is 540.1 

mm year-1, and the average annual flow is 31.61 km3 

which makes it the largest basin in Turkey in terms of 

average annual flow rate. There have been frequent 

flood and drought times in the basin since ancient 

times, causing serious damage to the country's 

economy. Hence, the estimation of the stream flow in 

the Euphrates-Tigris basin is particularly important in 

terms of the effective operation of water resources 

systems and the reduction of flood damage. Daily 

rainfall and runoff (discharge) data set is used at 

D21A001 Kırkgöze gauging station on the Karasu 

River (Figure 1), a branch of the Euphrates River, for 

16 years from 1 October 1999 to 30 September 2015 

(5844 data). 

The daily runoff data was obtained from DSI flow 

observation annuals, and temperature and 

precipitation data was obtained from NASA POWER 

Data Access Viewer. Information about D21A001 

Kırkgöze gauging is given in Table 1.

 
Figure  1 : Euphrates-Tigris basin and location of the D21A001 Kırkgöze gauging. 
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Table 1 : Information about Karasu River Kırkgöze 

gauging. 

Station Number: D21A001 

Stream: Karasu 

Station: Kırkgöze 

Management: DSİ 

Altitude (m): 1830 

Drainage Area (km²): 232.2 

Observation Period: 1961-2016 

Latitude: 40°6'29" N 

Longitude: 41°23'8" E 

2.2. Artificial Neural Networks 

One of the most commonly known artificial 

intelligence techniques in the discipline of water 

resources engineering is the artificial neural network 

(ANN). Learning, association, classification, 

generalization, feature determination, and 

optimization are just a few applications of artificial 

neural networks (ANN), which are implemented to 

nonlinear and mathematical modelling problems [22]. 

ANN was inspired by the working principle of 

biological neural networks, which are composed of 

synapses, axons, dendrites, and nuclei in the brain. In 

the field of hydrology, a multilayer perceptron is one 

of the most prevalent network structures (MLP). MLP 

is used for problems such as classification, prediction, 

recognition, interpretation, and identification. In 

recent years, researchers have studied the capabilities 

of Multilayer Perceptron (MLP) models for the 

estimation of river flow [11], [13], [23]–[25]. MLP is 

composed of 3 principal layers as the input, hidden 

and output layer (Figure 2). MLP can have multiple 

hidden layers. Haykin (1998) [26] explains MLP 

more elaborately. 

ANN itself generates output data against the input 

data, that is, it trains the examples given, and then 

aims to predict the desired data according to its 

generalization. It is not certain how many hidden 

neurons there should be in an ANN, the number may 

vary depending on the problem, data and number of 

variables. Therefore, when estimating with an ANN 

model, different hidden neuron numbers should be 

tested to find the network structure that can optimize 

the estimation. 

The main disadvantage of ANN is that it may not 

obtain optimum estimates at the first time because 

different ANN structures are created for different 

hidden neuron numbers and weight coefficient 

values, and each ANN makes a different estimate. It 

is necessary to the method of use trial and to 

determine which network can optimally predict from 

the created networks. This  does not guarantee that the 

solution found is the best solution; in other words  

 

Figure  2 : Architecture of multi-layer ANN. 

ANN can produce acceptable solutions without   

guaranteeing these are the best solutions [27]. 

MLP is trained according to the instructional learning 

strategy. This approach involves providing the 

network with both inputs and outputs, enabling the 

network to comprehend the type of link between input 

and output. The network adjusts the weight 

coefficient values it assigns as it gains knowledge of 

the relationship between input and output until the 

difference between the estimated value and the actual 

output falls to a predetermined level. The error value 

for ANN refers to the difference between the 

network's estimated value and its actual output. The 

smaller this value, the closer the network predicted 

output value will be to the actual output value. The 

coefficients assigned by the network are changed 

according to certain learning rules. MLP updates the 

weighting coefficients according to the "Generalized 

Delta Rule" learning rule. Forward calculation and 

backward calculation are the two stages of the 

Generalized Delta Rule. Feed-forward 

backpropagation ANN calculates output against 

given input while feeding forward. Neurons in the 

input layer are connected to the hidden layer with 

certain weight connections to the output layer, with 

certain weight connections in the hidden layer. After 

the data in the input layer is multiplied by the weights 

to which they are connected and collected in the 

addition function, it passes through the activation 

function to the hidden layer, in the same way, the data 

received from the input layer in the hidden layer is 

multiplied by the weights they are connected to, and 

is collected in the addition function and sends it to the 

output layer as output data. Usually, the preferred 

activation function for MLP is the sigmoid function. 
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The equation (1) of the addition function is as 

follows. 

𝑁𝑒𝑡 = ∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗 𝑛
𝑖=1                (1) 

where; 𝑥𝑖 is the input value of neuron (𝑖 =
 1,2, … . , 𝑛), 𝑤𝑖𝑗 is the weight coefficient, 𝑛 is the 

overall number of inputs going to a neuron and 𝑏𝑗 is 

the Bias value. 𝑏𝑗  is a threshold value that the Net 

value must surpass to generate an outcome. Usually, 

threshold value neurons assigned as -1 or +1 are 

assigned as input values [28]. However, the threshold 

input does not have to be assigned to ANN. In MLP, 

which is the most widely used today, the tangent-

sigmoid function is used as the activation function in 

this study.  

While calculating the network output in the forward 

calculation phase, the weight coefficients are updated 

in the reverse calculation phase. In the 

backpropagation learning algorithm, there is a 

forward flow of information between the layers, 

while backward error spreads so that the total square 

error is minimized. In this context, backpropagation 

algorithms have been developed to minimize the 

specified performance function. Two of the most used 

backpropagation algorithms when training ANN are 

Levenberg-Marquardt and Bayesian Regularization 

algorithms. With these algorithms, in order to bring 

the predicted data of the network as close as possible 

to the actual data, that is, to minimize the error value, 

the weight coefficients are changed, and the estimated 

outputs are recalculated until they fall below a certain 

value. In this study, the existing flows of the Karasu 

River have been estimated by using the feed-forward 

back-propagation ANN model and used two 

backpropagation algorithms when training ANN are 

Levenberg-Marquardt and Bayesian Regularization 

algorithms. With these algorithms, in order to bring 

the predicted data of the network as close as possible 

to the actual data, that is, to minimize the error value, 

the weight coefficients are changed, and the estimated 

outputs are recalculated until they fall below a certain 

value. Levenberg-Marquardt and Bayesian 

Regularization training algorithms are employed and 

their performances are compared in this study. 

2.2.1. Levenberg-Marquardt Algorithm 

Levenberg-Marquardt algorithm, which removes the 

constraints of Gauss-Newton and gradient-descent 

algorithms and consists of the best features, is a least-

squares calculation method. It is a simplified version 

of the classical Newton method used in training MLP.  

The performance function can be taken as mean 

squared error (Equation (2)) which given below. 

𝐸𝑑 = 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑇𝑖 − 𝑌𝑖  )2)𝑛

𝑖=1             (2) 

where; 𝑇𝑖 is the expected value, 𝑌𝑖   is the output and  

𝐸𝑑 is the mean squared error of the network.  

The Jacobian matrix,  𝐽(𝑤), is obtained from the first 

derivatives of the network errors according to the 

weights.  At the backpropagation stage of the network 

error, firstly, the gradient of the network, G(w) is 

computed by using the transposition of the Jacobian 

matrix and the network errors (Equation (3)). 

𝐺(𝑤) =  𝐽𝑇(w) 𝑒(𝑤)                  (3) 

where; 𝑒 is the error vector. After calculating the 

gradient of the network, the vector change in the 

weights of the network, ∆𝑤 = 𝑤𝑛𝑒𝑤 −  𝑤𝑜𝑙𝑑, is 

determined by multiplying the inverse of the Hessian 

matrix (Equation (4)) with the gradient of the 

network.   

𝐻(𝑤) =  𝐽𝑇(𝑤)𝐽(𝑤) + 𝜇𝐼              (4) 

where; 𝜇 is the Marquardt parameter, 𝐼 is the Unit 

matrix and 𝑤 is the weight vector. 

While the network is trained with the Levenberg-

Marquardt algorithm and minimizing the 

performance function with respect to weight vector, 

the weight change of the network is calculated as in 

Equation (5). 

∆𝑤 =  − [𝐻(𝑤)]−1𝐺(𝑤)                 (5) 

where 𝐻(𝑤) is the Hessian matrix and 𝐺(𝑤) is the 

gradient. 

𝜇 parameter is identified as a numerical number for 

the Levenberg-Marquardt algorithm. The process 

continues to work as Newton's algorithm if 𝜇 is 

getting closer to zero; if 𝜇 is enlarging, the algorithm 

switches to the gradient reduction method [29], [30]. 

Newton’s method is more rapid and precise when it is 

close to a minimum error. Therefore, the goal 

becomes switching to Newton's method at the earliest 

time. 𝜇 decreases when reduction in performance 

function occurs and only increases when there is an 

increment in the performance function depending on 

a decay rate, thus, each time the algorithm iterates, the 

performance function always declines [31]. 
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2.2.2. Bayesian Regularization Algorithm 

Unlike the traditional neural network 

backpropagation, which adjusts the optimum weight 

coefficients by minimizing the error function, the 

Bayesian regularization algorithm uses the 

probability distribution of the network's weights [32]. 

In other words, the estimates made by the network are 

based on probability distribution. In training with 

Bayesian Regularization algorithm, the weight and 

bias values are refreshed according to Levenberg-

Marquardt optimization. Bayesian Regularization 

approach, which automatically arranges the 

appropriate performance function to achieve 

successful generalization, was developed by MacKay 

(1992) [33]. Large-value weights can cause output to 

vary excessively, and Regularization is the traditional 

method of addressing the negative impact of large-

value weights. Bayesian Regularization approach 

includes probability distribution of network weights. 

Consequently, the estimates made for the network are 

also a probability distribution. Bayesian 

Regularization involves modifying the performance 

function commonly used, such as the sum of mean 

square errors (MSE). Bayesian Regularization 

algorithm aims to enhance the model's capacity for 

generalization of the model. In the training phase, the 

𝐸𝑤   term, which is the sum of the squares of the 

performance function net weights is expanded to 

improve the generalization ability of the network 

(Equation (6)) [32]; 

𝐹 = 𝛽𝐸𝑑 +  𝛼𝐸𝑤                    (6) 

where; 𝐸𝑤  is the sum of squares of the network 

weights and 𝐹 is the regularized objective function. 

The 𝛼 and 𝛽 parameters need to be estimated and 

adjusted according to the Bayesian Regularization 

algorithm. If 𝛼 << 𝛽, the Bayesian Regularization 

training algorithm shrinks errors further. If 𝛼 >> 𝛽 

will emphasize the reduction of training weight size, 

thus producing a smoother network response [34] and 

decreasing chance of overfitting with better 

generalization. Adjusting the proper values for 𝛼 and 

𝛽 parameters is the key challenge in regularization 

implementation [34]. Overfitting may be inevitable if 

𝛼 is too big and the network does not properly fit the 

training data if it is too small. 

According to the Bayesian Regularization rule, the 

posterior distribution of the weights of ANN can be 

updated using Equation (7): 

𝑃(𝑤|𝐷, 𝛼, 𝛽, 𝑀) =
𝑃(𝐷|𝑤, 𝛽, 𝑀)×𝑃(𝑤|𝛼, 𝑀)

𝑃(𝐷|𝛼, 𝛽, 𝑀)
      (7) 

where; 𝑀 is the specific ANN architecture used and 

𝐷 is the training set consisting of input and target 

data. In the implementation of the Bayesian 

Regularization algorithm, optimum weights should 

maximize the posterior probability, 

𝑃(𝑤|𝐷, 𝛼, 𝑃, 𝑀), because maximizing the posterior 

probability of the weights corresponds to minimizing 

the regularized objective function (Equation 7)  [34], 

[35]. 

Foresee and Hagan (1997) [34] put forward the 

procedure to achieve optimum values of α and β 

parameters: 

Firstly; α, β and the weights are initialized. Initially, 

α is selected as 0. 

Then, one step of the Levenberg-Marquardt algorithm 

is taken to minimize the regularized objective 

function, 𝐹. 

The effective number of parameters, 𝛾, which 

measures how many network parameters, such as 

weights and biases, are utilized by the neural network 

to minimize the error function, is calculated. 

New predictions for α and β parameters are executed. 

Lastly, iterations from step 2 to step 4 is performed 

until convergence. 

3.  Performance Measures 

Performance evaluation was carried out with the root 

mean squared error (RMSE), mean absolute error 

(MAE), Percent Bias (PBIAS), Nash-Sutcliffe 

efficiency (NSE), and the coefficient of determination 

(R2).  

The standard deviation of the prediction errors can be 

identified as Root Mean Square Error (RMSE). In 

forecasting and regression analysis studies, root mean 

square error, RMSE, is frequently used to validate 

experimental results. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑇𝑖−𝑌𝑖)2𝑛

𝑖=1

𝑛
                                 (8) 

The average absolute variance between the observed 

and the estimated values is referred as the mean 

absolute error (MAE).  It is not considered to examine 

under and overestimation and changes linearly. Like 

RMSE, it is a preferable metric in forecasting studies. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑇𝑖 − 𝑌𝑖|𝑛

𝑖=1           (9) 
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Both RMSE and MAE show that the closer the error 

values are to 0, the more predicted values approach to 

the expected values. 

Underestimation or overestimation of the forecast is 

quantified by the bias ratio. According to Gupta et al. 

(1999) [36] and Moriasi et al. (2007) [37], positive 

PBIAS indicates model underestimation bias and 

negative PBIAS shows model overestimation bias.  

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑇𝑖−𝑌𝑖)∗100𝑛

𝑖=1

∑ (𝑇𝑖)𝑛
𝑖=1

        (10) 

Prediction ability of hydrological models is 

frequently evaluated using the Nash-Sutcliffe 

efficiency statistic [38]. According to theory, the NSE 

statistic ranges from -∞ to 1, with 1 denoting the ideal 

model. 

𝑁𝑆𝐸 = 1 −  [
∑ (𝑇𝑖−𝑌𝑖)2𝑛

𝑖=1

∑ (𝑇𝑖−�̅�)2𝑛
𝑖=1

]              (11) 

A measurement of the linear correlation between two 

quantities is the coefficient of determination, R². The 

coefficient of determination R2 is defined as the 

square of the correlation coefficient. The 

determination coefficient, the R2 values demonstrate 

how well the forecasted and observed values 

correspond and it is a value ranging from 0-1, the 

closer to 1, the more predicted values converge to the 

real results. 

   𝑅2 = (
𝑛 ∑ 𝑇𝑖𝑌𝑖−(∑ 𝑇𝑖

𝑛
𝑖=1 )(∑ 𝑌𝑖

𝑛
𝑖=1 )𝑛

𝑖=1

√[𝑛(∑ 𝑇𝑖
2𝑛

𝑖=1 )−(∑ 𝑇𝑖
𝑛
𝑖=1 )

2
][𝑛(∑ 𝑌𝑖

2𝑛
𝑖=1 )−(∑ 𝑌𝑖

𝑛
𝑖=1 )

2
]

)

2

    (12) 

where �̅� denotes the mean of experimental findings.  

By considering  Moriasi et al. (2007) [37], the 

performance is determined in this study as follows:  

0.75<NSE≤1: “very good”; 0.65<NSE≤0.75: “good”; 

0.50<NSE≤0.65: “satisfactory”, 

 PBIAS<±10%: “very good”; ±10% ≤PBIAS <±15%: 

“good”; ±15%≤PBIAS<±25%: “satisfactory”. 

4.  Results and Discussion 

This study presents modelling of the rainfall-runoff 

process of D21A001 Kırkgöze gauging station on the 

Karasu River by using the artificial intelligence 

method, MLP. ANNs were created by updating the 

code produced by Neural Network Toolbox Fitting 

Tool in the MATLAB environment. Training, 

validation, and testing sets of data were created. The 

first 70% of the data series were chosen to serve as 

the training set, the next 5% as the validation set, and 

the final 25% as the testing set for the Levenberg-

Marquardt algorithm. For the Bayesian 

Regularization algorithm, the first 75% of the data 

series were chosen as the training set and the next 

25% of the data series were picked as the testing set.  

The tangent-sigmoid function was utilized as an 

activation function. Input runoff and rainfall 

scenarios were evaluated. Following the creation of 

several network designs, for training, it was decided 

on the scenario inputs and the quantity of neurons in 

the hidden layer. In order to make an evaluation for 

the ANN which gives the best result, some 

performance functions were utilized, i.e., the 

minimum root mean square errors, RMSE and the 

maximum determination coefficients, R2 for the 

testing period. Then, accordingly, the scenario inputs 

and the number of the neurons in the hidden layer 

used in this study were investigated.  

The scenarios were created using the past and current 

rainfall, temperature which is presented in Table 2.  

The inputs include the previously observed daily 

discharge(Q) and rainfall (P) and temperature (T), 

(Q(t-1),Q(t-2),Q(t-3), P(t-1),P(t-2),P(t-3), T(t-1),T(t-

2), and T(t-3)), and the output is assigned as the 

current runoff (discharge) (Q(t)) (t is the current 

time). 

First, all the scenarios were trained to use as odd 

numbers from 3 to 21 hidden neurons, their 

performance was examined, and the best 6 were 

selected for further calculations. As a result, 6 

scenarios including a variety of inputs of Q, P, and T 

data were presented in Table 2 and both of the training 

algorithms were applied in modelling of rainfall-

runoff to identify the ideal scenarios.  

Table 2 : Various input model scenarios. 

Scenarios Inputs Output 

1 P(t-1),T(t-1),Q(t-1) Q(t) 

2 P(t-2),T(t-2),Q(t-2) Q(t) 

3 P(t-3),T(t-3),Q(t-3) Q(t) 

4 P(t-1),Q(t-1) Q(t) 

5 Q(t-1) Q(t) 

6 Q(t-1),Q(t-2) Q(t) 



 
 

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77 

68 

 

Training took place in accordance with the training 

parameters. The µ was increased by increase factor 

for µ until the change in performance reached a 

reduced performance value. Then, the change was 

performed to the network and µ was decreased by the 

decrease factor for µ. When the maximum number of 

epochs was reached, the performance gradient fell 

below the minimum performance gradient, the 

performance was minimized to the target, or 

µ exceeded the maximum value for µ, training was 

terminated. Besides, while training occurred with 

Levenberg-Marquardt algorithm, training stopped 

when validation performance has increased more than 

maximum validation failures since the last time it 

decreased while using validation. However, 

validation stops were not utilized by arranging 

maximum validation failures as infinite for Bayesian 

Regularization algorithm so that training was able to 

proceed until an optimal combination of errors and 

weights were obtained. 

Maximum number of epochs to train was taken 

maximum as 1000, performance goal for all the data 

as 0. For Levenberg-Marquardt training algorithm, 

the number of maximum validation failures was taken 

as 6. Maximum time to train in seconds was taken as 

infinite, minimum performance gradient as 10-7. For 

Levenberg-Marquardt algorithm, initial µ was taken 

as 0.001 and for Bayesian Regularization Algorithm; 

Marquardt adjustment parameter was taken as 0.005. 

The decrease factor for µ was as 0.1, increase factor 

for µ as 10, maximum value for µ as 1010. 

For activation function, tangent-sigmoid was used 

and performance function was taken as mean squared 

error, MSE, function during the process. The learning 

rate was arranged as 0.01 and the momentum constant 

as 0.9 for gradient descent with momentum weight 

and bias learning function. During the process of 

creating ANNs, the input and target data were 

normalized from its original range to the range [-1, 1]. 

For both algorithms, the number of hidden neurons 

was chosen as the odd numbers from 3 to 21, 

respectively, and 50 independent ANNs were created 

for each selected hidden number of neurons. When 

the number of hidden neurons has been taken more 

than 21, it has been observed that there became a 

decline in the performance of ANN. That’s why; the 

maximum number of neurons was taken as 21. The 

mean squared error (MSE) and determination 

coefficient (R2) results of the 50 created independent 

ANNs were averaged, and the best-hidden neuron 

number was selected considering the test results of 

the smallest mean MSE and largest mean R2 values of 

these 50 ANNs. This process was repeated for each 

scenario. Then, conducted 50 ANNs according to the 

best selected hidden neuron number were examined 

for each scenario and by taking into account the test 

results of the network with the smallest RMSE, MAE, 

and PBIAS with the largest NSE and R2 values 

between each 50 ANNs, the best scenario was 

selected. For RMSE, MAE and PBIAS, lower 

numbers are preferable, whereas NSE and R2 is better 

with levels near 1.  

Overfitting is one of the issues that arise during the 

training of neural networks. When the network is 

provided with new data, the error is much larger than 

it is when the training set is used. The network 

internalizes the training samples; however, it is 

incapable of generalizing to unexpected situations. 

The regularization and early stopping techniques can 

be considered as two ways to enhance generalization.  

Three selected sets of the present data are used in the 

early stopping method. The training set, which is the 

first set, is utilized to compute the gradient and update 

the weights and biases of the network. Validation set 

composes the second set.  Throughout the training 

process, the validation set error is tracked. Both the 

training set error and the validation set error 

commonly decrease during the first stage of training. 

Nonetheless, the validation set error can begin to 

increase when the network starts to overfit the data. 

Early stopping method was applied to prevent the 

network from becoming overfit to the training data set 

while training with Levenberg-Marquardt algorithm. 

The training was terminated and the weights and 

biases with the smallest validation error were returned 

after the validation error increased for a 

predetermined number of iterations. The number of 

maximum validation failures is a measure of 

subsequent iterations during which the validation 

performance does not improve. The training came to 

end when this predetermined number of iterations 

achieved 6. 

The value of the performance function was plotted 

against the number of iterations in the performance 

plot. Performances throughout training, validation, 

and testing were depicted. The iteration at which the 

least validation performance achieved was shown 

with the best epoch. Six additional iterations were 

executed until training was terminated. 

It can be pointed that there is no significant problem 

with training according to Figure 3.  The validation 

and test curves are very similar. It is likely that some 

overfitting may have taken place if the test curve had 

increased sufficiently before the validation curve did. 
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This graph demonstrates how training and validation 

errors decrease until the epoch indicated. Since the 

validation error did not grow prior to epoch 5, 

overfitting does not seem to have been place. 

Figure  3 : a) Performance curves and b) training states for Levenberg-Marquardt. 

Regularization is the other method for improving 

generalization. It might be used instead of validation 

during training in order foster effective 

generalization. Validation is typically employed as a 

sort of regularization; however, training with 

Bayesian Regularization has its own sort of validation 

integrated into the algorithm. There is no validation 

check during training with Bayesian Regularization 

so that no validation set since the goal of verifying 

validation is to see whether the validation set error 

improves or worse over time. Thus, it is possible to 

keep training until the optimal combination of errors 

and weights is discovered. The errors observed while 

training with Bayesian Regularization not only 

originating from the performance of the model, but 

also from the weights because greater weights result 

in higher error. That’s why; determining a number of 

maximum validation failures can prevent the network 

to experience greater weights so that prevent 

searching for an ideal combination of squared errors 

and weights with increasing number of iterations. 

It's crucial to train the network until convergence 

when using Bayesian regularization. The sum squared 

weights (SSW) and the sum squared error (SSE) 

should all achieve constant values after multiple 

iterations once the network has converged [39]. 

Besides, the algorithm should be allowed to run until 

the effective number of parameters, 𝛾, converges 

without considering how many parameters there are 

in the network [39]. If training is terminated when μ 

reaches maximum, the algorithm will be in fact 

converged. 

It can be seen that the effective number of parameters, 

𝛾, and sum squared weights achieved constant values 

after multiple iterations and performance curves were 

converged (Figure 4). The best training performance 

was obtained at epoch 374. 

Eventually, while training stopped due to reaching 

maximum validation failures at epoch 11 in 

Levenberg-Marquard and since maximum µ was 

reached at epoch 491 in Bayesian Regularization. 

Table 3 and Table 4 give performance evaluation of 

Levenberg-Marquardt and Bayesian Regularization 

algorithms through the R2, NSE, RMSE, MAE and 

PBIAS indexes.  
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Figure  4 : a) Performance curves and b) training states for Bayesian Regularization. 

Table 3 : Testing statistics of the LM according to the best hidden neuron number. 

Scenario 

Levenberg-Marquardt (LM) 

Number 

of 

Hidden 

Neurons 

Training Testing 

RMSE 

(m³/s) 

MAE 

(m³/s) 

PBIAS 

(%) 
NSE R² 

RMSE 

(m³/s) 

MAE 

(m³/s) 

PBIAS 

(%) 
NSE R² 

1 3 0.738 0.323 0.34 0.95 0.95 0.391 0.202 2.42 0.97 0.97 

2 9 0.982 0.473 1.16 0.91 0.91 0.572 0.306 4.44 0.93 0.93 

3 13 1.203 0.585 -5.81 0.86 0.86 0.674 0.358 -1.75 0.90 0.90 

4 3 0.762 0.315 0.001 0.94 0.94 0.397 0.186 1.11 0.96 0.97 

5 13 0.762 0.321 0.03 0.94 0.94 0.401 0.189 1.41 0.96 0.96 

6 3 0.763 0.303 -1.96 0.94 0.94 0.387 0.177 -1.08 0.97 0.97 
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Table 4 : Testing statistics of the BR according to the best hidden neuron number. 

Scenario 

Bayesian Regularization (BR) 

Number 

of 

Hidden 

Neurons 

Training Testing 

RMSE 

(m³/s) 

MAE 

(m³/s) 

PBIAS 

(%) 
NSE R² 

RMSE 

(m³/s) 

MAE 

(m³/s) 

PBIAS 

(%) 
NSE R² 

1 15 0.692 0.306 0.00003 0.96 0.96 0.386 0.200 2.15 0.97 0.97 

2 17 0.975 0.463 0.01 0.92 0.91 0.571 0.297 3.19 0.93 0.93 

3 9 1.206 0.586 0.0003 0.87 0.87 0.677 0.360 3.68 0.90 0.90 

4 3 0.773 0.323 0.0002 0.95 0.95 0.399 0.188 1.18 0.96 0.96 

5 3 0.792 0.324 0.01 0.94 0.94 0.402 0.186 1.22 0.96 0.96 

6 5 0.760 0.313 -0.02 0.95 0.95 0.386 0.184 1.48 0.97 0.97 

Networks created with rainfall and temperature data 

alone did not work effectively, thus they were not 

added to the tables. 50 independent networks were 

created for each hidden number of neurons and the 

best numbers of hidden neurons were chosen 

according to their average performance values.  

This is because each network is different from others, 

although all are created with the same hidden number 

of neurons. Because during the creation of each 

network, there are changes in the weight and 

threshold values given to the network, therefore, the 

same network is not created for the same number of 

hidden neurons, and the performance of each network 

changes. However, it has been observed that the error 

values and performance values of the ANNs created 

according to the number of hidden neurons are 

similar, but not exactly the same, so 50 networks are 

created, and their performance is averaged, and the 

results of the overall performance are taken into 

account. 

Additionally, each ANN model's structures are 

provided in Table 3 and Table 4 with their hidden 

layer counts. It is clear from Table 3 that the Q(t-1), 

Q(t-2) scenario with 3 hidden neuron numbers has the 

lowest RMSE, MAE, PBIAS and the largest NSE and 

R2 values taking into account the test results for 

Levenberg-Marquardt algorithm.  

Accordingly, it is seen that the MLP trained by the 

Levenberg-Marquart algorithm has a successful 

performance in the current flow estimation 

considering the R2 results. It can be said that the best 

scenario for the application for the Bayesian 

Regularization algorithm is the Q(t-1), Q(t-2) 

scenario with 5 hidden neuron numbers has the lowest 

RMSE, MAE and largest NSE and R2 values. The 

results show that the Bayesian Regularization 

algorithm can produce formulas that are both well 

fitted to the data and have very low mean errors. 

However, when scenarios were conducted by taking 

only precipitation and temperature data as input, it has 

been obtained a low performance of for both the 

Bayesian Regularization and Levenberg-Marquardt 

algorithm which are not shown in this study. 

Figures 5 and 6 display the ideal ANN’s observed and 

predicted runoff values (created by the Levenberg-

Marquart and the Bayesian Regularization 

algorithms) during both training, validation and test 

periods by using scatter diagrams and continuous 

graphs, respectively.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  5 : Observed and predicted runoff (discharge) values for scenario 6 using both LM for a) training, b) validation and c) 

testing cases and BR for d) training and e) testing cases. 
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Figure  6 : The scatter plots of scenario 6 for both a) LM and b) BR algorithms for training, validation and testing cases. 

To more clearly investigate the performance of the 

training algorithms used in this study, a series of 

graphs in Figure 5 shows the target and output values 

for these clusters. The situation is shown by the 

diagonal line connecting the expected and observed 

values where the predicted values differ slightly from 

the observed ones. In fact, overlapping is not 

impossible to achieve, practically. However, the data 

points build up around this line, even for larger data.  

The performances of the same scenarios of the two 

algorithms are generally close to each other. In both 

algorithms, it has been observed that, when the flow 

inputs are added to scenarios with only rainfall and 

temperature inputs, the current day's current forecast 

performance is significantly increased. 

According to evaluations by NSE and PBIAS, 

performance ratings can be considered as very good. 

The comparison of the findings in Table 5 

demonstrates that ANN model created by the 

Bayesian Regularization algorithm and Levenberg-

Marquart algorithm shows close performance in term 

of RMSE, MAE and PBIAS as well as NSE and R2 

indexes. 

Table 5 : The performance comparison of ANN (created by the LM and BR algorithms). 

Method 

Training Testing 

RMSE 

(m³/s) 

MAE 

(m³/s) 

PBIAS 

(%) 
NSE R² 

RMSE 

(m³/s) 

MAE 

(m³/s) 

PBIAS 

(%) 
NSE R² 

ANN-LM 0.763 0.303 -1.96 0.94 0.94 0.387 0.177 -1.08 0.97 0.97 

ANN-BR 0.760 0.313 -0.02 0.95 0.95 0.386 0.184 1.48 0.97 0.97 

These best ANN models for the Levenberg-Marquart 

and the Bayesian Regularization algorithms have R2 

and NSE values of 0.94 and 0.95 for training, 0.97 

and 0.97, for testing, respectively. Besides, when 

RMSE values are compared, the Levenberg-Marquart 

and the Bayesian Regularization algorithms have 

0.763 m³/s and 0.760 m³/s for training and 0.387 m³/s 

and 0.386 m³/s, respectively. It is seen that these 

values are too close. For MAE and PBIAS, there are 

insignificant differences. 
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5.  Conclusion 

Based on the study of rainfall-runoff modelling using 

ANN, the following conclusions can be drawn: 

First, all scenarios were trained to use as odd numbers 

from 3 to 21 hidden neurons and their performance 

was compared. 6 scenarios with the best performance 

were selected, and the calculations continued over 

these 6 scenarios. For both ANN algorithms, the 

number of hidden neurons was chosen as odd 

numbers from 3 to 21, respectively, and 50 different 

ANNs were created for each selected hidden number 

of neurons. The reason was that there is a change in 

the weight and threshold values given to the network 

while the studies are being carried out and each 

network is being formed, so the same network is not 

created for the same number of hidden neurons, and 

it was discovered that the performance of each 

network changes. However, it is taken into account 

that the error values and performance values of ANNs 

created according to the number of hidden neurons 

are similar, but not exactly the same, therefore the 

performance of 50 networks is averaged and the 

overall results are obtained. 

A major factor affecting the precision of model 

prediction is the selection of training and testing data. 

The model will not be able to make accurate future 

forecasts if the testing data don't accurately reflect 

basin and climate characteristics. Looking at the 

ANN scenarios trained with two different algorithms, 

it was observed that temperature and rainfall data 

alone were insufficient in estimating the current 

runoff data. It was reached that the ANN gives much 

improved performance by adding the past time runoff 

data to the inputs. This result was observed during the 

trial-and-error stage of our research, and scenarios 

related only to the past time runoff data were also 

added. In addition, it can be said that adding both past 

time rainfall and past time temperature data as input 

to the past time runoff, does not considerably improve 

the current day runoff (discharge) data estimation.  

By comparing the results, the application of the used 

models to the rainfall-runoff process was indicated 

as successful. Bayesian Regularization and 

Levenberg-Marquardt algorithm models have close 

performance. 

Evaluate all scenarios individually; it was reached 

that the higher the number of hidden neurons 

increases, in general, the better the Bayesian 

Regularization algorithm trains the networks. 

However, it was observed that the performance of the 

network decreased while testing the case. The 

Levenberg-Marquardt algorithm has advantages such 

as working with less iteration, and in less time. 

However, although the Bayesian Regularization 

algorithm worked for longer with more iterations, the 

best scenario yielded better results while training and 

testing the network. However, comparing the results 

of the scenarios of the two different training 

algorithms, it can be concluded that the values are 

generally close. 

When looking at the graphs of the predicted and 

observed runoff data among the 2 methods used in 

this study, it can be said that the performance of the 

estimation of the suddenly increasing data is less 

successful than the performance of the estimation of 

the normal progressing data, but that the estimates can 

be improved with the application of these methods. In 

addition, comparing scenarios 1, 2, and 3 for all 2 

methods, it is seen that the nearer in time the rainfall, 

temperature and runoff data is to the time of the 

current to be predicted, the better the predictions for 

each method. 

As a result of the study, for the best scenario of the 

ANN, the past runoff data is decisive, and there is no 

rainfall and temperature data considered.  

In this study, the ANN models can work well to 

forecast small number of time step ahead values and 

it executes a good performance as indicated by 

performance statistics. However, for long forecasting 

periods, some new scenarios can be investigated since 

input includes the data just one or two steps back. For 

large number of time step ahead forecasting, the 

models used in this study will not be efficient since 

predicted values will be needed to utilize and 

forecasted runoff values will include uncertainties. 

It is preferable to use ANN models for applications 

since they can recreate hydrological models through 

experience-based learning. Compared to traditional 

regression analysis, these models are better able to 

forecast flood discharges. Depending on the results, 

we recommend that ANN models be used in the 

modelling of rainfall-runoff data, and flood 

forecasting. 
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