

J Inno Sci Eng, 2025, 9(1):62-77

DOI:https://doi.org/ 10.38088/jise.1375510

Research Article

62

Comparison of Levenberg-Marquardt and Bayesian Regularization Learning

Algorithms for Daily Runoff Forecasting

A R T I C L E I N F O

A B S T R A C T

In this study, Multilayer Perceptron (MLP) with Levenberg-Marquardt and

Bayesian Regularization algorithms machine learning methods are compared

for modeling of the rainfall-runoff process. For this purpose, daily flows were

forecast using 5844 discharge data monitored between 1999 and 2015 of

D21A001 Kırkgöze gauging station on the Karasu River operated by DSI. 6

scenarios were developed during the studies. Our findings indicate that the

estimated capability of the Bayesian Regularization algorithm were close to

with Levenberg-Marquardt algorithm for training and testing, respectively.

This study shows that different network structures and data representing land

features can improve prediction for longer lead times. We consider that the

ANN model accurately depicted the Karasu flows, and that our study will

serve as a guide for more research on flooding and water storage.

Received Date: 14/10/2023
Accepted Date: 17/01/2025

Cite this paper as:
Bor, A., & Okan, M. (2025). Comparison of

Levenberg-Marquardt and Bayesian
Regularization Learning Algorithms for Daily

Runoff Forecasting. Journal of Innovative

Science and Engineering. 9(1), 62-77.

*Corresponding author: Aslı Bor

E-mail:asli.turkben@ieu.edu.tr

Keywords:

Discharge forecasting
Rainfall-runoff process
Artificial neural network
Euphrates-Tigris basin

 © Copyright 2025 by

Bursa Technical University. Available
online at http://jise.btu.edu.tr/

The works published in Journal of
Innovative Science and Engineering
(JISE) are licensed under a Creative
Commons Attribution-NonCommercial
4.0 International License.

1. Introduction

In order to estimate the rainfall-runoff response of

catchments and forecast hydrological droughts and

flood events that result in fatalities and financial loss,

hydrological models are essential applications [1]. To

determine water capacities, countries establish a

sparse hydrometric data collection network on the

surface of rivers. However, estimating water capacity

is not an easy work because of the complexity of

physical parameters affecting stream flows. This

complicated system, and the limits to existing

hydrological information create significant

uncertainty. The accuracy and capability of flow

estimation models may have a direct effect on

decisions related to water resources management.

That’s why; new estimation methods can be

 Aslı Bor 1,2* , Merve Okan2

1 Norwegian University of Science and Technology, Department of Civil and Environmental Engineering, N-7491, Trondheim, Norway

2 İzmir University of Economics, Department of Civil Engineering, 35330, İzmir, Türkiye

https://orcid.org/0000-0002-1679-5130
https://orcid.org/0000-0001-6095-2992

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

63

investigated to improve the existing ones. Machine

learning is a term used to refer to the area of artificial

intelligence that is data-based and contains traits that

enable self-adaptability. In recent years, artificial

neural network (ANN), is a widespread artificial

intelligence method while solving some problems of

hydraulic and water resource engineering. While

physical models are expensive to build and need

elaborate input data, a data-driven model such as

ANN is simpler to use and depends just on the

availability of climate data [2]. The study findings

display that ANN can more accurately forecast when

it is compared with both the traditional regression

techniques and the current physical-based models,

using a wider range of conditions [3-21]. Within the

context of hydrological forecasting, the latest

experiments demonstrate that ANNs can be a

promising alternative for simulating the flow. ANN

captures the behaviour of a system by using a training

algorithm that minimizes the error function when

finding the most suitable connection weights.

The principal objective of the study is to compare the

performance of the artificial intelligence techniques,

Multilayer Perceptron (MLP) with training

algorithms of Levenberg-Marquardt (LM) and

Bayesian Regularization (BR) in the forecasting of

daily flows. For this purpose, D21A001 Kırkgöze

gauging station on the Karasu River, a branch of the

Euphrates River, one of the major water sources of

Turkey, was selected for case study. Daily runoff

forecasting for Euphrates-Tigris Basin is worth to be

studied due to encountered frequent flood and

drought times in the basin at the past. 6 different

scenarios were developed for the forecasts and the

optimal scenario was identified.

2. Methodology

2.1. Study site

The Euphrates-Tigris basin covers approximately

127304 km2 area and it has 1009.87 m height. The

average rainfall in the Euphrates-Tigris Basin is 540.1

mm year-1, and the average annual flow is 31.61 km3

which makes it the largest basin in Turkey in terms of

average annual flow rate. There have been frequent

flood and drought times in the basin since ancient

times, causing serious damage to the country's

economy. Hence, the estimation of the stream flow in

the Euphrates-Tigris basin is particularly important in

terms of the effective operation of water resources

systems and the reduction of flood damage. Daily

rainfall and runoff (discharge) data set is used at

D21A001 Kırkgöze gauging station on the Karasu

River (Figure 1), a branch of the Euphrates River, for

16 years from 1 October 1999 to 30 September 2015

(5844 data).

The daily runoff data was obtained from DSI flow

observation annuals, and temperature and

precipitation data was obtained from NASA POWER

Data Access Viewer. Information about D21A001

Kırkgöze gauging is given in Table 1.

Figure 1 : Euphrates-Tigris basin and location of the D21A001 Kırkgöze gauging.

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

64

Table 1 : Information about Karasu River Kırkgöze

gauging.

Station Number: D21A001

Stream: Karasu

Station: Kırkgöze

Management: DSİ

Altitude (m): 1830

Drainage Area (km²): 232.2

Observation Period: 1961-2016

Latitude: 40°6'29" N

Longitude: 41°23'8" E

2.2. Artificial Neural Networks

One of the most commonly known artificial

intelligence techniques in the discipline of water

resources engineering is the artificial neural network

(ANN). Learning, association, classification,

generalization, feature determination, and

optimization are just a few applications of artificial

neural networks (ANN), which are implemented to

nonlinear and mathematical modelling problems [22].

ANN was inspired by the working principle of

biological neural networks, which are composed of

synapses, axons, dendrites, and nuclei in the brain. In

the field of hydrology, a multilayer perceptron is one

of the most prevalent network structures (MLP). MLP

is used for problems such as classification, prediction,

recognition, interpretation, and identification. In

recent years, researchers have studied the capabilities

of Multilayer Perceptron (MLP) models for the

estimation of river flow [11], [13], [23]–[25]. MLP is

composed of 3 principal layers as the input, hidden

and output layer (Figure 2). MLP can have multiple

hidden layers. Haykin (1998) [26] explains MLP

more elaborately.

ANN itself generates output data against the input

data, that is, it trains the examples given, and then

aims to predict the desired data according to its

generalization. It is not certain how many hidden

neurons there should be in an ANN, the number may

vary depending on the problem, data and number of

variables. Therefore, when estimating with an ANN

model, different hidden neuron numbers should be

tested to find the network structure that can optimize

the estimation.

The main disadvantage of ANN is that it may not

obtain optimum estimates at the first time because

different ANN structures are created for different

hidden neuron numbers and weight coefficient

values, and each ANN makes a different estimate. It

is necessary to the method of use trial and to

determine which network can optimally predict from

the created networks. This does not guarantee that the

solution found is the best solution; in other words

Figure 2 : Architecture of multi-layer ANN.

ANN can produce acceptable solutions without

guaranteeing these are the best solutions [27].

MLP is trained according to the instructional learning

strategy. This approach involves providing the

network with both inputs and outputs, enabling the

network to comprehend the type of link between input

and output. The network adjusts the weight

coefficient values it assigns as it gains knowledge of

the relationship between input and output until the

difference between the estimated value and the actual

output falls to a predetermined level. The error value

for ANN refers to the difference between the

network's estimated value and its actual output. The

smaller this value, the closer the network predicted

output value will be to the actual output value. The

coefficients assigned by the network are changed

according to certain learning rules. MLP updates the

weighting coefficients according to the "Generalized

Delta Rule" learning rule. Forward calculation and

backward calculation are the two stages of the

Generalized Delta Rule. Feed-forward

backpropagation ANN calculates output against

given input while feeding forward. Neurons in the

input layer are connected to the hidden layer with

certain weight connections to the output layer, with

certain weight connections in the hidden layer. After

the data in the input layer is multiplied by the weights

to which they are connected and collected in the

addition function, it passes through the activation

function to the hidden layer, in the same way, the data

received from the input layer in the hidden layer is

multiplied by the weights they are connected to, and

is collected in the addition function and sends it to the

output layer as output data. Usually, the preferred

activation function for MLP is the sigmoid function.

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

65

The equation (1) of the addition function is as

follows.

𝑁𝑒𝑡 = ∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗 𝑛
𝑖=1 (1)

where; 𝑥𝑖 is the input value of neuron (𝑖 =
 1,2, … . , 𝑛), 𝑤𝑖𝑗 is the weight coefficient, 𝑛 is the

overall number of inputs going to a neuron and 𝑏𝑗 is

the Bias value. 𝑏𝑗 is a threshold value that the Net

value must surpass to generate an outcome. Usually,

threshold value neurons assigned as -1 or +1 are

assigned as input values [28]. However, the threshold

input does not have to be assigned to ANN. In MLP,

which is the most widely used today, the tangent-

sigmoid function is used as the activation function in

this study.

While calculating the network output in the forward

calculation phase, the weight coefficients are updated

in the reverse calculation phase. In the

backpropagation learning algorithm, there is a

forward flow of information between the layers,

while backward error spreads so that the total square

error is minimized. In this context, backpropagation

algorithms have been developed to minimize the

specified performance function. Two of the most used

backpropagation algorithms when training ANN are

Levenberg-Marquardt and Bayesian Regularization

algorithms. With these algorithms, in order to bring

the predicted data of the network as close as possible

to the actual data, that is, to minimize the error value,

the weight coefficients are changed, and the estimated

outputs are recalculated until they fall below a certain

value. In this study, the existing flows of the Karasu

River have been estimated by using the feed-forward

back-propagation ANN model and used two

backpropagation algorithms when training ANN are

Levenberg-Marquardt and Bayesian Regularization

algorithms. With these algorithms, in order to bring

the predicted data of the network as close as possible

to the actual data, that is, to minimize the error value,

the weight coefficients are changed, and the estimated

outputs are recalculated until they fall below a certain

value. Levenberg-Marquardt and Bayesian

Regularization training algorithms are employed and

their performances are compared in this study.

2.2.1. Levenberg-Marquardt Algorithm

Levenberg-Marquardt algorithm, which removes the

constraints of Gauss-Newton and gradient-descent

algorithms and consists of the best features, is a least-

squares calculation method. It is a simplified version

of the classical Newton method used in training MLP.

The performance function can be taken as mean

squared error (Equation (2)) which given below.

𝐸𝑑 = 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑇𝑖 − 𝑌𝑖)2)𝑛

𝑖=1 (2)

where; 𝑇𝑖 is the expected value, 𝑌𝑖 is the output and

𝐸𝑑 is the mean squared error of the network.

The Jacobian matrix, 𝐽(𝑤), is obtained from the first

derivatives of the network errors according to the

weights. At the backpropagation stage of the network

error, firstly, the gradient of the network, G(w) is

computed by using the transposition of the Jacobian

matrix and the network errors (Equation (3)).

𝐺(𝑤) = 𝐽𝑇(w) 𝑒(𝑤) (3)

where; 𝑒 is the error vector. After calculating the

gradient of the network, the vector change in the

weights of the network, ∆𝑤 = 𝑤𝑛𝑒𝑤 − 𝑤𝑜𝑙𝑑, is

determined by multiplying the inverse of the Hessian

matrix (Equation (4)) with the gradient of the

network.

𝐻(𝑤) = 𝐽𝑇(𝑤)𝐽(𝑤) + 𝜇𝐼 (4)

where; 𝜇 is the Marquardt parameter, 𝐼 is the Unit

matrix and 𝑤 is the weight vector.

While the network is trained with the Levenberg-

Marquardt algorithm and minimizing the

performance function with respect to weight vector,

the weight change of the network is calculated as in

Equation (5).

∆𝑤 = − [𝐻(𝑤)]−1𝐺(𝑤) (5)

where 𝐻(𝑤) is the Hessian matrix and 𝐺(𝑤) is the

gradient.

𝜇 parameter is identified as a numerical number for

the Levenberg-Marquardt algorithm. The process

continues to work as Newton's algorithm if 𝜇 is

getting closer to zero; if 𝜇 is enlarging, the algorithm

switches to the gradient reduction method [29], [30].

Newton’s method is more rapid and precise when it is

close to a minimum error. Therefore, the goal

becomes switching to Newton's method at the earliest

time. 𝜇 decreases when reduction in performance

function occurs and only increases when there is an

increment in the performance function depending on

a decay rate, thus, each time the algorithm iterates, the

performance function always declines [31].

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

66

2.2.2. Bayesian Regularization Algorithm

Unlike the traditional neural network

backpropagation, which adjusts the optimum weight

coefficients by minimizing the error function, the

Bayesian regularization algorithm uses the

probability distribution of the network's weights [32].

In other words, the estimates made by the network are

based on probability distribution. In training with

Bayesian Regularization algorithm, the weight and

bias values are refreshed according to Levenberg-

Marquardt optimization. Bayesian Regularization

approach, which automatically arranges the

appropriate performance function to achieve

successful generalization, was developed by MacKay

(1992) [33]. Large-value weights can cause output to

vary excessively, and Regularization is the traditional

method of addressing the negative impact of large-

value weights. Bayesian Regularization approach

includes probability distribution of network weights.

Consequently, the estimates made for the network are

also a probability distribution. Bayesian

Regularization involves modifying the performance

function commonly used, such as the sum of mean

square errors (MSE). Bayesian Regularization

algorithm aims to enhance the model's capacity for

generalization of the model. In the training phase, the

𝐸𝑤 term, which is the sum of the squares of the

performance function net weights is expanded to

improve the generalization ability of the network

(Equation (6)) [32];

𝐹 = 𝛽𝐸𝑑 + 𝛼𝐸𝑤 (6)

where; 𝐸𝑤 is the sum of squares of the network

weights and 𝐹 is the regularized objective function.

The 𝛼 and 𝛽 parameters need to be estimated and

adjusted according to the Bayesian Regularization

algorithm. If 𝛼 << 𝛽, the Bayesian Regularization

training algorithm shrinks errors further. If 𝛼 >> 𝛽

will emphasize the reduction of training weight size,

thus producing a smoother network response [34] and

decreasing chance of overfitting with better

generalization. Adjusting the proper values for 𝛼 and

𝛽 parameters is the key challenge in regularization

implementation [34]. Overfitting may be inevitable if

𝛼 is too big and the network does not properly fit the

training data if it is too small.

According to the Bayesian Regularization rule, the

posterior distribution of the weights of ANN can be

updated using Equation (7):

𝑃(𝑤|𝐷, 𝛼, 𝛽, 𝑀) =
𝑃(𝐷|𝑤, 𝛽, 𝑀)×𝑃(𝑤|𝛼, 𝑀)

𝑃(𝐷|𝛼, 𝛽, 𝑀)
 (7)

where; 𝑀 is the specific ANN architecture used and

𝐷 is the training set consisting of input and target

data. In the implementation of the Bayesian

Regularization algorithm, optimum weights should

maximize the posterior probability,

𝑃(𝑤|𝐷, 𝛼, 𝑃, 𝑀), because maximizing the posterior

probability of the weights corresponds to minimizing

the regularized objective function (Equation 7) [34],

[35].

Foresee and Hagan (1997) [34] put forward the

procedure to achieve optimum values of α and β

parameters:

Firstly; α, β and the weights are initialized. Initially,

α is selected as 0.

Then, one step of the Levenberg-Marquardt algorithm

is taken to minimize the regularized objective

function, 𝐹.

The effective number of parameters, 𝛾, which

measures how many network parameters, such as

weights and biases, are utilized by the neural network

to minimize the error function, is calculated.

New predictions for α and β parameters are executed.

Lastly, iterations from step 2 to step 4 is performed

until convergence.

3. Performance Measures

Performance evaluation was carried out with the root

mean squared error (RMSE), mean absolute error

(MAE), Percent Bias (PBIAS), Nash-Sutcliffe

efficiency (NSE), and the coefficient of determination

(R2).

The standard deviation of the prediction errors can be

identified as Root Mean Square Error (RMSE). In

forecasting and regression analysis studies, root mean

square error, RMSE, is frequently used to validate

experimental results.

𝑅𝑀𝑆𝐸 = √
∑ (𝑇𝑖−𝑌𝑖)2𝑛

𝑖=1

𝑛
 (8)

The average absolute variance between the observed

and the estimated values is referred as the mean

absolute error (MAE). It is not considered to examine

under and overestimation and changes linearly. Like

RMSE, it is a preferable metric in forecasting studies.

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑇𝑖 − 𝑌𝑖|𝑛

𝑖=1 (9)

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

67

Both RMSE and MAE show that the closer the error

values are to 0, the more predicted values approach to

the expected values.

Underestimation or overestimation of the forecast is

quantified by the bias ratio. According to Gupta et al.

(1999) [36] and Moriasi et al. (2007) [37], positive

PBIAS indicates model underestimation bias and

negative PBIAS shows model overestimation bias.

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑇𝑖−𝑌𝑖)∗100𝑛

𝑖=1

∑ (𝑇𝑖)𝑛
𝑖=1

 (10)

Prediction ability of hydrological models is

frequently evaluated using the Nash-Sutcliffe

efficiency statistic [38]. According to theory, the NSE

statistic ranges from -∞ to 1, with 1 denoting the ideal

model.

𝑁𝑆𝐸 = 1 − [
∑ (𝑇𝑖−𝑌𝑖)2𝑛

𝑖=1

∑ (𝑇𝑖−�̅�)2𝑛
𝑖=1

] (11)

A measurement of the linear correlation between two

quantities is the coefficient of determination, R². The

coefficient of determination R2 is defined as the

square of the correlation coefficient. The

determination coefficient, the R2 values demonstrate

how well the forecasted and observed values

correspond and it is a value ranging from 0-1, the

closer to 1, the more predicted values converge to the

real results.

 𝑅2 = (
𝑛 ∑ 𝑇𝑖𝑌𝑖−(∑ 𝑇𝑖

𝑛
𝑖=1)(∑ 𝑌𝑖

𝑛
𝑖=1)𝑛

𝑖=1

√[𝑛(∑ 𝑇𝑖
2𝑛

𝑖=1)−(∑ 𝑇𝑖
𝑛
𝑖=1)

2
][𝑛(∑ 𝑌𝑖

2𝑛
𝑖=1)−(∑ 𝑌𝑖

𝑛
𝑖=1)

2
]

)

2

 (12)

where �̅� denotes the mean of experimental findings.

By considering Moriasi et al. (2007) [37], the

performance is determined in this study as follows:

0.75<NSE≤1: “very good”; 0.65<NSE≤0.75: “good”;

0.50<NSE≤0.65: “satisfactory”,

 PBIAS<±10%: “very good”; ±10% ≤PBIAS <±15%:

“good”; ±15%≤PBIAS<±25%: “satisfactory”.

4. Results and Discussion

This study presents modelling of the rainfall-runoff

process of D21A001 Kırkgöze gauging station on the

Karasu River by using the artificial intelligence

method, MLP. ANNs were created by updating the

code produced by Neural Network Toolbox Fitting

Tool in the MATLAB environment. Training,

validation, and testing sets of data were created. The

first 70% of the data series were chosen to serve as

the training set, the next 5% as the validation set, and

the final 25% as the testing set for the Levenberg-

Marquardt algorithm. For the Bayesian

Regularization algorithm, the first 75% of the data

series were chosen as the training set and the next

25% of the data series were picked as the testing set.

The tangent-sigmoid function was utilized as an

activation function. Input runoff and rainfall

scenarios were evaluated. Following the creation of

several network designs, for training, it was decided

on the scenario inputs and the quantity of neurons in

the hidden layer. In order to make an evaluation for

the ANN which gives the best result, some

performance functions were utilized, i.e., the

minimum root mean square errors, RMSE and the

maximum determination coefficients, R2 for the

testing period. Then, accordingly, the scenario inputs

and the number of the neurons in the hidden layer

used in this study were investigated.

The scenarios were created using the past and current

rainfall, temperature which is presented in Table 2.

The inputs include the previously observed daily

discharge(Q) and rainfall (P) and temperature (T),

(Q(t-1),Q(t-2),Q(t-3), P(t-1),P(t-2),P(t-3), T(t-1),T(t-

2), and T(t-3)), and the output is assigned as the

current runoff (discharge) (Q(t)) (t is the current

time).

First, all the scenarios were trained to use as odd

numbers from 3 to 21 hidden neurons, their

performance was examined, and the best 6 were

selected for further calculations. As a result, 6

scenarios including a variety of inputs of Q, P, and T

data were presented in Table 2 and both of the training

algorithms were applied in modelling of rainfall-

runoff to identify the ideal scenarios.

Table 2 : Various input model scenarios.

Scenarios Inputs Output

1 P(t-1),T(t-1),Q(t-1) Q(t)

2 P(t-2),T(t-2),Q(t-2) Q(t)

3 P(t-3),T(t-3),Q(t-3) Q(t)

4 P(t-1),Q(t-1) Q(t)

5 Q(t-1) Q(t)

6 Q(t-1),Q(t-2) Q(t)

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

68

Training took place in accordance with the training

parameters. The µ was increased by increase factor

for µ until the change in performance reached a

reduced performance value. Then, the change was

performed to the network and µ was decreased by the

decrease factor for µ. When the maximum number of

epochs was reached, the performance gradient fell

below the minimum performance gradient, the

performance was minimized to the target, or

µ exceeded the maximum value for µ, training was

terminated. Besides, while training occurred with

Levenberg-Marquardt algorithm, training stopped

when validation performance has increased more than

maximum validation failures since the last time it

decreased while using validation. However,

validation stops were not utilized by arranging

maximum validation failures as infinite for Bayesian

Regularization algorithm so that training was able to

proceed until an optimal combination of errors and

weights were obtained.

Maximum number of epochs to train was taken

maximum as 1000, performance goal for all the data

as 0. For Levenberg-Marquardt training algorithm,

the number of maximum validation failures was taken

as 6. Maximum time to train in seconds was taken as

infinite, minimum performance gradient as 10-7. For

Levenberg-Marquardt algorithm, initial µ was taken

as 0.001 and for Bayesian Regularization Algorithm;

Marquardt adjustment parameter was taken as 0.005.

The decrease factor for µ was as 0.1, increase factor

for µ as 10, maximum value for µ as 1010.

For activation function, tangent-sigmoid was used

and performance function was taken as mean squared

error, MSE, function during the process. The learning

rate was arranged as 0.01 and the momentum constant

as 0.9 for gradient descent with momentum weight

and bias learning function. During the process of

creating ANNs, the input and target data were

normalized from its original range to the range [-1, 1].

For both algorithms, the number of hidden neurons

was chosen as the odd numbers from 3 to 21,

respectively, and 50 independent ANNs were created

for each selected hidden number of neurons. When

the number of hidden neurons has been taken more

than 21, it has been observed that there became a

decline in the performance of ANN. That’s why; the

maximum number of neurons was taken as 21. The

mean squared error (MSE) and determination

coefficient (R2) results of the 50 created independent

ANNs were averaged, and the best-hidden neuron

number was selected considering the test results of

the smallest mean MSE and largest mean R2 values of

these 50 ANNs. This process was repeated for each

scenario. Then, conducted 50 ANNs according to the

best selected hidden neuron number were examined

for each scenario and by taking into account the test

results of the network with the smallest RMSE, MAE,

and PBIAS with the largest NSE and R2 values

between each 50 ANNs, the best scenario was

selected. For RMSE, MAE and PBIAS, lower

numbers are preferable, whereas NSE and R2 is better

with levels near 1.

Overfitting is one of the issues that arise during the

training of neural networks. When the network is

provided with new data, the error is much larger than

it is when the training set is used. The network

internalizes the training samples; however, it is

incapable of generalizing to unexpected situations.

The regularization and early stopping techniques can

be considered as two ways to enhance generalization.

Three selected sets of the present data are used in the

early stopping method. The training set, which is the

first set, is utilized to compute the gradient and update

the weights and biases of the network. Validation set

composes the second set. Throughout the training

process, the validation set error is tracked. Both the

training set error and the validation set error

commonly decrease during the first stage of training.

Nonetheless, the validation set error can begin to

increase when the network starts to overfit the data.

Early stopping method was applied to prevent the

network from becoming overfit to the training data set

while training with Levenberg-Marquardt algorithm.

The training was terminated and the weights and

biases with the smallest validation error were returned

after the validation error increased for a

predetermined number of iterations. The number of

maximum validation failures is a measure of

subsequent iterations during which the validation

performance does not improve. The training came to

end when this predetermined number of iterations

achieved 6.

The value of the performance function was plotted

against the number of iterations in the performance

plot. Performances throughout training, validation,

and testing were depicted. The iteration at which the

least validation performance achieved was shown

with the best epoch. Six additional iterations were

executed until training was terminated.

It can be pointed that there is no significant problem

with training according to Figure 3. The validation

and test curves are very similar. It is likely that some

overfitting may have taken place if the test curve had

increased sufficiently before the validation curve did.

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

69

This graph demonstrates how training and validation

errors decrease until the epoch indicated. Since the

validation error did not grow prior to epoch 5,

overfitting does not seem to have been place.

Figure 3 : a) Performance curves and b) training states for Levenberg-Marquardt.

Regularization is the other method for improving

generalization. It might be used instead of validation

during training in order foster effective

generalization. Validation is typically employed as a

sort of regularization; however, training with

Bayesian Regularization has its own sort of validation

integrated into the algorithm. There is no validation

check during training with Bayesian Regularization

so that no validation set since the goal of verifying

validation is to see whether the validation set error

improves or worse over time. Thus, it is possible to

keep training until the optimal combination of errors

and weights is discovered. The errors observed while

training with Bayesian Regularization not only

originating from the performance of the model, but

also from the weights because greater weights result

in higher error. That’s why; determining a number of

maximum validation failures can prevent the network

to experience greater weights so that prevent

searching for an ideal combination of squared errors

and weights with increasing number of iterations.

It's crucial to train the network until convergence

when using Bayesian regularization. The sum squared

weights (SSW) and the sum squared error (SSE)

should all achieve constant values after multiple

iterations once the network has converged [39].

Besides, the algorithm should be allowed to run until

the effective number of parameters, 𝛾, converges

without considering how many parameters there are

in the network [39]. If training is terminated when μ

reaches maximum, the algorithm will be in fact

converged.

It can be seen that the effective number of parameters,

𝛾, and sum squared weights achieved constant values

after multiple iterations and performance curves were

converged (Figure 4). The best training performance

was obtained at epoch 374.

Eventually, while training stopped due to reaching

maximum validation failures at epoch 11 in

Levenberg-Marquard and since maximum µ was

reached at epoch 491 in Bayesian Regularization.

Table 3 and Table 4 give performance evaluation of

Levenberg-Marquardt and Bayesian Regularization

algorithms through the R2, NSE, RMSE, MAE and

PBIAS indexes.

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

70

Figure 4 : a) Performance curves and b) training states for Bayesian Regularization.

Table 3 : Testing statistics of the LM according to the best hidden neuron number.

Scenario

Levenberg-Marquardt (LM)

Number

of

Hidden

Neurons

Training Testing

RMSE

(m³/s)

MAE

(m³/s)

PBIAS

(%)
NSE R²

RMSE

(m³/s)

MAE

(m³/s)

PBIAS

(%)
NSE R²

1 3 0.738 0.323 0.34 0.95 0.95 0.391 0.202 2.42 0.97 0.97

2 9 0.982 0.473 1.16 0.91 0.91 0.572 0.306 4.44 0.93 0.93

3 13 1.203 0.585 -5.81 0.86 0.86 0.674 0.358 -1.75 0.90 0.90

4 3 0.762 0.315 0.001 0.94 0.94 0.397 0.186 1.11 0.96 0.97

5 13 0.762 0.321 0.03 0.94 0.94 0.401 0.189 1.41 0.96 0.96

6 3 0.763 0.303 -1.96 0.94 0.94 0.387 0.177 -1.08 0.97 0.97

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

71

Table 4 : Testing statistics of the BR according to the best hidden neuron number.

Scenario

Bayesian Regularization (BR)

Number

of

Hidden

Neurons

Training Testing

RMSE

(m³/s)

MAE

(m³/s)

PBIAS

(%)
NSE R²

RMSE

(m³/s)

MAE

(m³/s)

PBIAS

(%)
NSE R²

1 15 0.692 0.306 0.00003 0.96 0.96 0.386 0.200 2.15 0.97 0.97

2 17 0.975 0.463 0.01 0.92 0.91 0.571 0.297 3.19 0.93 0.93

3 9 1.206 0.586 0.0003 0.87 0.87 0.677 0.360 3.68 0.90 0.90

4 3 0.773 0.323 0.0002 0.95 0.95 0.399 0.188 1.18 0.96 0.96

5 3 0.792 0.324 0.01 0.94 0.94 0.402 0.186 1.22 0.96 0.96

6 5 0.760 0.313 -0.02 0.95 0.95 0.386 0.184 1.48 0.97 0.97

Networks created with rainfall and temperature data

alone did not work effectively, thus they were not

added to the tables. 50 independent networks were

created for each hidden number of neurons and the

best numbers of hidden neurons were chosen

according to their average performance values.

This is because each network is different from others,

although all are created with the same hidden number

of neurons. Because during the creation of each

network, there are changes in the weight and

threshold values given to the network, therefore, the

same network is not created for the same number of

hidden neurons, and the performance of each network

changes. However, it has been observed that the error

values and performance values of the ANNs created

according to the number of hidden neurons are

similar, but not exactly the same, so 50 networks are

created, and their performance is averaged, and the

results of the overall performance are taken into

account.

Additionally, each ANN model's structures are

provided in Table 3 and Table 4 with their hidden

layer counts. It is clear from Table 3 that the Q(t-1),

Q(t-2) scenario with 3 hidden neuron numbers has the

lowest RMSE, MAE, PBIAS and the largest NSE and

R2 values taking into account the test results for

Levenberg-Marquardt algorithm.

Accordingly, it is seen that the MLP trained by the

Levenberg-Marquart algorithm has a successful

performance in the current flow estimation

considering the R2 results. It can be said that the best

scenario for the application for the Bayesian

Regularization algorithm is the Q(t-1), Q(t-2)

scenario with 5 hidden neuron numbers has the lowest

RMSE, MAE and largest NSE and R2 values. The

results show that the Bayesian Regularization

algorithm can produce formulas that are both well

fitted to the data and have very low mean errors.

However, when scenarios were conducted by taking

only precipitation and temperature data as input, it has

been obtained a low performance of for both the

Bayesian Regularization and Levenberg-Marquardt

algorithm which are not shown in this study.

Figures 5 and 6 display the ideal ANN’s observed and

predicted runoff values (created by the Levenberg-

Marquart and the Bayesian Regularization

algorithms) during both training, validation and test

periods by using scatter diagrams and continuous

graphs, respectively.

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

72

(a)

(b)

(c)

(d)

(e)

Figure 5 : Observed and predicted runoff (discharge) values for scenario 6 using both LM for a) training, b) validation and c)

testing cases and BR for d) training and e) testing cases.

0

5

10

15

20

25

30
Q

(t
)

m
³/

s
Target Output

0

5

10

15

20

25

Q
 (

m
³/

s)

Target Output

0

5

10

15

Q
(t

)
m

³/
s

Target Output

0

5

10

15

20

25

30

Q
(t

)
m

³/
s

Target Output

0

5

10

15

Q
(t

)
m

³/
s

Target Output

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

73

Figure 6 : The scatter plots of scenario 6 for both a) LM and b) BR algorithms for training, validation and testing cases.

To more clearly investigate the performance of the

training algorithms used in this study, a series of

graphs in Figure 5 shows the target and output values

for these clusters. The situation is shown by the

diagonal line connecting the expected and observed

values where the predicted values differ slightly from

the observed ones. In fact, overlapping is not

impossible to achieve, practically. However, the data

points build up around this line, even for larger data.

The performances of the same scenarios of the two

algorithms are generally close to each other. In both

algorithms, it has been observed that, when the flow

inputs are added to scenarios with only rainfall and

temperature inputs, the current day's current forecast

performance is significantly increased.

According to evaluations by NSE and PBIAS,

performance ratings can be considered as very good.

The comparison of the findings in Table 5

demonstrates that ANN model created by the

Bayesian Regularization algorithm and Levenberg-

Marquart algorithm shows close performance in term

of RMSE, MAE and PBIAS as well as NSE and R2

indexes.

Table 5 : The performance comparison of ANN (created by the LM and BR algorithms).

Method

Training Testing

RMSE

(m³/s)

MAE

(m³/s)

PBIAS

(%)
NSE R²

RMSE

(m³/s)

MAE

(m³/s)

PBIAS

(%)
NSE R²

ANN-LM 0.763 0.303 -1.96 0.94 0.94 0.387 0.177 -1.08 0.97 0.97

ANN-BR 0.760 0.313 -0.02 0.95 0.95 0.386 0.184 1.48 0.97 0.97

These best ANN models for the Levenberg-Marquart

and the Bayesian Regularization algorithms have R2

and NSE values of 0.94 and 0.95 for training, 0.97

and 0.97, for testing, respectively. Besides, when

RMSE values are compared, the Levenberg-Marquart

and the Bayesian Regularization algorithms have

0.763 m³/s and 0.760 m³/s for training and 0.387 m³/s

and 0.386 m³/s, respectively. It is seen that these

values are too close. For MAE and PBIAS, there are

insignificant differences.

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

74

5. Conclusion

Based on the study of rainfall-runoff modelling using

ANN, the following conclusions can be drawn:

First, all scenarios were trained to use as odd numbers

from 3 to 21 hidden neurons and their performance

was compared. 6 scenarios with the best performance

were selected, and the calculations continued over

these 6 scenarios. For both ANN algorithms, the

number of hidden neurons was chosen as odd

numbers from 3 to 21, respectively, and 50 different

ANNs were created for each selected hidden number

of neurons. The reason was that there is a change in

the weight and threshold values given to the network

while the studies are being carried out and each

network is being formed, so the same network is not

created for the same number of hidden neurons, and

it was discovered that the performance of each

network changes. However, it is taken into account

that the error values and performance values of ANNs

created according to the number of hidden neurons

are similar, but not exactly the same, therefore the

performance of 50 networks is averaged and the

overall results are obtained.

A major factor affecting the precision of model

prediction is the selection of training and testing data.

The model will not be able to make accurate future

forecasts if the testing data don't accurately reflect

basin and climate characteristics. Looking at the

ANN scenarios trained with two different algorithms,

it was observed that temperature and rainfall data

alone were insufficient in estimating the current

runoff data. It was reached that the ANN gives much

improved performance by adding the past time runoff

data to the inputs. This result was observed during the

trial-and-error stage of our research, and scenarios

related only to the past time runoff data were also

added. In addition, it can be said that adding both past

time rainfall and past time temperature data as input

to the past time runoff, does not considerably improve

the current day runoff (discharge) data estimation.

By comparing the results, the application of the used

models to the rainfall-runoff process was indicated

as successful. Bayesian Regularization and

Levenberg-Marquardt algorithm models have close

performance.

Evaluate all scenarios individually; it was reached

that the higher the number of hidden neurons

increases, in general, the better the Bayesian

Regularization algorithm trains the networks.

However, it was observed that the performance of the

network decreased while testing the case. The

Levenberg-Marquardt algorithm has advantages such

as working with less iteration, and in less time.

However, although the Bayesian Regularization

algorithm worked for longer with more iterations, the

best scenario yielded better results while training and

testing the network. However, comparing the results

of the scenarios of the two different training

algorithms, it can be concluded that the values are

generally close.

When looking at the graphs of the predicted and

observed runoff data among the 2 methods used in

this study, it can be said that the performance of the

estimation of the suddenly increasing data is less

successful than the performance of the estimation of

the normal progressing data, but that the estimates can

be improved with the application of these methods. In

addition, comparing scenarios 1, 2, and 3 for all 2

methods, it is seen that the nearer in time the rainfall,

temperature and runoff data is to the time of the

current to be predicted, the better the predictions for

each method.

As a result of the study, for the best scenario of the

ANN, the past runoff data is decisive, and there is no

rainfall and temperature data considered.

In this study, the ANN models can work well to

forecast small number of time step ahead values and

it executes a good performance as indicated by

performance statistics. However, for long forecasting

periods, some new scenarios can be investigated since

input includes the data just one or two steps back. For

large number of time step ahead forecasting, the

models used in this study will not be efficient since

predicted values will be needed to utilize and

forecasted runoff values will include uncertainties.

It is preferable to use ANN models for applications

since they can recreate hydrological models through

experience-based learning. Compared to traditional

regression analysis, these models are better able to

forecast flood discharges. Depending on the results,

we recommend that ANN models be used in the

modelling of rainfall-runoff data, and flood

forecasting.

Article Information

Financial Disclosure: The author (s) has no received

any financial support for the research, authorship or

publication of this study.

Authors’ Contrtibution: Concept: Bor; Design:

Bor, Okan; Supervision: Bor; Resources: Bor; Data

Collection: Bor; Analysis: Okan; Literature Search:

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

75

Okan; Writing Manuscript: Bor, Okan; Critical

Review: Bor.

Conflict of Interest/Common Interest: Not

applicable.

Ethics Committee Approval: Not applicable.

Declaration of the Author(s): The author(s) declare

that there is no conflict of interest regarding the

publishing of the paper by the Journal of Innovative

Science and Engineering, that the paper has been not

published elsewhere, and not include any form of

plagiarism. All the authors listed above have

approved the manuscript and have agreed with the

submission of the manuscript to the Journal of

Innovative Science and Engineering.

Acknowledgements: The authors would like to thank

the DSI (General Directorate of State Hydraulic

Works), Department of Survey, Planning, and

Allocations for the providing of the data.

Data availability statement: The data that support

the findings of this study are available from [DSI

(General Directorate of State Hydraulic Works),

Department of Survey, Planning, and Allocations,

Environment Branch Directorate] but restrictions

apply to the availability of these data, which were

used under license for the current study, and so are

not publicly available. Data are however available

from the authors upon reasonable request and with

permission of [DSI (General Directorate of State

Hydraulic Works)].

References

[1] Tan Kesgin, R. I., Demir, I., Kesgin, E.,

Abdelkader, M., & Agaccioglu, H. (2023). A

data-driven approach to predict

hydrometeorological variability and fluctuations

in lake water levels. Journal of Water and Land

Development, (58), 158-170.

https://doi.org/10.24425/jwld.2023.146608.

[2] Demirel, M. C., Özen, A., Orta, S., Toker, E.,

Demir, H. K., Ekmekcioğlu, Ö., Tayşi, H.,

Eruçar, S., Sağ, A. B., Sarı, Ö., Tuncer, E.,

Hancı, H., Özcan, T. İ., Erdem, H., Koşucu, M.

M., Başakın, E. E., Ahmed, K., Anwar, A.,

Avcuoğlu, M. B., Vanlı, Ö., Stisen, S., Booij, M.

J. (2019). Additional Value of Using Satellite-

Based Soil Moisture and Two Sources of

Groundwater Data for Hydrological Model

Calibration. Water, 11(10), 2083.

https://doi.org/10.3390/w11102083.

[3] Shamseldin, A. Y. (1997). Application of a

neural network technique to rainfall-runoff

modelling. Journal of Hydrology, 199(3): 272–

294.

[4] Tokar, S. A., and Johnson, P. A. (1999).

Rainfall-Runoff Modeling Using Artificial

Neural Networks. Journal of Hydrologic

Engineering, 4(3): 232–239.

[5] Chang, F.-J., and Chen, Y.-C. (2001). A

counterpropagation fuzzy-neural network

modeling approach to real time streamflow

prediction. Journal of Hydrology, 245: 153–164.

[6] Öztopal, A., Kahya, C., and Asilhan, S. (2001).

Yapay Sinir Ağları ile Akış Tahmini. 1. Türkiye

Su Kongresi, İstanbul, Türkiye, 8 - 10 Ocak

2001, cilt.1. pp. 311–318.

[7] Jayawardena, A. W., and Fernando, T. M. K. G.

(2001). River flow prediction: An artificial

neural network approach. Regional Management

of Water Resources, Maastricht, The

Netherlands. pp. 239–246.

[8] Sivakumar, B., Jayawardena, A., and Fernando,

T. M. K. G. (2002). River Flow Forecasting: Use

of Phase-Space Reconstruction and Artificial

Neural Networks Approaches. Journal of

Hydrology, 265: 225–245.

[9] Dorado, J., RabuñAL, J. R., Pazos, A., Rivero,

D., Santos, A., and Puertas, J. (2003). Prediction

and modeling of the rainfall-runoff

transformation of a typical urban basin using ann

and gp. Applied Artificial Intelligence, Taylor &

Francis, 17(4): 329–343.

[10] Kişi, Ö. (2005). Daily River Flow Forecasting

Using Artificial Neural Networks and Auto-

Regressive Models. Turkish Journal of

Engineering and Environmental Sciences, 29: 9–

20.

[11] Demirpençe, H. (2005). Köprüçay Akımlarının

Yapay Sinir Ağları ile Tahmini. Antalya

Yöresinin İnşaat Mühendisleri Sorunları

Kongresi.

[12] Yurdusev, M. A., Acı, M., Turan, M. E., and

İçağa, Y. (2008). Akarçay Nehri Aylık

Akımlarının Yapay Sinir Ağları ile Tahmini.

Celal Bayar Üniversitesi Fen Bilimleri Dergisi,

4(1): 73–88.

https://doi.org/10.24425/jwld.2023.146608
https://doi.org/10.3390/w11102083

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

76

[13] Okkan, U., and Mollamahmutoğlu, A. (2010).

Çoruh Nehri Günlük Akımlarının Yapay Sinir

Ağları ile Tahmin Edilmesi. Süleyman Demirel

Üniversitesi Fen Bilimleri Enstitüsü Dergisi,

14(3): 251–261.

[14] Okkan, U., and Dalkilic, H. Y. (2010).

Demirköprü Barajı Aylık Buharlaşma

Yüksekliklerinin Yapay Sinir Ağları ile Tahmin

Edilmesi. DSİ Teknik Bülten, 108: 30–36.

[15] Chen, S. M., Wang, Y. M., and Tsou, I. (2013).

Using artificial neural network approach for

modelling rainfall-runoff due to typhoon.

Journal of Earth System Science, 122(2): 399–

405.

[16] Kızılaslan, M. A., Sağın, F., Doğan, E., and

Sönmez, O. (2014). Aşağı Sakarya Nehri

akımlarının yapay sinir ağları ile tahmin

edilmesi. SAÜ Fen Bilimleri Dergisi, 18(2): 99–

103.

[17] Singh, G., Panda, R. K., and Lamers, M. (2015).

Modeling of daily runoff from a small

agricultural watershed using artificial neural

network with resampling techniques. Journal of

Hydroinformatics, 17(1): 56–74.

[18] Khan, M. Y. A., Hasan, F., Panwar, S., and

Chakrapani, G. J. (2016). Neural network model

for discharge and water-level prediction for

Ramganga River catchment of Ganga Basin,

India. Hydrological Sciences Journal, Taylor &

Francis, 61(11): 2084–2095.

[19] Altunkaynak, A., and Başakin, E. E. (2018).

Zaman Serileri Kullanılarak Nehir Akım

Tahmini ve Farklı Yöntemlerle

Karşılaştırılması. Erzincan University Journal of

Science and Technology, 11(1): 92–101.

[20] Nacar, S., Hınıs, M. A., and Kankal, M. (2018).

Forecasting Daily Streamflow Discharges Using

Various Neural Network Models and Training

Algorithms. KSCE Journal of Civil Engineering,

22(9): 3676–3685.

[21] Bor, A., and Okan, M. (2019). FIRAT

HAVZASI karasu günlük akimlarinin yapay

sinir ağlari ile modellenmesi. 10. Ulusal

Hidroloji Kongresi, Muğla, Türkiye, Cilt 2. pp.

857-869.

[22] Fırat, M., and Dikbaş, F. (2006). Göllerde üç

boyutlu hidrodinamik modellemede pom ve

yapay sinir ağlari yöntemlerinin kullanilmasi :

gökpinar baraj gölü örneği. Pamukkale

University Engineering College Journal of

Engineering Sciences, 12(1): 43–50.

[23] Coulibaly, P., Anctil, F., and Bobée, B. (1999).

Prévision hydrologique par réseaux de neurones

artificiels : état de l’art. Canadian Journal of

Civil Engineering, 26: 293–304.

[24] Minns, A. W., and Hall, M. J. (1996). Artificial

neural networks as rainfall-runoff models.

Hydrological Sciences Journal, 41: 399–417.

[25] Gümüş, V., Başak, A., and Yenigün, K. (2018).

Yapay Sinir Ağları ile Şanlıurfa İstasyonunun

Kuraklığının Tahmini. Gazi Üniversitesi Fen

Bilimleri Dergisi, 6(3): 621–633.

[26] Haykin, S. (1998). Neural Networks : A

Comprehensive Foundation. Prentice-Hall.

Upper Saddle River, NJ.

[27] Öztemel, E. (2006). Yapay Sinir Ağları. Papatya

Publishing, Istanbul, Turkey.

[28] Şen, Z. (2004). Yapay Sinir Ağları İlkeleri.

Turkish Water Foundation, Istanbul,Turkey.

[29] Chen, T. C., Han, D. J., Au, F. T. K., and Tham,

L. G. (2003). Acceleration of Levenberg-

Marquardt Training of Neural Networks with

Variable Decay Rate. Proceedings of the

International Joint Conference on Neural

Networks, IEEE. pp. 1873–1878.

[30] Hagan, M. T., and Menhaj, M. B. (1994).

Training Feedforward Networks with the

Marquardt Algorithm. IEEE Transactions on

Neural Networks, 5(6): 989–993.

[31] trainlm Levenberg-Marquardt backpropagation.

https://www.mathworks.com/help/deeplearning

/ref/trainlm.html [Accessed: 07 september

2023].

[32] Xu, M., Zeng, G., Xu, X., Huang, G., Jiang, R.,

and Sun, W. (2006). Application of Bayesian

regularized BP neural network model for trend

analysis, acidity and chemical composition of

precipitation in North Carolina. Water, Air, and

Soil Pollution, 172(1–4): 167–184.

[33] MacKay, D. J. C. (1992). Bayesian

Interpolation. Neural Computation, 4(3): 415–

447.

Bor and Okan (2025). J Inno Sci Eng 9(1):62-77

77

[34] Foresee, F. D., and Hagan, M. T. (1997). Gauss-

Newton approximation to bayesian learning.

IEEE International Conference on Neural

Networks - Conference Proceedings, Houston,

TX, USA, 9–12 June 1997. pp. 1930–1935.

[35] Kayri, M. (2016). Predictive abilities of

Bayesian Regularization and Levenberg-

Marquardt Algorithms in Artificial Neural

Networks: A Comparative Empirical Study on

Social Data. Mathematical and Computational

Applications, 21(2).

[36] Gupta, H. V., Sorooshian, S., and Yapo, P. O.

(1999). Status of automatic calibration for

hydrologic models: comparison with multilevel

expert calibration. Journal of Hydraulic

Engineering, 4(2): 135–143.

[37] Moriasi, D. N., Arnold, J. G., Liew, M. W. Van,

Bingner, R. L., Harmel, R. D., and Veith, T. L.

(2007). Model evaluation guidelines for

systematic quantification of accuracy in

watershed simulations. American Society of

Agricultural and Biological Engineers, 50(3):

885–900.

[38] Nash, J. E., and Sutcliffe, J. V. (1970). River

flow forecasting through conceptual models part

I — A discussion of principles. Journal of

Hydrology, 10(3): 282–290.

[39] Improve Shallow Neural Network

Generalization and Avoid Overfitting. The

MathWorks, Inc.

https://www.mathworks.com/help/deeplearning

/ug/improve-neural-network-generalization-

and-avoid-overfitting.html [Accessed: 07

september 2023].

