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Abstract
For vector bosons with spin-1, scattering state solutions have been attained by considering the Duffin-Kemmer-
Petiau equation with the Sun interaction field. Based on the obtained solution, relations for phase shift and scattering
amplitude have been derived. Furthermore, the bound state energy eigenvalue relation has been derived by taking the
scattering amplitude to infinity. The results obtained through the Mathematica software program are presented
graphically and numerically. In addition, the effects of the variables in the interaction function on the obtained results
are discussed.
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Sun Potansiyel ile Etkilesen Vektor Bozonlarinin Sacilma Durumu Coéziimleri

Oz
Spini-1 olan vektor bozonlar i¢in Sun potansiyeli varliginda Duffin-Kemmer-Petiau denklemi ele alinarak sagilma
durumu ¢oziimleri elde edilmistir. Elde edilen ¢ozlimler kullanilarak faz kaymasi ve sagilma genligi icin bagintilar
tiretilmistir. Ayrica sacilma genligini sonsuza gotiirerek bagli durum enerji 6zdegerleri denklemi elde edilmistir.
Mathematica yazilim programi aracilifiyla elde edilen sonuglar grafiksel ve niimerik olarak verilmigtir. Bunlara ek

olarak etkilesme fonksiyonunda yer alan degiskenlerin elde edilen sonuglara olan etkileri tartisilmustir.

Anahtar Kelimeler: Sagilma durumlari,

INTRODUCTION

The Duffin-Kemmer-Pettiau (DKP) equation
defines scalar (spin 0) and vector (spin 1) bosons on
the same basis and is a first-order relativistic
equation (Kemmer, 1939; Duffin, 1938; Petiau,
1936). This equation is of great importance of these
various applications in nuclear physics, particle
physics, quantum chromo dynamics (QCD) and
cosmology. For instance, in QCD theory it can be
used to investigated deuteron-nucleus elastic
scattering (Kozack, Clark, Hama, Mishra, Mercer
and Ray, 1989; Gribov, 1999). This equation is a
Dirac-type equation (by replacing the algebra of the
gamma matrices with beta matrices) and can be
expressed by different matrices that follow different
commutative rules and represented by five and ten
component representations that work for spin-0 and
spin-1 bosons, respectively. Under a vector
potential, the scalar boson representation of the DKP
equation has the same mathematical structure as the
Klein-Gordon (KG) equation, and the vector boson

bagli durumlar,

Duffin-Kemmer-Petiau denklemi, sun potansiyeli

representation has the same mathematical structure
as the Proca equation. However, the DKP equation
is more comprehensive than the KG and Proca
equations due to its more complex structure (Nedjadi
and Barrett, 1993; Nedjadi and Barrett, 1994;
Nedjadi and Barrett, 1994)

Scattering and bound state solutions to the wave
equation are of great importance in quantum
mechanics because the wave functions obtained
from these solutions contain all the information
needed to describe the entire quantum system.
Therefore, there are many studies using different
methods on physical potentials related to the
relativistic and the non-relativistic particle equations
(Tas and Havare, 2017; Tas, Aydogdu, and Salti,
2017; Tas and Havare, 2018; Tas, Aydogdu and
Salt1, 2018; Yanar, Tas, Salt1 and Aydogdu, 2020;
Edet, Amadi, Okorie, Tas, Ikot and Rampho, 2020;
Okorie, Tas, Ikot, Osobonye and Rampho, 2021). In
recent years, many studies have been conducted to
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consider different interaction types for various
representation of the DKP equation (Tas, 2021;
Hassanabadi, Forouhandeh, Rahimov, Zarrinkamar
and Yazarloo, 2012; Hamzavi and Ikhdair, 2013;
Zarrinkamar, Rajabi, Yazarloo and Hassanabadi,
2013; Bahar, 2013; Bahar, and Yasuk, 2013; Bahar
and Yasuk, 2014; Onate, Ojonubah, Adeoti, Eweh
and Ugboja, 2014; Ikot, Molaee, Maghsoodi,
Zarrinkamar, Obong and Hassanabadi, 2015;
Zarrinkamar, Panahi and Rezaei, 2016; Oluwadare
and Oyewumi, 2017; Oluwadare and Oyewumi,
2018). However, when the existing literature is
examined, it is seen that most of the research is on
the spin-0 representation of the DKP equation. This
is mainly due to the mathematical resemblance of
the DKP equation with the KG equation under a
vector potential. Since the form of this equation for
vector bosons has a more complex structure and is
much more difficult to solve. For this reason, it has
not been discussed extensively (Hassanabadi,
Yazarloo, Zarrinkamar and Rajabi, 2011). The first
goal of this study is to obtain the scattering state
solutions of vector bosons interacting with the Sun
potential field, which have been previously
described in the literature and are successful in
describing many diatomic structures, and to obtain
the phase shift equation, scattering amplitude and
bound state energy eigenvalues, respectively,
through these solutions. Its other goal is to
investigate the effect of the parameters in the
interaction field on the physical quantities obtained.
This paper is planned as follows: first, the
properties of the DKP equation will be given in the
material method section. In the result and discussion
section, scattering state solutions of the DKP
equation in the (1+3) dimension will be obtained for
vector bosons in the presence of the Sun potential.
Phase shift and scattering amplitude relations will be
derived by using scattering state solutions in the
same section. Additionally, the singular points of the
scattering amplitude will be discussed and through
this feature, the bound state energy eigenvalues
relation will be attained. Finally, in the conclusion
section, phase shift and bound state energy
eigenvalues for different quantum states will be
calculated numerically and expressed in tables using
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the Mathematica software program. Besides, the
influence of the variables in the interaction field on
the physical quantities obtained will be presented
graphically.

MATERIAL AND METHODS

The DKP equation for a ‘U interaction with m,
field is given in the following form (A =c=1)
(Kemmer, 1939; Duffin, 1938; Petiau, 1936).

(ip#6, —me—U)¥ =0 (1)

p# are DKP matrices of 5x 5 for spin-0 and
10 x 10 for spin-1. These matirces satisfy the
following commutation relation:

BHBYB + BABVBH = gHB* + g p* @

B matrices for spin-1 are given as

0 000
ﬁozﬁTOIO

0" 1 0 0f

0" 0 0 0

D
o

. or —iS;
g = (_Z,T l \ ©
\o

Here S;, I, and O are spin-1, idthity and zero
matrices, respectively. The matrices 0 and e; are
defined as follows:

o © Ol

oo o
o o
\

—iS;

el - (1, 0,
33 - (0, 0,

0), e,a=(0, 1, 0),
1), 0=(0, 0, 0) (4)

The general form of the interaction potential in
Eqg. (1) is given as follows:

U = ST + PS,(r) + BV, (1) + BEPVp, (1) (5)

This expression takes the following form under
rotational invariance and parity conservation for an
elastic scattering
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U=S()+PS, () + BV({r) + BOPVp(r) (6)

Each term in this equation has Lorentz
character. Under rotational invariance and parity
conservation, the two Lorentz vectors f# and PBH*
can be written, so that the projection operator is P =
(B*B, — 2) = diag(1,1,1,1,0,0,0,0,0,0). Thus,
there are four admissible representation of interplay
potential expressed as follows:

U= PS(r) + B°PV(r) (7
U =S(r) +poV(r) (8)
U=PS(r)+pV(r) (9)

U=ST)+p°PV(r) (10)
These states are concerted for the study of
different physical systems. For instance, Eq. (8) is
connected with the investigation of deuteron-nucleus
scattering (Kozack, Clark, Hama, Mishra, Mercer,
and Ray, 1989). In this study, Eq. (7) will be used as
the interaction potential. (Molaee, Ghominejad,
Hassanabadi and Zarrinkamar, 2012; Bahar, and
Yasuk, 2014). The DKP equation is written as
follows in the presence of the interaction potential
defined in Eq. (7):
[ip#5, — my — B°PV(r)|¥ =0 (11)
Here ¥ is a ten-component spinor describing
the dynamics of spin-1 particles. To get time-
independent solutions, the solution of Eq. (11) is
suggested as follows:
W (x,y,2,6) = ey (x,y, 2) (12)
For spin-1 representation, ten-component wave
function is written as:

1 2 3 4 5
Yhiey2) = (057,05 05, 0%, 0%,

© (7 (8 (9 (10)

Crir Pn,1r Prir Ptr Pyt ) (13)
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Writing the wave functions expressed in
Equation (14) as follows:

1) _ @ 3 @
Pni = l¢n.l' ((pnl'(pnl'(pnl)

&) 6 ® 0 10
((pnl'(pnl'(pnl) ((pnl'(pnl'(pnl) (14)

and by substituting these functions in Eg. (11) and
performing the necessary intermediate operations,
the following ten coupled equations are obtained.

i (ag—? - ag—;(?) = moHS), (15)
i (a ;Z('ll) - a;_f}) = moH®, (16)
i (‘7;;(7? - ag_é}) = moHY, (17)
N T
EniGD 1 i <a :;(33 9 ;1;(33 ) oY, (19)
EniG +i <a :;(J? _ a:f?) = moF®, (20)
En (G +i<a:—?—6:—51)) = moF.y, (21)
[Eny = VOIED +22 = myGY, (22)
[Eny —VOIED +22 = my62), (23)
[Eny = VOIED +22 = myG3). (24)

Combining the above ten equations, we get
(25)

(26)
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En,G + iV x H = myF, (27)

[En,l - V(T)]ﬁ + v)qhn,l = m051 (28)

and thus, using the above equations, we arrive at the
following expression

{En l[ (T)] g}ﬁ
~V x (V xF)+V(V.F)=0 (29)

If the following identity for the term V x
(V x F) is used in this expression as

) =V(V.F) - v*F =

(ﬁ) (arz rar_%)ﬁ

X
T

vV x (V

~

<l

(30)

we get the following differential equation

(£, 24

dar2 ' rar

+ E2,—E,,V(r) — m} l““)}ﬁ 0

(31)

This equation formally has the same structure

as the Proca equation (Castro and De Castro, 2014).

In order to remove the first derivative in this
expression, the wave functions recommended as

F=r"1R
(2) ()
(pnl Rn,l
€) N I 3)
qDnl =r ! Rn,l
4) 4
(pnl Rnl
@) _ pB® _ p® _
(Rn,l) - Rn,l) - Rn,l) - Rn.l) (32)
and if Eq. (31) is rearranged, we gain
a2z 1(1+1)
{ﬁ + Eq —En V() —m§ — = }Rn,l(r) =0
(33)
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RESULTS AND DISCUSSION

The Sun interaction field describing
diatomic molecules is defined as follows (Sun,
1999):

2o eapy2 3 2Dge "7 (1)

D,
Vsun(r) = -

(e Y 9

1-2e )"

where D, indicates the dissociation energy, r,
indicates the equilibrium bond length, « and A are
two dimensionless variables. This function can be
reduced to the Tietz function with appropriate
selection of parameters (Jia, Wang, He and Sun,
2000; Liang, Tang and Jia, 2013). It will be
sufficient to use Eq. (33) to find the scattering state
solutions of spin-1 vector bosons interacting with
this field function.

By substituting Eq. (34) into Eq. (33), the
following expression is obtained

Dee_z(%)r(e”‘—/l)2 _

—= + Eni—En, o
<1—Ae Te )
2Dee_(%)r(e“—l) 5 L(I+1)
= —mg == Ry =0 (34
1—ze ) r

For the term 1/72 in this expression, a Pekeris-
Type approach is applied as (Pekeris, 1934)

(B g
Frg| Dot P e P | (39
¢ 1-2e ‘e (1_,1@‘(3)r>

If this equation is expanded to the Taylor series,
the Dy, D, and D, coefficients in the expression

are calculated as follows:
Dy = 1 +%(3 —3a—6le %+
312724 + 2ae™® + A2ae2%)
2
D, = ?(9/1 —31a —3e % + 2ae™% —91%e™¢

+ 323e72% + 13qe~2%)
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1

D, = ?(1812 —122e% + 3e2%* + 2Aae® — ae?®
—1223e7% + 31724 — 223qe™¢

+ Atae~?%)
(37)
The suitability of this approach can be seen in
Figure 2. By substituting Eq. (36) into Eg. (35) and
defining a new variable in the form n=1-

ay -1
(1 -2 e_(ﬁ)r)

obtained

the following expression is

_ danz(n)
n(l—mn) a2 T (1

[=¥1 + v2n — v3n?1Rm(m) = 0

dRni(n)

n(1-m) (38)

where

_ (m(% —Ex )
Y1 = T
[(e® —2)? + 2(e®
+ a?i?

l(l + 1) (DA% — D1+ D)
a2)2 ’
2[(e® — )2 + (€% — DD AEp 12
Y2 = a2 )2

A)D /1] n, lre

L 10+ DD, - DD
ZAZ 4

_ (e¥-A)2D Enr¢ | 1(1+1)D,
3= a?)2 a1z

(39)
In order to remove the singularity at the points

n=0and n =1 in Eqg. (39), the wave functlon is

proposed again as Ry (n) =1 (1—n)" « Fry(n)
and when the necessary operations are carrled out,

we reach

2~7:'nl

n(1- n)
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dFp
+los — (01 + 02 + DI m =0 (40)
Where

a
ﬁ:\/y—: k:r_\/yz—)’3—)’1;

e
=5 TH4ys, e =f-"ttao+y

ikre 1

@=f-——-0+5, e3=1+28 (41)

Using the property of the Gauss Hypergeometric
equation (Fliigge, 1999), the solution for Eq. (40)
becomes:

Frum) = Ay 2F;(01,02,03,1)

+A,;n'7% ,F (04 —03t1,2—037).

(42)

—03+1,0;

Thus, we get:

ikre

Ry =AmPA—-n)" o

Te

X oF1(01,0203m) + A F(1—n)~

—o03+1,2—031n) (43)

To gain a regular solution of the Eq. (43) and

derive the relations that give the necessary physical
guantities describing the scattering states, we have to
consider the behavior of wave functions at their
boundary points (Fliigge, 1999):
i) If r = 0, the R,,;(n) must be get finite value. With
the applying first condition, we conclude that the
normalization coefficient A, =0, so the wave
functions is found as:

lk
Ry =AmP(1—n)" « ,Fi(01,02,037) 44)

ii) If r - oo, the attitude of the R,;(n) at infinity
smust be as follows (Landau and Lifshitz, 1977)

X oFi(e1 —e3t+1,0;

Te

Ry (00) = 2 sin(kr — I + ¢) (45)
where ¢ is the phase shift. Under this condition, Eq.
(44) takes the following form
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Ry (r = ) -

ikre

N\« 1
Aq (_ z) e F1(01,02,05, 1 —

—“)r)

1-Ae _(5
(46)

We can write the recurrence relation given for the
Hypergeometric function in this equation (Fligge,

1999) and taking ,F;(01,02,03,0) =1 for r — oo,
we get

T—00
2F1(01,02,803,1) —

r(e3—02—01)
Ir(es—e1)r(es—ez)
r'(o3) 2ikre 47)
+ (_ l) « —2ikr F'(@1+t02—03)
A r(e1)r(ez)
When the following relations are used
2ikT, .
01t 02 —03=— Lar = (03 — 02 —01)",
iKkT, 1 *
93—91=ﬁ+lae—0+5=(02) )
ikte 1 *
03— 0 =B +—=+0+>=1(e1) (48)
and required calculations are taken, we find
T—00
2F1(01,02,03,1) —
_ikre
1"(@3—@2—@1)(—%) @
ikre r(ez—e.)r(es—ez)
1N\« N
rees)(-3) ke
4 o-2ikr F(ea—ez—el)(—;)
r(ez—e)r(es—e2)
(49)

By using relations below

I'(os — 0, — 01)
I'(ez — o)l (03 — 02)
_ I'(os — 02 — 01) it
I'(es — 01)I' (03 — 02) '
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ikre ikre
(_ 1)_7 _ (_ 1)_7
A - A

and inserting these expressions in Eq.(49), we have

ez (50)

ikre
r—o0 1\ « —ikr
2F1(01,02,03,1) — 2I'(03) 2 e
_ikre
F(Q3—92—91)(—%) *
r(es—e01)r(es—ez)

sin(kr +9; + 9, + g)

(51)
The replacement of the Eq.(51) into the Eq.(46)
yields
_ikre
r(es-ez-e1)(-3) ©
r(es—e.)r(es—ez)

r—o00
Ry (r) — 24T (e3)

X sin(kr +9; + 9, +7) (52)

Matching the Eq. (52) with the Eq. (45), we get:
( 1)ikre
1 r(es—01)r(es—02) 3 “
Ay = r(es) r(ez-ez2—01) (53)
¢ =+ Dm+argl (o3 — 02— 01) —
arg I’ (03 __le) —argl (g3 —02) +
1 - ae

arg (— 5) (54)

If the scattering amplitude goes to infinity (4, —
o), continuum states occur and thus we can obtain
bound state energy eigenvalues. By using the
following property of Gamma functions as

F(X) _ r(x+1) _ r(x+2)

x  x(x+1)
_r&+3) —0
= oo = X 0,-1,-2,-3, ... (55)
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One can easily obtain the singular pole points Eq.
(53) as @3 —o; =n or g3 —p, =n. Hence, the
condition becomes
ikre 1

,B—T—O'-l'zz—n (56)
By using these equation and definition given in
Eq.(39) and Eg. (41), the energy eigenvalues is

found as follows:

CONCLUSION

The DKP equation with Sun interaction field
model is discussed for the first time in this study.
Scattering state solutions of vector bosons were
obtained. The suitability of the approach used for
centrifugal term is given in Figure 1. By using the
wave function, the phase shift equation and
scattering amplitude relation were derived. In
addition, by using scattering amplitude relation, the
relation giving the bound state energy eigenvalues
was directly obtained. Phase shift and energy
eigenvalues were calculated numerically through the
Mathematica software program.

— Pekens - Type Approximation

Centrifagal Term

00 05 10 15 20 25 30 35

Figure 1. Graphical representation of the
approximation applied to the centrifugal term for a=2,
r e=1 fm and A=0.1.
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2 2 En‘l(e“—/l)(e“—/1+2)De
Eqyp—mg — 2 -

(CoA2—C1A4C,)1(1+1)
A2r2

«?
+—|(1+2n+
472

a2A2+41(1+1)Co+4Ey (€% —2)2D 12
a??
2

2\/l(l+1)/12c0+((15,21_l—m§)/12—213,1,1(eot—,l)(,l—1)De)re2
- a2A?

0
(57)

These results are presented in Table 1. and
Table 2.  As seen in Table 1, if the angular
momentum eigenvalues increase, phase shift values
increase. Also, the same situation applies if the alpha
parameter increases. It can be easily seen in Table 2
that the energy eigenvalues increase if the n and |
values increase.

Table 1. Calculated phase shift values for D, =
2fm Y a=2r=08fm !, m=1fm1! 1=
05E=3651fm landh=c=1

Il ¢p(a=16) Pp(a=2) ¢Pp(a=24)
1 1.03030 1.82089  8.63096
2  2.62303 3.41576  10.2273
3 4.22675 5.02269  11.8364
4 584148 6.64172  13.4584
5 7.46728 8.27289  15.0932
6 9.10419 16.1994  16.741
7 10.7523 17.8551  18.4017
8 124116 18.3186  22.3612
9 16.326 20.0368  25.8844
10 21.586 28.8247  34.9442
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Table 2. Calculated energy eigenvalues for D, =
2fmt a=2r=08fm !, m=1fm!, 1=
05andha=c=1

n |l Ey(fm™) n | E,(m™?
1 0 0.129231 5 0 1.91933
2 0 0.377758 5 1 2.03664
2 1 0.487010 5 2 2.26547
3 0 0.754972 5 3 259785
3 1 0.867171 5 4 3.02697
3 2 1.079500 6 0 3.54854
4 0 1.26622 6 1 2.84562
4 1 1.38089 6 2 3.08231
4 2 1.60201 6 3 3.42908
4 3 1.91954 6 4 3.88014

The effects of the parameters in the interaction
field on the energy values are shown in Figure 2 and
Figure 3. If the drawings in Figure 2 are examined
carefully, Energy values increase for values of the a
parameter in the range 1 < a < 1.22, and decrease
for values in the range 2.22 < a. This situation
becomes more evident as large n and | values
increase. In addition, for values of the alpha
parameter in the range a < 1, the energy values for
all quantum states approach each other and go to
zero. In the other drawings, it is seen that if the 7,
values increase, the energy values decrease. While
the difference between the energy values
corresponding to different quantum states is large at
small values of the r, parameter, for r, > 1 fm~!
the difference decreases and the energy values
approach zero. Looking at the drawings in Figure 3,
it is very easy to say that the D, parameter behaves
like the , parameter, but the opposite is true for the
A parameter. If the lambda parameter increases, the
energy values increase and the energy values for
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different quantum states diverge. For 4 < 0.2, it is
seen that the energy values decrease and go to zero
for each quantum state.

30

o-n=21=1

25 m-n=3,1=2

& n=4, 1=3

20}

A & h--w 4

A ~A
B 15F A

10 A it Sl CEPY |

Figure 2. Variation of bound state energy eigenvalues
according to a parameter for D, = 2 fm™1, r, =
08fm™, m=1fm™!, 1=05,and r, parameter for
D.=2fmY, a=2, m=1fm™1, 1=05.

340



Int. J. Pure Appl. Sci. 9(2);333-343 (2023)

Research article/Arastirma makalesi

DOI: 10.29132/ijpas.1369826

o-0=21=1
o a-0=3,1=2
& 0=4 1=3
3
Eyj 4
n
N \
A
“a. "
s x> .
1 - _ & .
L R A
--N--_m-__m
0 i

&-n=21=1

=n=3,1=2

& n=4,1=3

Figure 3. Variation of bound state energy eigenvalues
according to D, parameter forA = 0.5, a =2, 1, =
0.8 fm™1, m =1 fm™! and A parameter for D, =

2fm™t, a=2,1,=08fm™, m=1fm™.

This study will be benefical for researchers
working in this field as the Sun potential has
successfully described many diatomic structures and
there has been no previous study for vector bosons
in the presence of this model.
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