
Araştırma Makalesi 
 

   BAUN Fen Bil. Enst. Dergisi, 26(1),29-40, (2024) 
 

DOI:10.25092/baunfbed. 1293529 J. BAUN Inst. Sci. Technol., 26(1),29-40, (2024) 
 

29 

 

 

 

 

 

Sheffer stroke branching of BCK-algebras 
 

 

Tuğçe KATICAN* 

 

 İzmir University of Economics, Faculty of Arts and Sciences, Department of Math., Balcova, İzmir. 

 
Geliş Tarihi (Received Date): 06.05.2023 
Kabul Tarihi (Accepted Date):04.09.2023 

 

 

Abstract 

 

The main objective of the study is to introduce branches of Sheffer stroke BCK-algebras 

due their specific elements. At the onset of the study, an atom of a Sheffer stroke BCK-

algebra is defined and it is shown that the set of all atoms of the algebraic structure is its 

subalgebra. Then it is proved that specified subsets defined by atoms of a Sheffer stroke 

BCK-algebra are ideals but the inverses are not true in general. Moreover, a branch and 

a chain on a Sheffer stroke BCK-algebra are introduced and some properties are 

presented. Finally, relationships between aforementioned concepts are built and 

supported by illustrative examples. 
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BCK-cebirlerinin Sheffer stroke dallanması 
 

 

Öz 

 

Bu çalışmanın temel amacı, belirli elemanları yardımıyla Sheffer stroke BCK-cebirlerinin 

dallarını tanıtmaktır. Çalışmanın başlangıcında, bir Sheffer stroke BCK-cebirinin bir 

atomu tanımlanarak bu cebirsel yapının tüm atomlarının kümesinin bu yapının bir 

altcebiri olduğu gösterilmiştir. Ardından bir Sheffer stroke BCK-cebirinin bir atomu 

yardımıyla tanımlanan özel altkümelerinin bu cebirsel yapının idealleri olduğu fakat bu 

ifadenin tersinin genelde doğru olmadığı ispatlanmıştır.  Dahası, bir Sheffer stroke BCK-

cebiri üzerinde bir dal ve zincir tanımlanarak bazı özellikleri sunulmuştur. Son olarak, 

bahsi geçen yapılar arasındaki bağlantılar inşa edilmiştir ve bu bağlantılar açıklayıcı 

örneklerle desteklenmiştir. 

 

Anahtar kelimeler: Sheffer stroke, Sheffer stroke BCK-cebiri, ideal, atom, dal. 
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1.  Introduction 

 

In 1966, Imai and Iséki introduced the class of BCI-algebras in two ways. The first way 

is about the set theory; especially, a generalization of set-theoretic difference. The second 

way is about  classical and non-classical propositional calculi. Then they defined the 

concept of BCK-algebras as a proper subclass of these algebras in the same year [1]. 

Recently, the concept of BCK-algebra draws attentions of scientists studying on several 

areas in mathematics such as group theory, functional analysis, probability theory, fuzzy 

set theory, topology, etc. Although the literature consists of several studies on BCK-

algebras, importance seems to have been particularly attach to the ideal theory of BCK-

algebras. For more details, recent studies [2-10] can be suggested in literature. 

 

On the other side, H. M. Sheffer introduced Sheffer stroke known as NAND gate in logic, 

and is one of the two operators that can be used by itself to construct a logical formal 

system without any other logical operators [11]. The other one is Pierce arrow, called 

NOR gate in this field. Especially, Sheffer operator is utilised in computer science and 

algebra. In the first, it is used to have the single chip forming processor in a computer and 

to store and start up in flash memory disks. Therefore, there exist many patents about this 

operator in this field. Since it is simpler and cheaper than to produce different diods for 

each distinct Boolean operations, the usage of Sheffer stroke is more and more preferable. 

In the second, this operator can be applied several logical algebras such as Boolean 

algebras [12], ortholattices [13], orthoimplication algebras [14], branches and obstinate 

SBE-filters of Sheffer stroke BE-algebras [15], Sheffer stroke BL-algebras and their 

neutrosophic structures [16-17], fuzzy filters of Sheffer stroke Hilbert algebras [18] and 

their fuzzy ideals with t-conorms [19], Sheffer stroke BCK-algebras [20] and their 

neutrosophic N-ideals [21]. Thus, Sheffer stroke provides to reduce the number of axioms 

in a system, and new and easily controllable axiom systems for many algebraic structures. 

However, this operator has some disadvantages so that the lengths of axioms or formulas 

with Sheffer stroke can be long, or the readability can be difficult. 

 

The organization of the study is as follows: the next section presents essentials on BCK-

algebras equipped with Sheffer stroke. In the third section, the main results are provided, 

and outcomes of the study are supported with illustrative examples. The results of the 

manuscript are new and novel, therefore, contribute the ongoing theory of pure 

mathematics regarding BCK-algebras and Sheffer stroke. 

 

 

2. Preliminaries 

 

In this section, fundamental concepts of BCK-algebras equipped by Sheffer operation are 

presented. In an attempt to facilitate readability, a statement �̌�|�̌� defined by Sheffer 

operation | is represented in the form �̌�|�̌� ≔ 𝔖𝔬�̌��̌�, for any elements �̌� and �̌�. 

 

Definition 1.1. [13] Let 𝒜 = (ℨ, 𝔖𝔬) be a groupoid. The operation 𝔖𝔬 on ℨ is said to be 

a Sheffer stroke (Sheffer operation) if it satisfies the following:  

 

(S1) 𝔖𝔬�̌��̌� = 𝔖𝔬�̌��̌�, 

(S2) 𝔖𝔬(�̌��̌�)(�̌��̌�) = �̌�, 

(S3) 𝔖𝔬�̌�((�̌��̌�)(�̌��̌�)) = 𝔖𝔬((�̌��̌�)(�̌��̌�))�̌�, 

(S4) 𝔖𝔬(�̌�((�̌��̌�)|(�̌��̌�)))(𝑥((�̌��̌�)(�̌��̌�))) = �̌� 
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for all �̌�, �̌�, �̌� ∈ ℨ. 

 

Lemma 1.2. [13] Let 𝒜 = (ℨ, 𝔖𝔬) be a groupoid. Then a binary relation ≤ defined on ℨ 

by 

 

�̂� ≤ �̂� ⇔ 𝔖𝔬�̌��̌� = 𝔖𝔬�̌��̌�                                                                                                                       (1) 

 

is an order on ℨ. 

 

Definition 1.3. [20] A Sheffer stroke BCK-algebra is a structure (ℨ, 𝔖𝔬, 0) of type (2, 0), 

where ℨ is a nonempty set and 𝔖𝔬 is Sheffer stroke on ℨ such that the following identities 

are satisfied for all �̌�, �̌�, �̌� ∈ ℨ: 

 

(sBCK-1) 𝔖𝔬((((�̌�(�̌��̌�))(�̌�(�̌��̌�)))(�̌�(�̌��̌�)))(((�̌�(�̌��̌�))(�̌�(�̌��̌�)))(�̌�(�̌��̌�))))(�̌�(�̌��̌�)) = 𝔖𝔬00, 

(sBCK-2) 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) = 0 and 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) = 0 imply �̌� = �̌�. 

 

For short, the notion of Sheffer stroke BCK-algebra is written as ssBCK-algebra. 

 

Lemma 1.4. [20] Let (ℨ, 𝔖𝔬, 0) be a ssBCK-algebra. Then  

 

(1)  𝔖𝔬(�̌�(�̌��̌�))(�̌��̌�) = �̂�, 

(2)  𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) = 0, 

(3)  𝔖𝔬�̌�(((�̌�(�̌��̌�))(�̌��̌�))((�̌�(�̌��̌�))(�̌��̌�))) = 𝔖𝔬00, 

(4)  𝔖𝔬(00)(�̌��̌�) = �̌�, 

(5)  𝔖𝔬�̌�0 = 𝔖𝔬00, 

(6)  𝔖𝔬(�̌�(00))(�̌�(00)) = �̌�, 

(7)  𝔖𝔬(0(�̌��̌�))(0̌(�̌��̌�)) = 0, 

(8)  𝔖𝔬(�̌�((�̌�(�̌��̌�))(�̌�(�̌��̌�))))((�̌�((�̌�(�̌��̌�))(�̌�(�̌��̌�))))(�̌�((�̌�(�̌��̌�))(�̌�(�̌��̌�))))) = 𝔖𝔬00, 

(9)  𝔖𝔬((�̌�(�̌�(�̌��̌�)))(�̌�(�̌�(�̌��̌�))))(�̌��̌�) = 𝔖𝔬00, 

 

for all �̌�, �̌�, �̌� ∈ ℨ. 

 

Lemma 1.5. [20] Let (ℨ, 𝔖𝔬, 0) be a ssBCK-algebra. Then a relation ≤ defined on ℨ by 

   

�̌� ≤ �̌� if and only if 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) = 0                                                                                   (2) 

  

is a partial order on ℨ. With respect to this order, 0 is the least element of ℨ. Also,  

 

�̌� ≤ 𝔖𝔬�̌�(�̌��̌�)                                                                                                                                 (3) 

 

and 

 

�̌� ≤ �̌� implies 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) ≤ 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)),                                                                    (4) 

 

for all �̌�, �̌�, �̌� ∈ ℨ. 

 

A ssBCK-algebra is called bounded if it has the greatest element 1. 
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Lemma 1.6. [20] Let (ℨ, 𝔖𝔬, 0) be a ssBCK-algebra and ≤ be an order on ℨ as in Lemma 

1.5. Then 

 

(1)  �̌� ≤ �̌� implies 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) ≤ 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)),  

(2)  𝔖𝔬((�̌�(�̌��̌�))(�̌�(�̌��̌�)))(�̌��̌�) = 𝔖𝔬((�̌�(�̌��̌�))(�̌�(�̌��̌�)))(�̌��̌�), 

(3)  𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) ≤ �̌� ⇔ 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) ≤ �̌�, 

(4)  𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) ≤ �̌�, 

(5)  �̌� ≤ 𝔖𝔬�̌�(�̌��̌�), 

(6)  �̌� ≤ 𝔖𝔬(�̌�(�̌��̌�))(�̌��̌�), 

(7)  �̌� ≤ �̌� implies 𝔖𝔬�̌�(�̌��̌�) ≤ 𝔖𝔬�̌�(�̌��̌�), 

 

for all �̌�, �̌�, �̌� ∈ ℨ. 

 

Unless otherwise specified, ℨ denotes a ssBCK-algebra. 

 

Definition 1.7. [21] Let 𝔅 be a nonempty subset of a ssBCK-algebra ℨ. Then a structure 

(𝔅, 𝔖𝔬, 0) is called a subalgebra of ℨ if 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) ∈ 𝔅, for all �̌�, �̌� ∈ 𝔅. 

 

Definition 1.8. [21] A nonempty subset 𝐼 of a ssBCK-algebra ℨ is called an ideal of ℨ if 

it satisfies the following properties: 

 

(I1) 0 ∈ 𝐼, 

(I2) 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)) ∈ 𝐼 and �̌� ∈ 𝐼 imply �̌� ∈ 𝐼, for all �̌�, �̌� ∈ ℨ. 

 

Theorem 1.9. [21] Let 𝐼 be a subset of a ssBCK-algebra ℨ. Then 𝐼 is an ideal of ℨ if and 

only if 

 

(I3) �̌�, �̌� ∈ 𝐼 implies (�̂�|�̂�)|(�̂�|�̂�)𝔖𝔬(�̌��̌�)(�̌��̌�) ∈ 𝐼, 

(I4) �̌� ≤ �̌� and �̌� ∈ 𝐼 imply �̌� ∈ 𝐼,  

 

for all �̌�, �̌� ∈ ℨ. 

  

 

3. Branches 

 

In this section, atoms, branches and chains of ssBCK-algebras are introduced, and 

relationships between these concepts are investigated. Also, the concepts about branches 

were defined in the reference [22]. Unless otherwise specified, �̌� �̌�: = 𝔖𝔬(�̌�(�̌��̌�))(�̌�(�̌��̌�)), for 

all �̌� and �̌� in these algebraic structures. 

 

Definition 3.1. An element 𝜀̌ of a ssBCK-algebra ℨ is called an atom of ℨ if �̌� ≤ 𝜀̌ implies 

�̌� = 0 or �̌� = 𝜀̌. The set of all atoms of ℨ is denoted by ℨ⏞. 

 

Example 3.2. Consider a ssBCK-algebra ℨ where the set ℨ = {0,1, 2, 3, 4, 5, 6, 7} with 

Hasse diagram in Fig. 1 and the Sheffer stroke 𝔖𝔬 on ℨ has the Cayley table in Table 1 

[20]. 
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Figure 1. Hasse diagram of ℨ. 

 

Table 1. Table of the Sheffer stroke 𝔖𝔬 on ℨ. 

 

𝔖𝔬 0 1 2 3 4 5 6 7 

0 1 1 1 1 1 1 1 1 

1 1 0 7 6 5 4 3 2 

2 1 7 7 1 1 7 7 1 

3 1 6 1 6 1 6 1 6 

4 1 5 1 1 5 1 5 5 

5 1 4 7 6 1 4 7 6 

6 1 3 7 1 5 7 3 5 

7 1 2 1 6 5 6 5 2 

 

Then 0, 2, 3 and 4 are atoms of ℨ. Also, ℨ⏞ = {0, 2, 3, 4}. 

 

Lemma 3.3. A nonzero element 𝜀̌ of a ssBCK-algebra ℨ is an atom of ℨ if and only if a 

subset {0, 𝜀̌} of ℨ is an ideal of ℨ.  

 

Proof. Let 𝜀̌ be a nonzero atom of a ssBCK-algebra ℨ. It is obvious that 0 ∈ {0, 𝜀̌}. 

Suppose that �̌� ∈ {0, 𝜀̌} and �̌� �̌� ∈ {0, 𝜀̌}. If �̌� = 0, then �̌� = �̌�0 = �̌� �̌� ∈ {0, 𝜀̌} from 

Lemma 1.4 (6). Assume that �̌� �̌� = 0. Then �̌� ≤ �̌� from Lemma 1.5, and so, �̌� ≤ 0 or �̌� ≤
𝜀̌. Since 𝜀̌ is an atom of ℨ, it follows that �̌� = 0 or �̌� = 𝜀̌, and so, �̌� ∈ {0, 𝜀̌}. Thus, {0, 𝜀̌} 

is an ideal of ℨ. 

 

Conversely, let {0, 𝜀̌} be an ideal of ℨ, and �̌� ≤ 𝜀̌, for any �̌� ∈ ℨ. Since �̌� �̌� = 0 ∈ {0, 𝜀̌} 

from Lemma 1.5 and 𝜀̌ ∈ {0, 𝜀̌}, it is obtained from (I2) that �̌� ∈ {0, 𝜀̌}. Hence, �̌� = 0 or 

�̌� = 𝜀̌. Therefore, 𝜀̌ is an atom of ℨ.  

 

Lemma 3.4. Every ideal of a ssBCK-algebra ℨ is a subalgebra of ℨ. 

 

Proof. Let 𝐼 be an ideal of a ssBCK-algebra ℨ, and �̌�, �̌� ∈ 𝐼. Since �̌� �̌� ≤ �̌� from Lemma 

1.6 (4), it follows from (I4) that �̌� �̌� ∈ 𝐼. Then 𝐼 is a subalgebra of ℨ. 

 

The following example illustrates that a subalgebra of a ssBCK-algebra is mostly not an 

ideal. 
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Example 3.5. Consider the ssBCK-algebra ℨ in Example 3.2. Then {0, 1, 3, 6} is a 

subalgebra of ℨ but it is not an ideal of ℨ since 4 ∉ {0, 1, 3, 6} when 46 = 0 ∈ {0, 1, 3, 6} 

and 6 ∈ {0, 1, 3, 6}. 

 

By the following lemma, we shows cases in which a subalgebra of a ssBCK-algebra is an 

ideal. 

 

Lemma 3.6. Every element of a ssBCK-algebra ℨ is an atom of ℨ if and only if every 

subalgebra of ℨ is an ideal of ℨ. 

 

Proof. Let every element of a ssBCK-algebra ℨ be an atom of ℨ, and 𝔅 be a subalgebra 

of ℨ. Then it follows from Lemma 1.4 (2) that 0 = �̌� �̌� ∈ 𝔅, for all �̌� ∈ 𝔅. Assume that 

�̌�, �̌� �̌� ∈ 𝔅, for any �̌�, �̌� ∈ ℨ. Since �̌� �̌� ≤ �̌� from Lemma 1.6 (4), it is obtained that �̌� �̌� =
0 or �̌� �̌� = �̌�. If �̌� �̌� = 0, then �̌� ≤ �̌� from Lemma 1.5. Thus, �̌� = 0 or �̌� = �̌�, and so, �̌� ∈

𝔅. If �̌� �̌� = �̌�, then �̌� ∈ 𝔅. Hence, 𝔅 is an ideal of ℨ.  

 

Conversely, let every subalgebra 𝔅 of ℨ be an ideal of ℨ and 𝜀̌ be an element of ℨ such 

that it is not an atom of ℨ. Then a subset {0, 𝜀̌} of ℨ is not an ideal of ℨ from Lemma 3.3, 

and so, it is not a subalgebra of ℨ. Since 𝜀̌0 = 𝜀̌ ∈ {0, 𝜀̌} and 0�̌� = 0 ∈ {0, 𝜀̌} from Lemma 

1.4 (6) and (7), we have that {0, 𝜀̌} is a subalgebra of ℨ, which is a contradiction. Thus, 

every element of ℨ is an atom of ℨ. 

 

Lemma 3.7. Let 𝜀1̌ and 𝜀2̌ be non-zero elements of a ssBCK-algebra ℨ such that 𝜀1̌ ≠ 𝜀2̌. 

If 𝜀1̌ and 𝜀2̌ are atoms of ℨ, then 𝜀1̌
𝜀2̌ = 𝜀1̌ and 𝜀2̌

𝜀1̌ = 𝜀2̌. 

 

Proof. Let 𝜀1̌ and 𝜀2̌ be atoms of ℨ such that 𝜀1̌ ≠ 0 ≠ 𝜀2̌. Then {0, 𝜀1̌} and {0, 𝜀2̌} are 

ideals of ℨ from Lemma 3.3. Since 𝜀1̌
𝜀2̌ ≤ 𝜀1̌ and 𝜀2̌

𝜀1̌ ≤ 𝜀2̌ from Lemma 1.6 (4), it 

follows from (I4) that 𝜀1̌
𝜀2̌ ∈ {0, 𝜀1̌} and 𝜀2̌

𝜀1̌ ∈ {0, 𝜀2̌}. If 𝜀1̌
𝜀2̌ = 0  or  𝜀2̌

𝜀1̌ = 0, i. e., 

𝜀1̌ ≤ 𝜀2̌ or 𝜀2̌ ≤ 𝜀1̌, then it is obtained that 𝜀1̌ = 𝜀2̌, which is a contradiction. Thus, 𝜀1̌
𝜀2̌ =

𝜀1̌ and 𝜀2̌
𝜀1̌ = 𝜀2̌. 

 

The inverse of Lemma 3.7 does not generally hold. 

 

Example 3.8. In Example 3.2, 54 = 5 and 45 = 4 but 5 ∉ ℨ⏞ when 4 ∈ ℨ⏞. 

 

Lemma 3.9. The set ℨ⏞ of all atoms of a ssBCK-algebra ℨ is a subalgebra of ℨ. 

 

Proof. Let ℨ⏞ be the set of all atoms of a ssBCK-algebra ℨ. Since 0 is the least element of 

ℨ, we have that 0 ∈ ℨ⏞. Assume that 𝜀1̌, 𝜀2̌ ∈ ℨ⏞. If 𝜀1̌ = 𝜀2̌, then 𝜀1̌
𝜀2̌ = 0 ∈ ℨ⏞ or 𝜀2̌

𝜀1̌ ∈ ℨ⏞ 

from Lemma 1.4 (2). If 𝜀1̌ ≠ 𝜀2̌, then 𝜀1̌
𝜀2̌ = 𝜀1̌ ∈ ℨ⏞ and 𝜀2̌

𝜀1̌ = 𝜀2̌ ∈ ℨ⏞ from Lemma 3.7. 

 

However, the set ℨ⏞ of all atoms of a ssBCK-algebra ℨ is generally not an ideal of ℨ. 

 

Example 3.10. In Example 3.2, ℨ⏞ = {0, 2, 3, 4} is a subalgebra of ℨ but it is not ideal of 

ℨ since 7 ∉ ℨ⏞ when 73 = 4 ∈ ℨ⏞ and 3 ∈ ℨ⏞.  
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Lemma 3.11. For each atom �̌� of a ssBCK-algebra ℨ, a subset �̌� = {�̌� ∈ 𝐴: �̌� ≤ �̌�} of ℨ 

is an ideal of ℨ. 

 

Proof. Let �̌� be an atom of a ssBCK-algebra ℨ and �̌� = {�̌� ∈ 𝐴: �̌� ≤ �̌�} be a subset of ℨ. 

Then �̌� = {0, �̌�}. Thus, �̌� is an ideal of ℨ by Lemma 3.3. 

 

However, it is not necessary that �̌� is not an atom of a ssBCK-algebra when �̌� is its ideal. 

 

Example 3.12. Consider the ssBCK-algebra ℨ in Example 3.2. Then 5 is not an atom of 

ℨ when 5 = {0, 2, 3, 5} is an ideal of ℨ. 

 

Lemma 3.13. Let ℨ be a ssBCK-algebra and ≤ be a partial order on ℨ as in Lemma 1.5. 

Then �̌� ≤ �̌� implies 𝔖𝔬�̌��̌� ≤ 𝔖𝔬�̌��̌�, for all �̌�, �̌�, �̌� ∈ ℨ. 

 

Proof. Let �̌� ≤ �̌�. Then �̌� �̌� = 0 from Lemma 1.5. Since 

 

[(𝔖𝔬�̌��̌�)𝔖𝔬�̌��̌�]�̌��̌�
= ([�̌�𝔖𝔬�̌��̌�]�̌�

𝔖𝔬�̌��̌�
)

(𝔖𝔬�̌��̌�)(𝔖𝔬�̌��̌�)

= 0                                                                         (5)                                                                                                                                     

 

from (S1), (S2) and (sBCK-1), it follows Lemma 1.5 that (𝔖𝔬�̌��̌�)𝔖𝔬�̌��̌� ≤ �̌� �̌� = 0. Since 0 

is the least element of ℨ, (𝔖𝔬�̌��̌�)𝔖𝔬�̌��̌� = 0. Thus, 𝔖𝔬�̌��̌� ≤ 𝔖𝔬�̌��̌�, for all �̌�, �̌�, �̌� ∈ ℨ. 

 

Lemma 3.14. Let ℨ be a ssBCK-algebra and ≤ be a partial order on ℨ as in Lemma 1.5. 

Then 

 

(1)  �̌� �̌� = 0 if and only if 𝔖𝔬�̌��̌� = 𝔖𝔬�̌��̌�, 

(2)  �̌� ≤ �̌� if and only if 𝔖𝔬�̌��̌� ≤ 𝔖𝔬�̌��̌�, 

 

for all �̌�, �̌� ∈ ℨ. 

 

Proof.  

 

(1)  Let �̌� �̌� = 0. Then �̌� ≤ �̌� from Lemma 1.5. Since 𝔖𝔬�̌��̌� = 𝔖𝔬�̌��̌� ≤ 𝔖𝔬�̌��̌� and 𝔖𝔬�̌��̌� ≤

𝔖𝔬�̌�(𝔖𝔬�̌��̌�)�̌�(𝔖𝔬�̌��̌�) = 𝔖𝔬�̌��̌� from (S1), (S2), Lemma 3.13 and Lemma 1.6 (5), it follows 

that 𝔖𝔬�̌��̌� = 𝔖𝔬�̌��̌�, for all �̌�, �̌� ∈ ℨ. 

 

Conversely, let 𝔖𝔬�̌��̌� = 𝔖𝔬�̌��̌�, for any �̌�, �̌� ∈ ℨ. Thus, �̌� �̌� = (𝔖𝔬�̌��̌�)(𝔖𝔬�̌��̌�) =

(𝔖𝔬�̌��̌�)(𝔖𝔬�̌�𝑦) = �̌�
(𝔖𝔬

�̌��̌��̌��̌�)
= �̌�(𝔖𝔬00) = 0 from (S1)-(S3), Lemma 1.4 (2) and (5). 

 

(2)  �̌� ≤ �̌� ⇔ 0 = �̌� �̌� = (𝔖𝔬�̌��̌�)(𝔖𝔬�̌��̌�) ⇔  𝔖𝔬�̌��̌� ≤ 𝔖𝔬�̌��̌� from Lemma 1.5, (S1) and (S2). 

 

Theorem 3.15. For each atom �̌� of a ssBCK-algebra ℨ, a subset ℨ�̌� = {�̌� ∈ ℨ: �̌��̌� = �̌�} 

of ℨ is an ideal of ℨ. 

 

Proof. Let �̌� be an atom of a ssBCK-algebra ℨ, and ℨ�̌� = {�̌� ∈ ℨ: �̌��̌� = �̌�} be a subset of 

ℨ. It is obvious from Lemma 1.4 (7) that 0 ∈ ℨ�̌�. Assume that �̌� ∈ ℨ�̌� and �̌� �̌� ∈ ℨ�̌�. Then 

𝔖𝔬�̌��̌� ≤ 𝔖𝔬(𝔖𝔬�̌��̌�)(𝔖𝔬�̌��̌�)(𝔖𝔬�̌��̌�)(𝔖𝔬�̌��̌�) = 𝔖𝔬�̌��̌��̌��̌�  from Lemma 1.6 (5), (S1) and (S2). Since 
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(�̌� �̌��̌�
)�̌� = (�̌��̌�)�̌��̌�

= 0                                                                                                                 (6) 

 

from Lemma 1.6 (2), (S1) and Lemma 1.4 (2), it is obtained from Lemma 1.5 that �̌� �̌��̌�
≤

�̌�. Since �̌� is an atom of ℨ, it follows that   �̌� �̌��̌�
= 0 or �̌� �̌��̌�

= �̌�. Hence, 

 

𝔖𝔬�̌��̌��̌��̌� ≤ 𝔖𝔬�̌��̌�                                                                                                                            (7) 

 

or  

 

�̌� = �̌� �̌��̌�
= (𝔖𝔬�̌��̌��̌��̌�)(𝔖𝔬�̌��̌�) ≤ 𝔖𝔬�̌��̌�                                                                                                  (8) 

  

from (S1), (S2), Lemma 1.4 (2), (7), Lemma 1.5 and Lemma 1.6 (2). So, �̌��̌� = �̌� from 

(S2) and Lemma 3.14. Therefore, �̌� ∈ ℨ�̌�, and so, ℨ�̌� is an ideal of ℨ. 

 

But, the inverse of Theorem 3.15 is usually not true. 

 

Example 3. 16. Consider the ssBCK-algebra ℨ in Example 3.2. Then ℨ6 = {0, 3} is an 

ideal of ℨ but 6 is not an atom of ℨ. 

 

Definition 3.17. Let ℨ be a bounded ssBCK-algebra. Then a subset 𝐵�̌� = {�̌� ∈ ℨ: 𝜀̌ ≤ �̌�} 

of ℨ is called a branch of ℨ, where 𝜀̌ is an atom of ℨ. The element 𝜀̌ is called initial for 

𝐵�̌�. If there exists 𝜀̌ ≠ �̌� such that 𝐵�̌� ⊂ 𝐵�̌�, then the branch 𝐵�̌� is called improper. Also, 

the branch 𝐵�̌� is called proper if there is not �̌� ∈ ℨ such that �̌� < 𝜀̌. The set of all initial 

elements of proper branches of ℨ is denoted by 𝐼ℨ
⏞ . Obviously, 𝐼ℨ

⏞ ⊆ ℨ⏞. 

 

Example 3.18. Consider the ssBCK-algebra ℨ in Example 3.2. Then ℨ⏞ = {0, 2, 3, 4},
𝐵0 = ℨ, 𝐵2 = {1, 2, 5, 6}, 𝐵3 = {1, 3, 5, 7} and 𝐵4 = {1, 4, 6, 7} shown in Fig. 2. Also, 

the branches 𝐵2, 𝐵3 and 𝐵4 are improper but 𝐵0 is proper. Clearly, 𝐼ℨ
⏞ = {0} is an ideal of 

ℨ. 

 

 
 

                               
 

Figure 2. Hasse diagrams of ℨ⏞, 𝐵2, 𝐵3 and 𝐵4, respectively. 



BAUN Fen Bil. Enst. Dergisi, 26(1), 29-40, (2024) 

37 

 

Lemma 3.19. Let ℨ be a bounded ssBCK-algebra. Then 𝐵0 = ℨ and is a proper branch 

of ℨ. 

 

Proof. Let ℨ be a bounded ssBCK-algebra. Since 0 is the least element of ℨ and 0 ∈ ℨ⏞, 

it follows that 𝐵0 = ℨ, and so, it is a proper branch of ℨ.  

 

Theorem 3.20. Let ℨ be a bounded ssBCK-algebra. Then 1 ∈ 𝐵�̌�, for all initials 𝜀̌ of ℨ. 

 

Proof. Let ℨ be a bounded ssBCK-algebra. Since 1 is the greatest element of ℨ, it is 

obtained that 𝜀̌ ≤ 1, for all initials 𝜀̌ of ℨ. Then 1 ∈ 𝐵�̌�, for all initials 𝜀̌ of ℨ. 

 

Corollary 3.21. Let ℨ be a bounded ssBCK-algebra. Then ℨ = ⋃ 𝐵�̌�, for all initials 𝜀̌ of 

ℨ. 

 

Theorem 3.22. Let ℨ be a bounded ssBCK-algebra. Then ℨ − 𝐵�̌� is an ideal of ℨ, for all 

nonzero initials 𝜀̌ of ℨ. 

 

Proof. Let ℨ be a bounded ssBCK-algebra. Since 0 is the least element of ℨ, it follows 

that 0 ∉ 𝐵�̌�, for all nonzero initials 𝜀̌ of ℨ. Then 0 ∈ ℨ − 𝐵�̌�, for all nonzero initials 𝜀̌ of 

ℨ. Assume that �̌�, �̌� �̌� ∈ ℨ − 𝐵�̌�. Since �̌�, �̌� �̌� ∉ 𝐵�̌�, it is obtained that �̌� < 𝜀̌ and �̌� �̌� < 𝜀̌. 

Since 𝜀̌ is an atom of ℨ, we have that �̌� = 0 and �̌� �̌� = 0. Thus, �̌� =  �̌�0 = �̌� �̌� = 0 ∈ ℨ −
𝐵�̌� from Lemma 1.4 (6). Hence, ℨ − 𝐵�̌� is an ideal of ℨ. 

 

Theorem 3.23. Let ℨ be a bounded ssBCK-algebra. Then 𝐼ℨ
⏞  is a subalgebra of ℨ. 

 

Proof. Let ℨ be a bounded ssBCK-algebra and 𝐼ℨ
⏞  be defined as in Definition 3.17. Since 

𝐵0 = ℨ is a proper branch of ℨ from Lemma 3.22, we have 0 ∈ 𝐼ℨ
⏞ . Assume that �̌�, �̌� ∈

𝐼ℨ
⏞ . Since �̌� and �̌� are initials for proper branches 𝐵�̌� and 𝐵�̌�, respectively, it follows that 

�̌� and �̌� are atoms of ℨ. Since �̌� �̌� = �̌� ∈ 𝐼ℨ
⏞  and �̌� �̌� = �̌� ∈ 𝐼ℨ

⏞  from Lemma 3.7, it is 

obtained that 𝐼ℨ
⏞  is a subalgebra of ℨ.  

 

Definition 3.24. A nonempty subset ℭ of a bounded ssBCK-algebra ℨ is called a chain if 

any two elements of ℭ are comparable. A chain initiated by 𝜀̌ is denoted by ℭ�̌�. If 𝐵�̌� =
ℭ�̌�, then the branch 𝐵�̌� is called linear. If 𝐵�̌� has at least two incomparable elements of ℨ, 

then it is called expanded. 

 

Example 3.25. Consider the ssBCK-algebra ℨ in Example 3.2. Then ℭ0
1 =

{0, 1, 2, 5}, ℭ0
2 = {0, 1, 3, 5}, ℭ0

3 = {0, 1, 3, 6}, ℭ0
4 = {0, 1, 2, 6}, ℭ0

5 = {0, 1, 4, 6} and 

ℭ0
6 = {0, 1, 4, 7} are chains of ℨ, and ℨ = ℭ0

1 ∪ ℭ0
2 ∪ ℭ0

3 ∪ ℭ0
4 ∪ ℭ0

5 ∪ ℭ0
6. Also, 𝐴 does 

not contain a linear branch. In particular, the branches 𝐵2, 𝐵3 and 𝐵4 are expanded 

branches of ℨ. 

 

Example 3.26. Consider a ssBCK-algebra 𝔗 where 𝔗 = {0, �̂�, �̂�, 1} with Hasse diagram 

in Fig. 3 and Sheffer stroke 𝔖𝔬 on 𝔗 with the Cayley table in Table 2 [20]: 
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Figure 3. Hasse diagram of 𝔗. 

 

Table 2. Table of the Sheffer stroke 𝔖𝔬 on 𝔗. 

 

𝔖𝔬 0 �̂� �̂� 1 

0 1 1 1 1 

�̂� 1 �̂� 1 �̂� 

�̂� 1 1 �̂� �̂� 

1 1 �̂� �̂� 0 

 

Then 𝐵�̂� = ℭ�̂� and 𝐵�̂� = ℭ�̂� are linear branches of 𝔗. Also, 𝔗 = 𝐵0 = ℭ0
1 ∪ ℭ0

2 is an 

expanded branch. 

 

Remark 3.27. Every bounded ssBCK-algebra is an expanded branch by Lemma 3.19. 

 

Theorem 3.28. Let ℨ be a bounded ssBCK-algebra. Then 𝐵�̌� = ⋃ ℭ�̌�
𝑖𝑛

𝑖=1  , for initials 𝜀̌ of 

ℨ. 

 

Proof. Straightforward. 

 

 

4.  Conclusion 

 

In this study, we introduce an atom, a branch and a chain of ssBCK-algebras and 

investigate several properties. Then it is shown that a nonzero element 𝜀̌ of a ssBCK-

algebra is an atom if and only if a subset {0, 𝜀̌} is an ideal, and that each element in a 

ssBCK-algebra is an atom if and only if each subalgebra of the structure is its ideal. We 

illustrate that 𝜀1̌
𝜀2̌ = 𝜀1̌ and 𝜀2̌

𝜀1̌ = 𝜀2̌ if 𝜀1̌ and 𝜀2̌ are nonzero distinct atoms of a ssBCK-

algebra; however, the inverse does not usually hold, and that the set of all atoms of a 

ssBCK-algebra is its subalgebra. Also, we define specified sets �̌� and ℨ�̌�, for an element 

�̌� in a ssBCK-algebra, and prove that these subsets are ideals if the element �̌� is an atom 

of this algebraic structure but the inverse is usually not true. After that improper and 

proper branches of a bounded ssBCK-algebra are built by atoms, we state that every 

branch contains the greatest element 1 of a bounded ssBCK-algebra. It is demonstrated 

that the branch originated by the atom 0 of a bounded ssBCK-algebra equals to the algebra 

itself, and that this algebra is a union of its branches. Moreover, we indicate that the 

complements of branches of a bounded ssBCK-algebra are ideals, and that the set of all 

initial elements of proper branches of a bounded ssBCK-algebra is the subalgebra but it 

is not an ideal. At the end of the study, a chain, linear and expanded branches of a bounded 

ssBCK-algebra are introduced and it is illustrated that every bounded ssBCK-algebra is 

an expanded branch, and any branch is a union of chains initiated by an atom. Therefore, 
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we have achieved our aim to propound similarities and differences among other algebraic 

structures by studying on these specific subsets of ssBCK-algebras. 
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