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 ABSTRACT 

Fractional time derivative is considered in the description of the unsteady fluid flow 

through a horizontal microchannel filled with porous material. The resultant governing 

equations were solved using the Laplace transform technique and the method of 

undetermined coefficient in the Laplace domain. The Riemann-sum approximation 

approach was then utilized to obtain the solution in the time domain. The results were 

then simulated and presented as line graphs utilizing MATLAB (R2015b) to study the 

effects of the parameters involved in the fluid flow. 

ÖZET 

Kesirli zaman türevi, gözenekli malzeme ile doldurulmuş yatay bir mikrokanaldan 

geçen kararsız akışkan akışının tanımlanmasında dikkate alınmıştır. Elde edilen 

yönetici denklemler Laplace dönüşümü tekniği ve Laplace alanında belirlenmemiş 

katsayı yöntemi kullanılarak çözülmüştür. Riemann-toplam yaklaşımı daha sonra 

zaman alanında çözümü elde etmek için kullanılmıştır. Sonuçlar daha sonra simüle 

edilmiş ve akışkan akışına dahil olan parametrelerin etkilerini incelemek için 

MATLAB (R2015b) kullanılarak çizgi grafikler halinde sunulmuştur. 
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Nomenclature 

     Da Darcy number 𝒚′ dimensional y-coordinate 

𝝆 fluid density 𝒖𝒇 dimensionless velocity in the clear fluid region 

𝜷 stress jump coefficient 𝒖𝒇
′  dimensional velocity in the clear fluid region 

     Kn Knudsen number 𝒖𝒑 dimensionless velocity in the porous region 

𝝀 molecular mean free path 𝒖𝒑
′  dimensional velocity in the porous region 

     K permeability of the porous material 𝒖𝒊 dimensionless steady interfacial velocity 

     d interfacial position 𝒖𝒕 transient velocity 

     F 
tangential momentum accommodation 

coefficient 
𝒖𝒕𝒊 transient interfacial velocity 

𝝊𝒆 
kinematics viscosity of the fluid for the porous 

domain 
    P dimensionless pressure gradient 

𝝊𝒇 kinematics viscosity of the fluid 
𝜹𝒑′

𝜹𝒛′
 dimensional pressure gradient 

𝒚 dimensionless y-coordinate 𝜷𝒗 dimensionless variable 

 

1. Introduction 

Fractional Calculus begins when the inventor of calculus Leibnitz received a letter from his colleague L’Hopital 

about what will happen if  
𝑑
1
2𝑦

𝑑𝑥
1
2

 is considered? In his reply he said a paradox of the form √𝑑𝑥: 𝑥 could be obtained 

which might paved ways for important outcomes in the future.  Fractional Calculus is an area that handled arbitrary 

order of derivatives and integrals. In fractional Calculus, the fractional derivatives 
𝑑𝛼𝑦

𝑑𝑥𝛼
 of arbitrary 𝑦  are obtained 

by replacing 𝑛 = 0, 1, 2, … from integer derivatives 
𝑑𝑛𝑦

𝑑𝑥𝑛
 .  This fractional order  (𝛼) might be negative fraction, 

positive fraction or complex number.  

The idea of fractional calculus was neglected during the entire 17th century up to the early 20th century, but its 

importance was discovered during the last three decades by scientist in different fields such as mathematics, 

physics, chemistry, dynamical problems, waves oscillations, electrical network etc. One of the advantages of 

fractional calculus are its solutions of fractional order differential equations revealed a better real-life phenomenal 

when compared to integer solutions obtained from integer differential equations. This could be attributed to the 

fact that fractional derivatives give global explanations on activities over an interval instead of a point in the case 

of one variable whereas integer derivatives only give descriptions of local activities at a particular point. In reality, 

real-life situations could happen around a particular point instead of a given point [1]. Many scientists and 

engineers have developed interest toward the application of fractional differential equations recently, these 

equations consist of fractional derivatives or fractional integrals due to its applications in different disciplines such 

as biology, chemistry, physics and so on. They are usually applied to porous media, random walks with memory, 

dynamics of complex material, dynamical systems that consist of dynamical chaotic behavior and quasi-chaotic 

dynamical systems [2]. 

Recently, the applications of fractional time derivatives in modelling fluid flow thorough porous medium have 

attract the attentions of so many researchers in the field of fluid mechanics. The governing equations which are in 

fractional order are solved analytically to obtained a fractional order solution. Hamid et al. [3] explained that for 

little values of time (𝑡), while increase in the fractional parameter (𝛼) the velocity of the fluid increases but after 

some critical values of time 𝑡𝑐 the behavior is reverse and also discovered that heat transfer increases as increasing 

the nanoparticles volume fraction parameter. Ali et al. [4] noticed that from the graphical results, the fractional 

couple stress nanofluid (CSNF) model described more realistic feature of the velocity distribution better than the 

classical CSNF model and further realized that increase in the temperature profile and concentration profile is 
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observed by increasing value of α for the small values of τ. Opposite effect of α is noticed for the large values of 

τ. Saqib et al. [5] they explained that the numerical results obtained indicated that the fractional parameters 

significantly affect the temperature and velocity fields. It is noticed that the temperature field increased with an 

increase in the fractional parameter. Whereas the effect of fractional parameters is opposite on the velocity field 

near the plate. In, another research work, [6] said that fractional solutions for temperature and velocity fields are 

more general, reliable, and flexible, with memory and heredity properties that can be numerically reduced for any 

values of 0 <∝≤ 1. The velocity profile increases with increased permeability of the porous medium and thermal 

Grashof number, due to the improvement in the velocity boundary layer. Atangana and Bildik [7], said the 

numerical simulations show that the fractional order derivative plays an important role in the simulation process. 

In addition, they compare the analytical solution with experimental data to access the accuracy of the fractional 

groundwater model and concluded that analytical solution was in perfect agreement with the experimental data.  

There are numerous definitions of fractional derivatives models, thus the available literatures have provided us 

with Riemann-Liouville fractional derivative model, the Caputo (C) fractional derivative model, the Weyl 

fractional derivative model and the newly presented definition of Caputo-Fabrizio time fractional derivative model 

in 2015 with local kernel that provided two expressions for the space and time variable [8]. The goal of this research 

is to investigate the application of fractional derivatives (in Caputo fractional time derivatives sense) to fluid flow 

in a horizontal microchannel filled with porous materials to obtain the solutions in fractional order, which were 

also utilized in [9-13]. The Caputo fractional time derivative model is used to derived the solution of velocity 

profile of the flow when the driven force is induced by pressure gradient subjects to velocity gradient boundary 

condition of homogeneous differential equations. 

This research work has laid emphasis on [14] which studied unsteady flow in a horizontal parallel-plate 

microchannel filled with a constant uniform porous material where they neglect the inertial effects in the porous 

region which is not in the literature. It is also utilized the Brinkman-extended Darcy law to model the fluid flow in 

the porous layer, while for the clear fluid region, the Stokes equation was used to model the flow. The driven force 

that influenced the flow formation within the microchannel is called pressure driven force. 

2. Mathematical Analysis 

Ghadle et al. [15], reported that for 𝑚 to be the smallest integer that exceed 𝛼, the Caputo fractional time derivative 

operator of order 𝛼 > 0 is defined as; 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) =  

{
 
 

 
 1

𝛤(𝑚 − 𝛼)
∫ (𝑡 − 𝜏)𝑚−𝛼−1

𝜕𝑚

𝜕𝑡𝑚
𝑢(𝑥, 𝜏)

𝑡

0

 𝑑𝜏 ,   𝑓𝑜𝑟 𝑚 − 1 < 𝛼 ≤ 𝑚,

𝜕𝑚

𝜕𝑡𝑚
𝑢(𝑥, 𝜏) 𝑓𝑜𝑟 𝛼 = 𝑚 , 𝑚 ∈ 𝑁                                                     

 (1) 

Consider the fully developed unsteady laminar fluid flow in horizontal microchannel parallel-plates filled with 

uniform porous medium. The flow is assumed to be in the x-direction which is taken horizontally along the channel 

plates which are H distance apart and the y-axis is taken normal to the plates. At 𝑡 ≤ 0, the fluid is at rest with 

initial velocity 𝑢(𝑦, 0) = 0, for all y. For 𝑡 > 0, the velocity 𝑢(0, 𝑡) = 0, 𝑎𝑡 𝑦 = 0 and becomes 𝑢(𝐻, 𝑡) =

0, 𝑎𝑡 𝑦 = 𝐻. 

The geometry of the system under consideration in this present study is shown schematically in Figure 1. 
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Fig. 1. Geometry of the problem. 

The governing equation for the flow is given as; 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝛾

𝜕2𝑢(𝑥,𝑡)

𝜕𝑦2
−
𝑢(𝑥,𝑡)

𝐷𝑎
+ 𝑃   (2) 

with its initial and boundary condition as; 

𝐷𝑡
𝛼 𝑡 ≤ 0: 𝑢(𝑦, 𝑡) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦𝑢(𝑥, 𝑡) = 𝛾

𝜕2𝑢(𝑥,𝑡)

𝜕𝑦2
−
𝑢(𝑥,𝑡)

𝐷𝑎
+ 𝑃   (3) 

𝑡 > 0: 

{
 
 

 
 𝑢(𝑦, 𝑡) = +𝛽𝑣𝐾𝑛

𝑑𝑢(𝑦, 𝑡)

𝑑𝑦
 , 𝑎𝑡 𝑦 = 0

𝑢(𝑦, 𝑡) = −𝛽𝑣𝐾𝑛
𝑑𝑢(𝑦, 𝑡)

𝑑𝑦
, 𝑎𝑡 𝑦 = 𝐻

 (4) 

where the non-dimensional parameters are given as; 

{
  
 

  
 𝑢 =

𝑢′

𝑈
 , 𝑦 =

𝑦′

𝐻
, 𝑑 =

𝑑′

𝐻

𝛾 =
𝜐𝑒
𝑢
, 𝐷𝑎 =

𝑘′

𝐻2
, 𝑃 = −

1

𝜌

𝐻2

𝑈𝑢

𝑑𝑃

𝑑𝑥

𝑡 =
𝑡′𝑣

𝐻2
, 𝛽𝑣 =

2 − 𝐹

𝐹
, 𝐾𝑛 =

𝜆

𝐻

 (5) 

where (𝐷𝑎)  is the Darcy number, (𝐾𝑛) is the Knudsen number, (𝑃)  is the non-dimensional pressure gradient and 

𝛽𝑣 is a non-dimensional variable. The physical quantities used in Equation (5) are defined in the nomenclature. 

By introducing the Laplace transform of the non-dimensional velocity of the flow  𝑈̅(𝑠, 𝑦) = ∫ 𝑢(𝑡, 𝑦)𝑒−𝑠𝑡𝑑𝑡
∞

0
 

(Where s is the Laplace parameter), equation (2) subject to the initial condition of Equation (3) yield; 

𝑑2𝑈̅(𝑠, 𝑦)

𝑑𝑦2
− (

𝑠𝛼𝐷𝑎 + 1

𝛾𝐷𝑎
) 𝑈̅(𝑠, 𝑦) +

𝑃

𝛾𝑠
= 0 (6) 

while boundary condition (4) becomes 

1

𝑠2
> 0: 

{
 
 

 
  𝑈̅(𝑠, 0) = +𝛽𝑣𝐾𝑛

𝑑 𝑈̅(𝑠, 0)

𝑑𝑦
  , 𝑎𝑡 𝑦 = 0

 𝑈̅(𝑠, 𝐻) = −𝛽𝑣𝐾𝑛
𝑑 𝑈̅(𝑠, 𝐻)

𝑑𝑦
 , 𝑎𝑡 𝑦 = 𝐻

 (7) 
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Equations (6) is solved, obtaining the particular solution by the method of undetermined coefficient and using the 

boundary conditions (7) to get the following solution. 

𝑈̅(𝑠, 𝑦) = 𝑘6𝑐𝑜𝑠ℎ𝑘1𝑦 + 𝑘5𝑠𝑖𝑛ℎ𝑘1𝑦 + 𝑘2 

(8) 

where 𝑘1 = √
𝑠𝛼𝐷𝑎+1

𝛾𝐷𝑎
 ,  𝑘2 =

𝑃𝐷𝑎

𝑠𝛼+1+𝑠
,  𝑘3 = cosh (𝑘1𝐻) + 𝛽𝑣𝐾𝑛𝑘1𝑠𝑖𝑛ℎ(𝑘1𝐻), 

𝑘4 = 𝑠𝑖𝑛ℎ(𝑘1𝐻) + 𝛽𝑣𝐾𝑛𝑘1cosh (𝑘1𝐻),  𝑘5 =
𝑘1𝑘2

𝛽𝑣𝐾𝑛𝑘1𝑘3+𝑘4
 

𝑘6 = 𝛽𝑣𝐾𝑛𝑘1𝑘5 − 𝑘2, 

Equations (8) which is in Laplace domain need to be inverted by Riemann- sum approximation in order to 

determine the velocity in time domain. Due to the difficulty in obtaining the inverse of this equation, we use a 

numerical means. In this method, functions in the Laplace domain “s” can be inverted to time domain as follows; 

𝑢(𝑡, 𝑦) =
𝑒𝜀𝑡

𝑡
(
1

2
𝑈̅(𝜀, 𝑦) + 𝑅𝑒∑(−1)𝑘𝑈̅ (𝜀 +

𝑖𝑘𝜋

𝑡
, 𝑦)

𝑛

𝑘=1

) (9) 

Ajibade [16], clearly explained the usefulness of equation (9) to obtained desirable result, where Re is the real 

part, i=√(-1)  is the imaginary part, n been the number of terms used in the Riemann-sum approximation and the 

real part of the Bromwich contour is ε which is used to invert functions in Laplace domain to time domain. 

By the use of expression (8) we obtain the skin-friction (τ ̂) on the plates of the channel as follows; 

𝜏̂0 =
𝑑𝑈(𝑠, 𝑦)

𝑑𝑦
|
𝑦=0

= 𝑘1𝑘5 (10) 

𝜏̂1 =
𝑑𝑈(𝑠, 𝑦)

𝑑𝑦
|
𝑦=1

= 𝑘1(𝑘5𝑐𝑜𝑠ℎ𝑘1 − 𝑘6𝑠𝑖𝑛ℎ𝑘1) (11) 

Equations (10) and (11) which are the skin-frictions at both walls are also inverted back to the time domain with 

the aid of expression (9). 

3. Results and Discussion 

The effects of fractional time derivatives on pressure driven flow through horizontal microchannel filled with 

porous materials have been studied. The graphical computations for different values of  𝛼, 𝐷𝑎, 𝐾𝑛, 𝑃 𝑎𝑛𝑑 𝑡 have 

been carried out with velocity as presented in Figures 2-6 to enable us clearly observed the effect of different 

governing parameters on the flow. 

 
Fig. 2. Variation of fractional order (α) when the flow is induced by pressure gradient 
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Fig. 3. Variation of Darcy number (Da) when the flow is induced by pressure gradient. 

 
Fig. 4. Variation of Knudsen number (Kn) when the flow is induced by pressure gradient. 

 
Fig. 5. Variation of pressure (P) when the flow is induced by pressure gradient. 
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Fig. 6. Variation of time (t) when the flow is induced by pressure gradient. 

At Figure 2, it can be observed that increasing the fractional order 𝛼 between the interval of  0 ≤ 𝛼 < 1 increases 

the velocity while at 𝛼 ≥ 1, it displays an irregular flow pattern. Figure 3 displays the flow of increasing Darcy 

number (𝐷𝑎)  increases the velocity of the fluid. This implies that increasing the porousity enhances the fluid flow 

within the microchannels. Figure 4 also reveals an increase in Knudsen number (𝐾𝑛)  increases the flow velocity 

which is an indication that enlarging the width of the microchannel increases the fluid flow but converges as the 

flow progresses and a converse flow is observed within the channel. Similarly, Figure 5 also displays the same 

flow pattern as figure 3, it is clearly seen that increasing the pressure of the flow within the microchannel increases 

the fluid velocity which is the only driven force under consideration when negleting the movement of one of walls. 

At Figure 6, due to the unsteady fluid flow, the velocity is found to increase when increasing the value of time (𝑡). 

This is an indication that with a constant pressure, the flow velocity through the porous medium is independent of 

time to come to rest or to attained steady state. 

The effects of fractional order, Darcy number and Knudsen number on the skin friction at the plates are obtained 

with expressions (10) and (11) as shown in Table 1. 

Table 1. Effects of Fractional order, Darcy number and Knudsen number on skin friction. 
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It can be noticed that increase in fractional order 𝜶  and Knudsen number 𝐾𝑛 decreases the skin friction on both 

walls which implies that gradual increasing the diameter of the channel decreases the effects of the fluid molecules 

on the skin friction while the converse is the case for Darcy number (𝐷𝑎) where increase in (𝐷𝑎) increases the 

skin friction on both walls. This is an indication that increasing the Darcy number (𝐷𝑎) increases the permeability 

of the fluid flow through the porous medium. 

4. Conclusion 

This study investigates the effect of fractional time derivatives on unsteady fluid flow induced by pressure driven 

flow through horizontal parallel microchannel filled with porous medium. The influence of the governing 

parameters is discussed with help of the line graphs. It is observed that the increase in fractional order within some 

certain interval increases the velocity profile. Furthermore, the velocity profiles increase with increase in Darcy 

number (𝐷𝑎), Knudsen number (𝐾𝑛), pressure (𝑃) and time (𝑡). However, the fluid flow on the skin friction 

increases with increase in Darcy number (𝐷𝑎)  but decreases with increase in both fractional order 𝜶   and Knudsen 

number (𝐾𝑛).  
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