

GAZİOSMANPAŞA BİLİMSEL ARAŞTIRMA DERGİSİ (GBAD)

Gaziosmanpasa Journal of Scientific Research

ISSN: 2146-8168

http://dergipark.gov.tr/gbad

Araştırma Makalesi (Research Article)

Cilt/Volume : 12

Sayı/Number: 1

Yıl/Year: 2023

Sayfa/Pages: 76-85

Alınış tarihi (Received): 02.02.2023

Kabul tarihi (Accepted): 22.05.2023

Applied Comparison of String Matching Algorithms

Zeynep BARUT1,* Volkan ALTUNTAŞ2

1Bursa Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü, Bursa
1Bursa Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü, Bursa

*Sorumlu yazar: zebarut@gmail.com

ABSTRACT: String matching algorithms are used to find a particular pattern in a string. The aim of this

research is to explain the basic ideas and complexity of current string matching algorithms and to perform

applied comparison. There are many algorithms used for string matching. In this study, Knuth-Morris-Pratt,

Rabin Karp and Boyer Moore Horspool algorithms were compared. It is aimed to increase the accuracy of the

study by choosing different algorithms. The basic ideas, potential difficulties and complexities of the algorithms

are explained and how these problems can be solved is emphasized. In order to better evaluate the algorithms,

three different algorithms were compared in twenty-five different pattern types. As a result of the studies, it has

been seen that the Knuth-Morris-Pratt algorithm outperforms other algorithms in most cases. The second best

performing algorithm was Boyer Moore Horspool algorithm, and the worst performing algorithm was Rabin

Karp algorithm.

Keywords – String Matching, DNA Sequence, Gene Analysis

1. Introduction

DNA and protein sequence are long texts found over certain alphabets. These texts appear in

problems such as searching for specific sequences, assembling the DNA chain from

experimentally obtained fragments, or determining how different two genetic sequences are

from each other. However, due to different kinds of errors in experimental measurements,

small differences in chains, mutations, evolutionary changes, patterns often do not match the

text. Because of all these problems, string matching algorithms are used to find and calculate

similarities. String matching is one of the popular areas of research that finds a pattern within

a string. Strings formed with certain alphabets form DNA sequences that indicate the genetic

code of living things. Through these strings, operations such as searching for certain

sequences, determining how similar or different two genetic sequences are, and finding

chains that are very similar to the DNA chain sought are performed. In order to perform all

these operations, string matching algorithms must be used (Navarro, 2001).

An abnormality is detected by comparing a sequence with a normal sequence. In order to

predict the function of a gene, comparisons are made with other similar genes. After the

comparison, the new sequence is revealed and matched to the existing sequences. Alignment

is performed by finding the same characters in the sequences. Figure 1 shows the alignment

of the two sequences (Tripathi ve Pandey, 2016).

http://dergipark.gov.tr/gbad

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 77

Figure 1. Alignment of two sequences (Tripathi ve Pandey, 2016).

In order for diseases to be detected, repetitions in a particular gene must be found. These

repeats may be of different lengths or the repeats may be defective. DNA repeats are

sequences found in more than one copy. A definite repeat is a short sequence of nucleotides

repeated at least twice contiguously. An approximate repeat is a sequence of nucleotides that

is repeatedly repeated with differences between samples. Duplicates that are distant in the

genome are called distant or scattered repeats (Pop, 2015).

Choosing the appropriate string matching algorithm is an important process. A string

matching algorithm looks for the pattern in the string without paying attention to the order

in the alphabet. These stages require a lot of computation and are time consuming. According

to the complexity or application of the problems, the most suitable string matching algorithm

should be selected among various algorithms. String matching algorithms are divided into

two as Exact string matching algorithms and Approximate string matching algorithms as

given in Figure 2. Exact string matching algorithms find exact matches, while Approximate

string matching algorithms find similar matches. Which algorithm is appropriate to use

should be determined according to the requirements (Hakak ve ark. 2019).

Figure 2. Classification of string matching algorithms (Hakak ve ark. 2019).

Various implementations of many string matching algorithms have been made. By trying

different applications with different algorithms, it was tried to find the best performing

algorithm for the applications. Thus, it is aimed to reduce the complexity and shorten the

computation time. As a result of the studies, it has been seen that the use of Boyer Moore

and Knuth Morris Pratt algorithms is more efficient (Singla and Garg, 2012). A new string

matching algorithm is proposed. The proposed algorithm is aimed to be used in the field of

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 78

network security. As a result of the studies, it has been seen that the new algorithm is more

efficient than Boyer Moore and the performance increases as the pattern gets longer. In

addition, the overall performance of the new algorithm was found to be very high compared

to other algorithms (Alshahrani and Khalil, 2022). A faster algorithm is proposed instead of

the Boyer Moore algorithm. As a result of the studies, it has been seen that the proposed

algorithm can match efficiently. It also reduced the comparison time (Yuan, 2011). It is

aimed to develop the Boyer Moore algorithm using a shift table algorithm. The string is

preprocessed through this algorithm. In this way, it has been seen that the algorithm is more

successful. The complexity of the created algorithm is O(N) (Kanuga, 2015). Sequences of

different lengths were tried on the data set by proposing a new algorithm. As a result of the

studies, it has been seen that the algorithm created has high performance. It has also been

observed that the algorithm works better as the string length increases (Islam ve Talukder,

2017)

2. Material and Methods

In this study, three algorithms were tested on the Citi bike trip data set in twenty-five different

pattern types in order to find pattern matches in a text. By making applied comparisons of

the algorithms, the results were examined and the algorithms were compared.

Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt algorithm is used to find patterns in a text. This algorithm looks at

the characters one by one and compares them from left to right. In case of mismatch, prior

information is used to avoid matching characters that are already known to match based on

previous information, as some characters in the next window are known. In case of mismatch,

it uses a preprocessed table called a prefix table to skip character comparison during

matching. An example of the calculation of the algorithm is given in Figure 3. Most naive

string matching algorithms run in O(nm) time, while the Knuth-Morris-Pratt algorithm runs

in O(m + n) time. In the algorithm, n represents the length of the string and m the length of

the pattern. The time complexity of the algorithm is very fast compared to other string

matching algorithms. But it is a complex algorithm to understand. It is widely used in the

fields of bioinformatics and DNA sequencing (Mathur, 2022).

Figure 3. Representation of the Knuth-Morris-Pratt algorithm (Mathur, 2022).

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 79

Rabin Karp Algorithm

Rabin Karp algorithm uses hash function to find string matching matches and compares hash

values. If the values are the same, it performs left-to-right comparison for each character in

the pattern. Like the naive string matching algorithm, it does not look at every character, it

separates unmatched characters. Because it uses hash, it calculates quickly and avoids

conflicts. The hash values of a window of the pattern and string may match, but the window

may not be the actual pattern. This increases the time complexity of the algorithm. An

example of calculating the hash values of windows is given in Figure 4. The average and

best-case complexity of the algorithm is O(m + n) and the worst-case complexity is O(mn)

(Anonymous, 2022).

Figure 4. Hash values of scrolled windows (Anonymous, 2022).

Boyer Moore Horspool Algorithm

Boyer Moore algorithm uses the good suffix rule whereas Boyer Moore Horspool algorithm

is simpler to implement as it uses the bad character rule. Boyer Moore Horspool is used to

find one or more patterns in a string. This algorithm aligns and compares each character of

the string with the pattern. The mismatch table is created from pattern characters. If there is

no match, the search jumps to the next matching position in the pattern based on the value

specified in the mismatch table. The running time of the algorithm depends on the size of the

searched string. The run time is short compared to most search algorithms. It does not check

all the characters because it jumps with the help of the mismatch table. The longer the pattern,

the faster the algorithm. Because if the match between the two strings fails, the algorithm

uses the mismatch table to extract the positions where the substring cannot match. The worst

case complexity is O(nm). An example of the calculation of the algorithm is given in Figure

5 (Saldana, 2021).

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 80

Figure 5. Representation of the Boyer Moore Horspool algorithm (Saldana, 2021).

3. Results and Discussion

Three different algorithms were compared in twenty-five different pattern types. Dev C++

development environment was used to implement the applications. As the data set, June 2014

data was used among the Citi bike trip data. There are 15 features and 936,881 rows of data

in the data set (Anonymous, 2023). A view from the data set is given in Figure 6. In the first

five cases, various string formations are looked at. Between the Sixth and Tenth cases, the

occurrence of the numbers when it is possible to test them is looked at. Searched for a long

string between the eleventh and fifteenth states. Searched for a short string between the

sixteenth and twentieth states. In the last five cases, a string that is not in the data set is

searched. The performance results of the Knuth-Morris-Pratt algorithm are given in Table 1,

the performance results of the Rabin-Karp algorithm are given in Table 2, and the

performance results of the Boyer-Moore-Horspool algorithm are given in Table 3. It has been

observed that the Knuth-Morris-Pratt algorithm gives better results when the searched string

is diverse, when the searched string is very short, and when a string is searched that is not in

the dataset. It has been observed that Rabin-Karp algorithm gives better results in cases

where the searched string is diverse and the searched string is very short. It has been seen

that Boyer-Moore-Horspool algorithm gives better results in cases where the searched string

is diverse and the searched string is very long and short. In most cases, the Knuth-Morris-

Pratt algorithm outperformed other algorithms. In general, Boyer Moore Horspool algorithm

gave better results than Knuth-Morris-Pratt algorithm in very long strings where time

occurrences are searched. The second best performing algorithm was Boyer Moore Horspool

algorithm, and the worst performing algorithm was Rabin Karp algorithm. The Boyer-

Moore-Horspool algorithm skips when there is a mismatch. Rabin Karp algorithm works

slower as it does not skip any characters (Biçer ve Zhang, 2019).

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 81

Figure 6. A view of the dataset

Table 1. Performance results of the Knuth-Morris-Pratt algorithm

Knuth-Morris-Pratt Algorithm

Case Pattern Type Pattern Time

1 Many Patterns “Shevchenko Pl & E 7 St” 1985469 microsecond

2 Many Patterns “Broadway & W 29 St” 1847674 microsecond

3 Many Patterns “Cadman Plaza West & Montague St” 1834609 microsecond

4 Many Patterns “E 47 St & 1 Ave” 11431 microsecond

5 Many Patterns “Lexington Ave & E 26 St” 426877 microsecond

6 Timestamp - Digits “2014-07-01 00:05:06” 2299193 microsecond

7 Timestamp - Digits “2014-06-01 00:16:12” 2303608 microsecond

8 Timestamp - Digits “2014-06-28 13:11:12” 596743 microsecond

9 Timestamp - Digits “2014-06-01 00:08:42” 563297 microsecond

10 Timestamp - Digits “2014-07-01 00:00:57” 532006 microsecond

11

Very Long

“Elizabeth St & Hester

St"",""40.71729"",""-

73.996375"",""250"",""Lafayette St &

Jersey St”

1869288 microsecond

12

Very Long

“Clark St & Henry

St"",""40.69760127"",""-

73.99344559"",""274"",""Lafayette Ave &

Fort Greene Pl”

1835850 microsecond

13 Very Long

“Broadway & E 14

St"",""40.73454567"",""-

73.99074142"",""459"",""W 20 St & 11

Ave"",""40.746745”

438279 microsecond

14 Very Long

“Howard St & Centre

St"",""40.71910537"",""-

73.99973337"",""507"",""E 25 St & 2

Ave”

421778 microsecond

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 82

15 Very Long

“Watts St & Greenwich

St"",""40.72405549"",""-

74.00965965"",""358"",""Christopher St

& Greenwich St”

463464 microsecond

16 Very Short “ab” 1882694 microsecond

17 Very Short “ca” 1873651 microsecond

18 Very Short “ad” 432266 microsecond

19 Very Short “sc” 437420 microsecond

20 Very Short “West” 15616 microsecond

21 Not Exists “bbb” 1877225 microsecond

22 Not Exists “bab” 1876326 microsecond

23 Not Exists “dca” 437515 microsecond

24 Not Exists “East” 421779 microsecond

25 Not Exists “dme” 421775 microsecond

Table 2. Performance results of the Rabin-Karp algorithm

Rabin-Karp Algorithm

Case Pattern Type Pattern Time

1 Many Patterns “Shevchenko Pl & E 7 St” 10779624 microsecond

2 Many Patterns “Broadway & W 29 St” 10864922 microsecond

3 Many Patterns “Cadman Plaza West & Montague St” 10777935 microsecond

4 Many Patterns “E 47 St & 1 Ave” 15696 microsecond

5 Many Patterns “Lexington Ave & E 26 St” 2506316 microsecond

6 Timestamp - Digits “2014-07-01 00:05:06” 10791227 microsecond

7 Timestamp - Digits “2014-06-01 00:16:12” 10795988 microsecond

8 Timestamp - Digits “2014-06-28 13:11:12” 2589611 microsecond

9 Timestamp - Digits “2014-06-01 00:08:42” 2542778 microsecond

10 Timestamp - Digits “2014-07-01 00:00:57” 2524888 microsecond

11

Very Long

“Elizabeth St & Hester

St"",""40.71729"",""-

73.996375"",""250"",""Lafayette St &

Jersey St”

10801142 microsecond

12

Very Long

“Clark St & Henry

St"",""40.69760127"",""-

73.99344559"",""274"",""Lafayette Ave &

Fort Greene Pl”

10811950 microsecond

13 Very Long

“Broadway & E 14

St"",""40.73454567"",""-

73.99074142"",""459"",""W 20 St & 11

Ave"",""40.746745”

2511660 microsecond

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 83

14 Very Long

“Howard St & Centre

St"",""40.71910537"",""-

73.99973337"",""507"",""E 25 St & 2

Ave”

2516286 microsecond

15 Very Long

“Watts St & Greenwich

St"",""40.72405549"",""-

74.00965965"",""358"",""Christopher St

& Greenwich St”

2752474 microsecond

16 Very Short “ab” 10657736 microsecond

17 Very Short “ca” 10747151 microsecond

18 Very Short “ad” 2476132 microsecond

19 Very Short “sc” 2502266 microsecond

20 Very Short “West” 31244 microsecond

21 Not Exists “bbb” 10686658 microsecond

22 Not Exists “bab” 10691513 microsecond

23 Not Exists “dca” 2512482 microsecond

24 Not Exists “East” 2502403 microsecond

25 Not Exists “dme” 2580395 microsecond

Table 3. Performance results of the Boyer-Moore- Horspool algorithm

Boyer-Moore- Horspool Algorithm

Case Pattern Type Pattern Time

1 Many Patterns “Shevchenko Pl & E 7 St” 2680581 microsecond

2 Many Patterns “Broadway & W 29 St” 2700258 microsecond

3 Many Patterns “Cadman Plaza West & Montague St” 682834 microsecond

4 Many Patterns “E 47 St & 1 Ave” 31208 microsecond

5 Many Patterns “Lexington Ave & E 26 St” 589579 microsecond

6 Timestamp - Digits “2014-07-01 00:05:06” 1575196 microsecond

7 Timestamp - Digits “2014-06-01 00:16:12” 1831472 microsecond

8 Timestamp - Digits “2014-06-28 13:11:12” 441392 microsecond

9 Timestamp - Digits “2014-06-01 00:08:42” 490741 microsecond

10 Timestamp - Digits “2014-07-01 00:00:57” 384700 microsecond

11

Very Long

“Elizabeth St & Hester

St"",""40.71729"",""-

73.996375"",""250"",""Lafayette St &

Jersey St”

230807 microsecond

12

Very Long

“Clark St & Henry

St"",""40.69760127"",""-

73.99344559"",""274"",""Lafayette Ave &

Fort Greene Pl”

220547 microsecond

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 84

13 Very Long

“Broadway & E 14

St"",""40.73454567"",""-

73.99074142"",""459"",""W 20 St & 11

Ave"",""40.746745”

62485 microsecond

14 Very Long

“Howard St & Centre

St"",""40.71910537"",""-

73.99973337"",""507"",""E 25 St & 2

Ave”

78790 microsecond

15 Very Long

“Watts St & Greenwich

St"",""40.72405549"",""-

74.00965965"",""358"",""Christopher St

& Greenwich St”

62495 microsecond

16 Very Short “ab” 5185651 microsecond

17 Very Short “ca” 5141319 microsecond

18 Very Short “ad” 1213935 microsecond

19 Very Short “sc” 1196737 microsecond

20 Very Short “West” 15615 microsecond

21 Not Exists “bbb” 5163754 microsecond

22 Not Exists “bab” 5199936 microsecond

23 Not Exists “dca” 1224822 microsecond

24 Not Exists “East” 1246675 microsecond

25 Not Exists “dme” 1219397 microsecond

4. Conclusion

In this study, an applied comparison of algorithms was carried out to explain the basic ideas

and complexity of the algorithms. Knuth-Morris-Pratt, Rabin Karp and Boyer Moore

Horspool algorithms were used for the study. Rabin Karp algorithm gave results close to

Boyer Moore Horspool algorithm, but in no case better than Boyer Moore Horspool

algorithm, only when the searched string is diverse, when the string is very short and when

a string is searched that is not in the data set. The Rabin Karp algorithm is the slowest

matching algorithm in all cases because it does not use a mismatch table. Boyer Moore

Horspool was second in most cases as he used a mismatch table when there was any

mismatch. The fastest algorithm was the Knuth-Morris-Pratt algorithm. Here, it is aimed to

increase the accuracy by choosing algorithms with different structures. The algorithms used

were examined and compared on the same data set. In the future, an up-to-date and more

comprehensive review will be made by using new algorithms and data sets apart from the

existing algorithms used in the study. In addition, by developing a faster and more efficient

new algorithm for high number of string comparisons, significant progress can be achieved

in many areas. As the string length increases, the memory savings become significant and

the system slows down. It would be more efficient to consider a different algorithm with

lower time complexity.

BARUT ve ALTUNTAŞ /GBAD, 2023, 12(1), 76-85 85

5. References

Alshahrani, A.M., Khalil, M.I., 2022. Exact and Like String Matching Algorithm for Web and Network

Security. 2013 World Congress on Computer and Information Technology (WCCIT).

Anonymous. Index of bucket tripdata, https://s3.amazonaws.com/tripdata/index.html. Accessed: 29 January

2023.

Anonymous. Rabin - Karp Algorithm, https://www.programiz.com/dsa/rabin-karp-algorithm. Accessed: 29

January 2023.

Biçer, M., Zhang, X., 2019. An Efficient, Hybrid, Double-Hash String Matching Algorithm. 2019 IEEE Long

Island Systems, Applications and Technology Conference (LISAT).

Hakak, S.I., Kamsın, A., Shıvakumara, P., Gılkar, G.A., Khan, W.Z., Imran, M., 2019. Exact String Matching

Algorithms: Survey, Issues, and Future Research Directions. Special Section On New Trends in

Brain Signal Processing and Analysis, 7, 69614-69637.

Islam, T., Talukder, K.H., 2017. An Improved Algorithm for String Matching using Index Based Shifting

Approach. 20th International Conference of Computer and Information Technology (ICCIT), 22-24

December.

Kanuga, P., 2015. New Shift table Algorithm For Multiple Variable Length String Pattern Matching. 2015

International Conference on Circuit, Power and Computing Technologies [ICCPCT].

Mathur, T., 2022. KMP Algorithm, https://www.scaler.com/topics/data-structures/kmp-algorithm/. Accessed:

29 January 2023.

Navarro, G., 2001. A Guided Tour to Approximate String Matching. ACM Computer Surveys, 33(1), 31-88.

Pop, P. G., 2015. DNA Repeats Detection Using a Dedicated Dot-Plot Analysis. 2015 38th International

Conference on Telecommunications and Signal Processing (TSP).

Saldana, F., 2021. The Boyer-Moore-Horspool Algorithm, https://www.encora.com/insights/the-boyer-moore-

horspool-algorithm. Accessed: 29 January 2023.

Singla, N., Garg, D., 2012. String Matching Algorithms and their Applicability in various Applications.

International Journal of Soft Computing and Engineering (IJSCE), 1(6), 218-222.

Tripathi, S., Pandey, A. K., 2016. Identifying DNA Sequence by using Stream Matching Techniques. 5th

International Conference on System Modeling & Advancement in Research Trends, 25th_27'h

November, 334-338.

Yuan, L., 2011. An Improved Algorithm for Boyer-Moore String Matching in Chinese Information Processing.

2011 International Conference on Computer Science and Service System (CSSS), 182-184.

https://ieeexplore.ieee.org/xpl/conhome/6601034/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7284610/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7284610/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7284610/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5959270/proceeding

