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Abstract 

In this paper, a fast and simultaneous integration routine tailored for obtaining results of multiple 

numerical integrations is introduced. In the routine, the same nodes are used when integrating 

different functions along the same integration path. In the paper it is demonstrated by several 

examples that if the integrands of interest are similar on the integration path, then using the same 

nodes decreases the computational costs dramatically. While the method is introduced by 

updating the popular Gauss-Kronrod quadrature rule, the same steps given in the paper can be 

applied to any other numerical integration rule.  
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1. Introduction 

Numerical integration routines are indispensable tools in modern engineering. They are used in nearly every type of 

advanced engineering problems to obtain the integration result of a given integrand, especially when there is no closed-

form analytical result [1–6]. In some problem types, the integration results of multiple integrands may be needed 

simultaneously. For instance, when obtaining the power flow generated by an electromagnetic source, all of the 

components of electric and magnetic fields are needed [7–9]. These quantities are usually obtained by computational 

electromagnetic methods such as finite element method [10], method of moments [11,12] or method of multipoles [13] 

where numerical integration routines are employed. The integrands of such integrations are usually similar in shape 

because the locations of the singularities, branch cuts and branch points are observed at the same locations on the 

integration plane. As a result of this fact, the distribution of nodes obtained by the adaptive numerical integration 

methods becomes very similar for all the integrands, if not the same. Using this observation, one can use the same set of 

nodes for all the integrations simultaneously, which eliminates the necessity of calculating the same functions when 

building up the integrands.  

In this paper, a simultaneous integration routine that can be used to numerically integrate similar integrands is introduced. 

If the multiple integrands have same types of functions as their constituents and have the same distribution of 

singularities, branch points and cuts around the integration path, the introduced method decreases the computation costs 

of integrations dramatically. 

The paper is organized as follows. In section 2, the method is described in detail by reminding the important aspects of 

the popular Gauss-Kronrod quadrature rule and the upgrade introduced in the paper. In section 3, numerical examples 

are given to demonstrate the efficiency and advantages of the method. In Section 4, the outcomes of the paper are listed. 

2. Simultaneous Numerical Integration of Similar Integrands by Gauss-Kronrod Quadrature 

One of the most popular numerical integration methods that is frequently used in computational electromagnetics is the 

Gauss-Kronrod rule, which is an upgraded version of the well-known n-point Gauss quadrature rule defined as follows 

[14]: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈ 𝐺𝑛 = ∑𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

= �⃗⃗� 𝑓(𝑥 ) (1) 

where 𝑤𝑖 and 𝑥𝑖 are the weights and nodes of the 𝑛-point Gauss quadrature rule, which are listed in the row and column 

vectors w⃗⃗⃗ (1×n) and 𝑥 (𝑛×1), respectively. In (1), 𝑓(𝑥 (𝑛×1)) contains the integrand values evaluated at the nodes and it is 

a column vector with the same size as 𝑥 (𝑛×1). This rule gives the exact integration results when the integrand 𝑓(𝑥) is at 

most an (2𝑛 − 1)th degree polynomial, and therefore it is called a (2𝑛 − 1)-degree quadrature rule. The 𝑛-point Gauss 

quadrature is one of the most efficient numerical integration schemes and it is widely used in the numerical analysis of 

different engineering problems. However, it cannot provide an error estimate of the numerical integration of arbitrary 

integrands in a single run, which can introduce problems when highly accurate results with fast computation times are 

needed. A solution to this problem was proposed by Alexander Kronrod [15]. He introduced (𝑛 + 1) additional nodes 

(𝑦𝑖) to the 𝑛-point Gauss quadrature rule to obtain the (2𝑛 + 1)-point Gauss-Kronrod rule as follows: 
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∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈ 𝐾2𝑛+1 = ∑𝛼𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

+ ∑ 𝛽𝑗𝑓(𝑦𝑗) = 𝛼 𝑓(𝑥 ) + 𝛽 𝑓(𝑦 )

𝑛+1

𝑗=1

 (2) 

A comparison between (1) and (2) reveals that both integration rules use the same 𝑛 nodes at 𝑥 (𝑛×1). When constructing 

the Gauss-Kronrod rule in (2) the total number of (3𝑛 + 2) unknowns introduced by the new weight and node vectors 

α⃗⃗ (1×𝑛) (α⃗⃗ (1×𝑛) is not same as �⃗⃗� (1×𝑛)), β⃗ (1×(𝑛+1)) and 𝑦 ((𝑛+1)×1) values makes it possible to obtain a (3𝑛 + 1)-order 

quadrature rule [16]. In addition, a relative error estimate 𝐸 of this rule can be readily obtained in a single run by 

comparing the result with 𝑛-point Gauss quadrature rule as follows: 

 

𝐸 =
|𝐾2𝑛+1 − 𝐺𝑛|

|𝐾2𝑛+1|
=

|(𝛼 − �⃗⃗� )𝑓(𝑥 ) + 𝛽 𝑓(𝑦 )|

|𝛼 𝑓(𝑥 ) + 𝛽 𝑓(𝑦 )|
 (3) 

 

In modern scientific computation software, such as Matlab [17,18], Octave [19] and quadpy [20], similar error estimates 

are used to build an adaptive Gauss-Kronrod integration scheme [21]. If an error criterion given by the user 𝐸 < τ is not 

satisfied in an interval [𝑎, 𝑏], the Gauss-Kronrod rule is repeated on the sub-intervals [𝑎, (𝑎 + 𝑏)/2] and [(𝑎 + 𝑏)/2, 𝑏]. 

This division of intervals continues up until the error criteria is satisfied in all the sub-intervals. As a result, a robust 

numerical integration scheme is obtained that can be used efficiently in a variety of different engineering problems. 

In some problem types, numerical integrations of similar integrands are needed. For example, when calculating the 

electromagnetic fields generated by a line source in planarly layered media by the Fourier type integrations, the same 

reflection and transmission coefficients are used to build up the spectral domain Green’s functions. Since the results of 

the integrals, i.e., the spatial domain Green’s functions, have the same type of plane wave constituents, the singularities, 

branch points and branch cuts are observed at the same locations in the spectral domain Green’s functions defined for a 

given observation point. As a result, it is expected to have a similar, if not the same, distribution of nodes when 

performing the separate adaptive numerical integration of the Fourier type integrals by the Gauss-Kronrod quadrature 

rule as described above. By using this observation, the numerical integrations of different field components can be 

calculated simultaneously by using the same nodes (the same 𝑥 (𝑛×1) and 𝑦 ((𝑛+1)×1) nodes in (2) are taken for different 

field components) along the same integration path. Consequently, the integrand is defined to be a row vector 𝑓 (1×𝑚)(𝑥) 

which contains the 𝑚 similar integrand values at a given node 𝑥. If the node values are defined in a column vector as 

done in (1)-(3) 𝑓 (1×𝑚)(𝑥 (𝑛×1)) becomes a matrix 𝐅(𝑛×𝑚)
𝑥 , and likewise, 𝑓 (1×𝑚) (𝑦 ((𝑛+1)×1)) becomes a matrix 

𝐅
((𝑛+1)×𝑚)

𝑦
. Therefore, the Gauss-Kronrod integration rule for the similar integrands can be written as follows: 

 

∫ 𝑓 (𝑥)𝑑𝑥
𝑏

𝑎

≈ �⃗⃗� 2𝑛+1 = ∑𝛼𝑖𝑓 (𝑥𝑖)

𝑛

𝑖=1

+ ∑ 𝛽𝑗𝑓 (𝑦𝑗)

𝑛+1

𝑗=1

= 𝛼 𝐅𝑥 + 𝛽 𝐅𝑦 (3) 
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In (4), �⃗⃗� 2𝑛+1 is a (1 × 𝑚) row vector that contains the results of the (2𝑛 + 1) Gauss-Kronrod quadrature applied on the 

𝑚 similar integrands, 𝑓 (1×𝑚)(𝑥). As in the case of the single integrands, the adaptive integration scheme is applied as 

described until the error criteria is satisfied on all the sub-intervals, for all the integrands. It should be noted that for 

some integrands, this method will introduce more sub-intervals than necessary, but this will not affect the efficiency of 

the integration results and even lower numerical error values will be achieved for such integrands. Yet, an analysis would 

be needed to decide whether a simultaneous integration is needed or not depending on the constituents of the integrands. 

As discussed above, the calculation process of the fields generated by a line source in layered media is a case where the 

simultaneous numerical integration of the different field components would be used to obtain the results in a faster way 

compared to individual integrations. When using the simultaneous integration routine, the necessity of calculating the 

reflection and transmission coefficients separately for different field components is eliminated and the resulting 

numerical integrations are obtained within the same error criteria. The efficiency and the advantages of the method are 

demonstrated by numerical examples in the next section, both by analyzing general contour integrals with closed form 

results and the calculation performance of spatial domain Green's functions in layered media. 

3. Numerical Examples 

In this section, the numerical integration scheme introduced in the previous section is validated by examples that are 

frequently seen in engineering applications. The performance of the new simultaneous integration algorithm is compared 

with the individual integration algorithm. 

3.1. Calculation of Contour Integrals with Analytical Results 

In the first example, the integrals given in (5) with closed form analytical results found by the residue theorem [22] are 

numerically evaluated along the closed contour 𝐶 shown in Figure 1. In (5), 𝐽0 is the 0th order Bessel function of the first 

kind and 𝑖 = √−1 is the unit complex number. In order to compare the performance of the different numerical integration 

routines analyzed in Chapter 2, the integrands are numerically integrated, first individually by the 15-point Gauss-

Kronrod rule in (2) and then by the 15-point simultaneous integration rule derived in this paper in (4). For both 

integrations, the relative error stopping criteria are set to 10−10 and the initial number of nodes is set to 11, as it is done 

in most of the popular scientific software. 

 

𝐼1 = ∮
𝐽0(2𝑧)𝑒𝑖10𝑧 − cos(4𝑧)

(𝑧 − (0.5 − 0.1𝑖))
dz

𝐶

 

(5) 

𝐼2 = ∮
𝑒𝑖10𝑧 − 𝐽0(2𝑧) + 2 cos(4𝑧)

(2𝑧 − (1 − 0.5𝑖))(𝑧 − (0.5 − 0.1𝑖))
dz

𝐶

 

𝐼3 = ∮
𝑒𝑖10𝑧 − 3𝐽0(2𝑧) + 2 cos(4𝑧)

(2𝑧 − (1 − 0.5𝑖))(𝑧 − 0.33)(𝑧 − (0.5 − 0.1𝑖))
dz

𝐶

 

𝐼4 = ∮
𝑒𝑖10𝑧 + 𝐽0(2𝑧) cos(4𝑧)

(𝑧 − 0.33)
dz

𝐶
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𝐼5 = ∮
𝑒𝑖10𝑧0.5𝐽0(2𝑧) + cos(4𝑧)

(2𝑧 − (1 − 0.5𝑖))
dz

𝐶

 

𝐼6 = ∮
𝑒𝑖10𝑧 + 𝐽0(2𝑧) + cos(4𝑧)

(𝑧 − 0.33)(𝑧 − (0.5 − 0.1𝑖))
dz

𝐶

 

𝐼7 = ∮
𝐽0(2𝑧)𝑒

𝑖10𝑧 + cos(4𝑧)

(2𝑧 + (1 − 0.5𝑖))(𝑧 + (0.5 − 0.1𝑖))
dz

𝐶

 

 

Figure 1. Integration path 𝐶 used in (5) and the locations of the singularities of the integrands. 

The results obtained by a single core of Intel(R) Xeon(R) CPU E5-2630 v3 using Matlab are shown in Table 1. As can 

be seen in the table, the relative errors compared with the analytical results are in the range of the stopping criteria for 

both integrations. The important difference is in the computation times, where an individual integration by (2) takes 

roughly 0.5ms and the simultaneous integration of all the integrands takes roughly 0.8ms. As a result, the total time for 

integrating all the 7 integrands is around 3.5ms which is around × 4.5 slower than the simultaneous integration routine 

in (4). The main reason for this difference is eliminating the necessity of calculating the complex functions in the 

integrands repeatedly. When using the simultaneous integration routine, the functions are evaluated only once and used 

in all the integrands, since the same nodes are used in all the integrations. Whereas in the individual integration routine, 

a new set of nodes are used for all the different integrands. 

 

Table 1. Numerical integration errors and computation times of the integrals in (5) obtained by the 15-point individual (2) and 

simultaneous (4) Gauss-Kronrod methods. 

Integrand Analytical result Numerical Integration Error Computation time (s) 

𝐼1 (individual) 
− 1.455734953472314𝑒 + 01 
− 8.014053318596627𝑒 + 00𝑖 

1.602939𝑒 − 13 (relative) 5.298821𝑒 − 04 

𝐼2 (individual) 
+ 4.744611107978165𝑒 + 01 
− 1.638584608339527𝑒 + 02𝑖 

6.943940𝑒 − 15 (relative) 5.425719𝑒 − 04 

𝐼3 (individual) 
+ 7.754555018569379𝑒 + 00 
− 1.126589747446449𝑒 + 02𝑖 

4.100069𝑒 − 15 (relative) 5.540496𝑒 − 04 

𝐼4 (individual) 
− 9.911454277117049𝑒 − 01 
+ 4.810429771194812𝑒 + 00𝑖 

2.705469𝑒 − 13 (relative) 5.326485𝑒 − 04 

𝐼5 (individual) 
− 3.298687041869202𝑒 + 01 
− 1.010583291349705𝑒 + 01𝑖 

2.700818𝑒 − 14 (relative) 5.437397𝑒 − 04 

𝐼6 (individual) 
− 3.940507818800279𝑒 + 01 
− 5.785451053909134𝑒 + 01𝑖 

2.548616𝑒 − 14 (relative) 5.418304𝑒 − 04 

𝐼7 (individual) + 0 + 0𝑖 5.006176𝑒 − 13 (absolute) 5.494489𝑒 − 04 

All (simultaneous) Same as listed above 4.963638𝑒 − 13 (max) 7.569228𝑒 − 04 
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3.2. Calculation of Spatial Domain Green’s functions by Sommerfeld Integrations 

In the second example, the calculation performance of spatial domain Green’s functions defined for a line source placed 

in a multilayered geometry is analyzed by using different numerical integration methods. As discussed earlier, to obtain 

the different components of electric and magnetic fields generated by a line source, separate Fourier type numerical 

integrations are needed. Yet, the singularities, branch points and cuts stay at the same locations on the integration plane 

for a given layered medium, which makes such problems good candidates for using the simultaneous integration routine 

introduced in this paper. By using the new simultaneous integration routine, it is expected to obtain the results of the 

Fourier-type integrals faster than the individual integrations without losing the precision of the results. In order to 

validate this expectation, the Green’s functions of a 3-layered medium composed of left-handed (LHM), and right-

handed (RHM) materials are calculated, first individually by the 15-point Gauss-Kronrod rule in (2) and then by the 

proposed 15-point simultaneous integration rule in (4).  The specifications of the problem is as follows: the free-space 

wavelength of the source is 500nm, the layers are stacked from bottom to top and have the following electromagnetic 

properties: layer-1 (RHM, silver) 𝜀𝑟1 = −9.621 + 0.31022𝑖, 𝜇𝑟1 = 1, layer-2 (RHM, lossless) 𝜀𝑟2 = 2, 𝜇𝑟2 = 1, and 

layer-3 (LHM, lossy) 𝜀𝑟3 = −1 + 0.01𝑖, 𝜇𝑟3 = −1. The thickness of the second layer is 500nm and layer 1 and 3 extend 

to infinity in y-direction. The magnetic-type line source is placed in the middle of layer-2. The magnitude of the Poynting 

vector 𝑆  generated by the line source defined by:  

 

𝑆 = �⃗�  × �⃗⃗� ∗, (6) 

 

can be seen in Figure 2, for the 0 longitudinal dependence wave vector 𝑘𝛾 in (a) and 𝑘𝛾 = (0.1 + 0.1𝑖)𝑘0 in (b), where 

𝑘0 is the wavenumber in free space. Since both the individual and simultaneous plots are identical, only the results of 

the simultaneous integration are plotted in the figure. The detailed derivations of the related integrands and integration 

paths are provided in [23–26].
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(a) 

 

(b) 

 

Figure 2. Magnitude of the Poynting vector in log scale generated by the magnetic line sources placed at the origin with the      

longitudinal dependence of (a): kγ = 0 and (b): kγ = (0.1 + 0.1𝑖)𝑘0. Wavelength of the source is 500nm, layer-1 

(bottom, RHM, silver) 𝜀𝑟1 = −9.621 + 0.31022𝑖, 𝜇𝑟1 = 1, layer-2 (RHM, lossless) 𝜀𝑟2 = 2, 𝜇𝑟2 = 1, and layer-3 

(LHM, lossy) 𝜀𝑟3 = −1 + 0.01𝑖, 𝜇𝑟3 = −1. The thickness of the second layer is 500nm. 

 

As discussed earlier, the integrands derived for the electric and magnetic fields have similar shapes on the integration 

path and taking the simultaneous numerical integrals decreases the computation times significantly, which are compared 

in Table 2. The results in Figure 2 and Table 2 are obtained by 16 cores of Intel(R) Xeon(R) CPU E5-2630 v3 using 

Matlab. The field values are calculated on the grid defined by the 400 linearly spaced points in x-direction between -5 

µm and 5 µm and the 200 linearly spaced points between -1 µm and 4 µm. Namely, the fields are calculated on the 

80000 points on the field plane shown in Figure 2. The relative error stopping criteria of 10−6 is used in all the numerical 

integrations. 
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 Table 2. Relative numerical integration errors and computation times of the Sommerfeld integrals when calculating the layered  

media Green’s functions defined for the fields by the 15-point individual (2) and simultaneous (4) Gauss-Kronrod 

integrations.The calculated fields are used to plot Figure 2 by (6). 

 

 Simultaneous 

(𝑘γ = 0) 

Individual 

(𝑘γ = 0) 

Simultaneous 

(𝑘γ = (0.1 + 0.1𝑖)𝑘0) 

Individual 

(𝑘γ = (0.1 + 0.1𝑖)𝑘0) 

Av. Error, 𝐸𝑥 3.3622𝑒 − 09 2.0417𝑒 − 09 2.0417𝑒 − 09 2.3216𝑒 − 09 

Av. Error, 𝐸𝑦 2.6046𝑒 − 09 1.9406𝑒 − 09 1.9406𝑒 − 09 1.9406𝑒 − 09 

Av. Error, 𝐸𝑧 N/A N/A 2.2708𝑒 − 12 1.1314𝑒 − 15 

Av. Error, 𝐻𝑥 N/A N/A 3.5034𝑒 − 09 3.5045𝑒 − 09 

Av. Error, 𝐻𝑦 N/A N/A 1.7555𝑒 − 07 1.8675𝑒 − 07 

Av. Error, 𝐻𝑧 3.6108𝑒 − 09 3.6102𝑒 − 09 1.6110𝑒 − 09 1.6133𝑒 − 09 

Total time (s) 747 2135 1180 6817 

 

Analyzing Table 2 reveals that, both integration methods give the results within the error criteria for the 𝑘𝛾 = 0 and 

𝑘𝛾 = (0.1 + 0.1𝑖)𝑘0 cases. The difference is observed in the calculation times, where the results are obtained nearly 

× 3 times faster by the simultaneous integration routine when 𝑘𝛾 = 0 and nearly × 6 faster when 𝑘𝛾 = (0.1 + 0.1𝑖)𝑘0. 

This is the expected results as the magnetic line source generates 3 field components (𝐸𝑥 , 𝐸𝑦 and 𝐻𝑧) when 𝑘𝛾 = 0 and 

it generates all the 6 field components when 𝑘𝛾 ≠ 0. As a result of this comparison, it is shown that the simultaneous 

integration routine introduced in this paper can be used to obtain layered media Green’s functions by the Sommerfeld 

integrations in a significantly faster way, without losing the accuracy of the results. 

4. Conclusion 

In this paper, a simultaneous numerical integration method is introduced. The main advantage of the proposed method 

is observed when a set of multiple integrations with similar integrands are needed. By using the method, the necessity 

of calculating the same functions repeatedly is eliminated and the integrands are obtained in a faster way. As a result, 

the integrals are calculated in a significantly faster way without decreasing the accuracy of the results. Examples are 

included to demonstrate the efficiency of the method by comparing the numerical integrations with analytical results 

and by analyzing the performance of the method when used in an advanced engineering problem. 
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