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Abstract 
 
Prognostics and Health Management occupy an important place in modern industrial 

maintenance to increase the reliability of systems. Determining the Remaining Useful Life of the 

system or its parts is vital accurately to maintaining critical parts of the system and successful 

prognostics and health management. This study proposes a data-based Remaining Useful Life 

prediction method with a network consisting of a cascade-connected Self-Attention and Residual 

Network layer. The network is fed by multiple sensor signals to monitor the aero-engines. The 

proposed model contains four main parts: The Gaussian Noise Layer, the Self-Attention Layer, 

the Residual Network Layer, and the layer to estimate Remaining Useful Life. The model is 

created to be more robust and susceptible to noise using the Gaussian Noise Layer. The Self-

Attention Layer focuses on crucial points through time. The Residual Network Layer uses feature 

extraction and makes the model more profound help of the skip connection. Finally, the 

Remaining Useful Life estimation is made using highly correlated features obtained from the 

fully connected layer and the output layer. In addition, a new loss function has been offered, 

similar to the evaluation metrics in the literature. With the proposed model and loss function, 

11.017 and 12.629 in root mean square error, 157.19 and 218.6 in score function are obtained in 

the FD001 and FD003, respectively. The superior performance of these results on the C-MAPSS 

dataset is demonstrated by comparing the other state-of-the-art methods in the literature. 
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1. Introduction 

As the complexity of systems increases in modern industry, maintenance and prognostic become more crucial. 

With the developments in sensor technologies, computing systems, and learning algorithms, Prognostic and Health 

Management (PHM) put to use in various areas such as aero-engines [1], electric motors [2], battery systems [3], 

and nuclear plants [4]. PHM aims to monitor systems and their parts with the help of sensor data and estimate the 

degradation of this systems. Also, PHM diagnoses abnormal activity, detects possible failures, estimates machines' 

state of health, and predicts the Remaining Useful Life (RUL) of the system or its equipment. Hence, in industry, 

maintenance schedules can be planned effectively, unnecessary parts replacement during maintenance can be 

avoided, and maintenance costs are reduced. PHM can prevent catastrophic failures by estimating the current and 

future states of systems and, with this, improve the reliability and performance of systems. RUL can show the 

remaining life with time cycles or hours according to the area studied. RUL is defined in the literature as the time 

from the current time to time occurred failure [5]. 

The RUL estimation has generally been categorized in recent PHM studies with three different approaches [6]. 

These are model-based approach, data-driven approach, and hybrid approach. Life estimation is being studied by 

creating mathematical models with prior knowledge of the system examined in model-based PHM approaches [7]. 

The studies in the literature identify degradation in systems and developed the model-based approach such as Paris's 

law [8] and exponential models [9]. However, as the system's complexity increases, the performance of these 

mathematical models in life estimation problems begins to decline. In addition, deviations may occur in the models 

created as the operating conditions of systems change. 

On the other hand, data-driven approaches include the detection of errors with the help of sensors on the systems 

and estimating RUL. Big data collected from sensors provides the development of degradation models. Machine 

learning and deep learning structures, which have developed in recent decades, can show more successfully the 

status of a machine's health together with big data. Hybrid models aim to achieve better results by eliminating the 

deficiencies of model-based and data-driven approaches. However, unlike the data-based approach, particular 

expertise is required to develop and integrate a physical system into the degradation model. The following 

subsection provides a brief overview of research studies using the data-driven approach to estimate RUL. 

1.1. Literature Review 

In the literature, better predictions are made using machine learning and deep learning algorithms in data-driven 

approaches. Each data point is committed independently in machine learning approaches, and estimations are 

performed. In this context, studies were carried out with Support Vector Regression (SVR) [10], Relevance Vector 

Regression (RVR) [10], Random Forest (RF) [11], and similar algorithms. In addition, the data points were 

evaluated independently in the Multilayer Perceptron (MLP) algorithm, and RUL estimation was made [10]. With 

the performance of deep learning algorithms in the last decades, it has been frequently used in RUL estimation. 

Among these algorithms, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and their 

derivatives produced successful results in RUL estimation. Babu et al. proposed a two-dimensional deep CNN to 

estimate aero-engines RUL [10]. Firstly, sensor signals were normalized, and the time windowing method was 

employed to train deep CNN (DCNN). Also, their models included two convolutional and average pooling layers, 
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then used a Fully Connected (FC) layer. Automatic feature extraction has been provided with the convolutional 

layer, and RUL estimation has been made. In another study, Li et al. offered a novel DCNN [12]. They set the C-

MAPSS dataset as two-dimensional inputs with a time windowing pre-processing technique. They employed five 

convolutional layers in their model, each of which is made up of a 1-D filter. The dropout technique was used to 

avoid overfitting problems in their model.  

Since the RUL dataset is a time sequence, it has a suitable structure for dynamic networks. Zheng et al. suggested 

a dynamic neural network consisting of Long Short-Term Memory (LSTM) layers [13]. Their model included two 

LSTM layers, two FC layers, and a neuron as the output layer. Then, they tested their networks with a different 

number of LSTM cells in LSTM layers and a different number of neurons in FC layers. LSTM layers were able to 

extract complex features in the time domain and thus obtained better Root Mean Square Error (RMSE) values 

compared to RNN. Wu et al. wielded a vanilla LSTM network in their work [14]. Also, new features were extracted 

from operating conditions values by the dynamic difference technique. These features were used with chosen sensor 

signals that change with time. In their work, Yu et al. accomplished RUL prediction in two stages [15]. First, the 

dataset is processed using selecting sensor signals, the normalization process, and the time windowing technique, 

which has different window lengths. Then, the machine's Health Index (HI) is estimated with a Bi-directional 

LSTM(BLSTM)-based autoencoder model and linear regression. Finally, RUL values are mapped with estimated 

HI. In another study, Wang et al. propounded a BLSTM-based network [16]. Their model included two BLSTM 

layers, 2 FC layers, and the output layer, which has a neuron. Palazuelos et al. proposed a novel capsule neural 

network that Hinton et al. offered to overcome the shortcomings of CNN [17]. The capsule structure was first used 

for the C-MAPSS dataset in this study. 

Some studies use the feature extraction attributes of LSTM and CNN networks together. Al-Dulaimi et al. wielded 

LSTM and CNN structures as parallel branches in their study [18]. Thus, capturing the CNN structure's spatial and 

the LSTM structure's temporal features are considered together. Al-Dulaimi et al. added gaussian noise layers to 

parallel network structure in their study [19]. The LSTM path in the previous work was changed with the BLSTM 

path that added noise layers. Thus, they obtained better results in RUL estimation. J. Li et al. have adopted the 

parallel network structure in their study [20]. The parallel branches consisted of Convolution layers and LSTM 

layers. Summing the outputs of these paths is connected to the LSTM layer, FC layer, and output layer, respectively. 

Song et al. proposed a novel neural network in series connection [21]. Their model had two BLSTM layers and 

two FC layers stacked after the autoencoder layer. The feature extraction was made by autoencoder, and long-range 

dependencies of temporal features were utilized with BLSTM. The dropout technique was used as regularization. 

Ragab et al. offered autoencoder-based LSTM [22]. In the decoder part of their model was placed attention 

mechanism. A path to reconstruct the input data and another to estimate RUL was offered. In model training, 

summing reconstruction loss and RUL loss were used. In their model, Liu et al. wielded a feature extraction layer 

consisting of a channel attention mechanism and a transformer with temporal attention [23]. Tan et al. proposed a 

novel network consisting of an attention layer [24]. They used the attention layer after four Convolution layers and 

connected the FC layer and output layer. Two different lengths of the time window are used in their study. In [25], 

on the other hand, LSTM and self-attention structure were used together. With the self-attention structure, it was 

ensured to focus on the critical points in the data, and RUL estimation was made by transferring the information to 

the following layers with the LSTM layers. 
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1.2. Contributions 

It is made to estimate RUL on the time series like aero-engines data in this study. The time series data were 

considered with different network structures in the literature. RNN, LSTM, and Gated Recurrent Unit (GRU) 

structures were used in these studies. Against previous works, these networks fetched good results due to dynamic 

structure. However, there was no further improvement in results due to limited and noisy data. The Self-Attention 

Layer has been added to the models, resulting in better results. In addition, the formation of more robust structures 

in the models was provided with different techniques. Although Residual Network (ResNet) layers have been used 

in different studies, it has been observed that it causes overfitting in the datasets in the experiments. In the 

previously mentioned literature, they have obtained state-of-the-art results by using each in different models. 

However, robust, deep structures focused on relevant points in the time domain have not been used together. Also, 

this study determined this gap in the literature, and network models were developed on better estimations. 

The main contribution of this study to the literature is as follows:  

1) With the Self-Attention layer, it has been ensured to focus on the crucial points in the time series. Thus, 

the proposed model detected the vital points for a good estimation of time series data in each sensor 

signal.   

2) By adding the noise layer, it is planned that the proposed model will operate more robustly and make 

more accurate estimations. The Gaussian Noise layer is just used in the training process. Moreover, the 

model has become more robust in the noise layer.  

3) Using the ResNet structure ensures that the backpropagation can reach the first layer. Thus, the network 

structure can be made deeper.  

4) Also, the Convolution layer is used with the stride technique instead of the pooling layer to avoid losing 

information. Thus, while feature extraction was performed, dimension reduction was also made 

together.  

Self-Attention and ResNet structure were wielded as cascaded, and better results were obtained with estimation 

performance compared to other studies. However, the proposed model has limitations. One of them, the model 

input, is created with a constant input shape. Also, the dataset used in the study has sub-datasets, and fixed input 

data is not created with the same pre-processing steps. For this reason, sub-datasets with the same input form are 

used. In addition, model structure, hyperparameters, and weighting coefficients should be changed to obtain better 

results in each sub-dataset.  

The rest of this study is organized as follows: In the second part, the offered Cascaded Self-Attention ResNet 

Network (CSARN) model and the methods used in the model are explained. In addition, the C-MAPSS dataset on 

which the proposed model is tested is detailed, and the pre-processing steps for RUL estimation are explained. In 

the third part, the experimental work carried out is explained. The results obtained with the experimental study are 

reported and graphed. It is also compared with other studies in the literature. The last part summarizes all the work, 

and information about future work is given.   

2. Materials and Methods 

This section presents the proposed model for RUL estimation and the studied dataset. Within the scope of this 
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study, a self-attention-based model is created. Since the dataset has a noisy structure, a Gaussian Noise layer has 

been added to the beginning of the model. Then, it is transferred to the following layers by detecting the most 

critical points in the time domain with the Self-Attention layer. Both automatic feature extraction is provided with 

the ResNet layers, and training is improved with the skip connection structure. An FC structure is used in the last 

layers, and RUL estimation is made with the last layer.  

The C-MAPSS dataset produced by NASA Ames Research Lab is introduced. The sensor information that they 

contain in the dataset is given in detail. The pre-processing steps on the dataset are explained before training the 

proposed model. The selection of the sensors in the dataset, the normalization process, the time windowing 

technique details applied to the dataset, and the target data prepared according to the degradation model are 

explained. Finally, the metrics to evaluate the predictions made on the test dataset with the trained model are 

presented.  

2.1. Proposed Method 

2.1.1. Self-Attention Module 

CNN shows remarkable performance in automatic feature extraction. Convolution operation, by its nature, provides 

translational equivariance and translational invariance features in operations [26]. Convolution, introduced by 

LeCun et al. for the first time in neural networks, achieved great success, especially in image classification and 

object detection. By scanning with the filters created with fixed lengths on the input data, the features are 

automatically extracted for all the data. As we move from the first CNN layer to the last CNN layer in deep 

networks, the complexity of the extracted features increases and gets closer to the desired estimations. The 

translational equivariance feature of convolution operation provides valuable information in local data, but 

capturing global dependencies in time series signals is not feasible. 

The Attention mechanism, developed and frequently used recently, shows a significant impact where it is used 

[27]. It was used in natural language processing (NLP) first and showed great success in its field. The Attention 

mechanism ensures that the models are focused on the critical regions in sequential data. Unlike the attention 

mechanism, the Self-Attention mechanism transfers the necessary information from a single content to the 

following layers. In the Self-Attention structure shown in Figure 1, a single content is entered into the block. With 

the help of this input data Convolution layer, three different contents are created, and the block output is focused 

on the most critical parts. Within the scope of this study, it was ensured that the Self-Attention mechanism was 

influential throughout the time domain in the dataset used. The crucial parts in the time domain are transferred to 

the following layers at the output of the block. By focusing on essential regions, regression performance would be 

improved with the help of Self-Attention mechanisms. 

 



 
Avci and Acir  J Inno Sci Eng 7(1):88-105 

93  

 

Figure 1. Self-Attention layer in the proposed model 

The Self-Attention layer used in this study is shown in Figure 1. Input data is divided into three tensors with 

Convolution layers: Query, Key, and Value. The resulting Query and Key tensors are multiplied by the Hadamard 

product and passed through the softmax activation function across the time domain. Thus, it is ensured that it 

focuses on the most appropriate points in the time domain for our regression problem. Output data is procured by 

multiplying the same dimensional Value Tensor with the attention map. The equation expressing the Self-Attention 

layer is shown below [27]. 

 𝐴𝑀 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦)𝑉𝑎𝑙𝑢𝑒  (1) 

2.1.2. ResNet Module 

More complex features are extracted as the network structure becomes deeper in deep learning models. Adding 

more layers increases the number of model parameters, but the models' performance is generally improved. 

However, vanishing/exploding gradient problems arise as the network structures get deep. In addition, while the 

model coefficients are updated with the backpropagation algorithm during the training, updating the first layers 

with deepening becomes more challenging. Residual Convolution Block has been proposed in the ResNet model 

to fix the reported update problem [28]. With this structure, it is aimed to spread the loss effect in the output layer 

to the first layers. The ResNet Block structure used in our study is shown in Figure 2. As shown in the structure, 

while feature extraction continues from one branch, a skip connection is established from the other branch. Thus, 

even if the network structure continues to deepen, the gradient effect is aimed at reaching the first layers through 

the second path. 
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Figure 2. ResNet block in the proposed model 

2.1.3. Cascade Self-Attention ResNet Network (CSARN) 

Cascaded Self-Attention ResNet Network (CSARN) consists of four different layers connected in series. These are 

Convolution, Self-Attention, ResNet, and FC layers, respectively. The proposed model structure is shown in Figure 

3. First, the Gaussian Noise layer, which has zero mean and 0.01 standard deviation, was added to the proposed 

model. This layer is only wielded during model training. Then, the Convolution layer with ten filters with a filter 

size of 11x1 is connected to the model in series. In addition, the number of filter numbers was kept constant for all 

Convolution layers, except the convolutional layer before the Flatten layer used in the model. After the first 

Convolution layer, the Self-Attention layer was added. Thus, it is ensured that the relevant points in the input data 

are focused and transferred to the subsequent layers. The proposed ResNet layer and the Convolution layer were 

added to the model twice after the Self-Attention layer. In the Convolution layer, size reduction was achieved by 

taking stride set 2 throughout the time domain.  

Moreover, in this and the following Convolution layers, the filters are used with a filter size is 7x1. After the last 

Convolution layer, the structure is connected to the FC layers with the Flatten layer. There are dropout layers with 

a dropout rate of 0.3 between the FC1 and FC2 layers, as shown in Figure 3, and between the FC2 and FC3 layers. 

There have 140 and 90 neurons in the FC 2 and 3 layers, respectively. The FC layers are finally connected to the 

output layer with a single neuron. 'ReLu' is used as the activation function in all model layers. In addition, the 

regularization parameter in all layers in the model was set as 0.0002. 

 
Figure 3. Proposed model for RUL prediction 
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2.2. Experimental Configuration 

2.2.1. Dataset Description 

In this paper, the proposed model is evaluated on NASA Commercial Modular Aero-Propulsion System Simulation 

(C-MAPSS) turbofan engine dataset [29]. This dataset contains synthetic data generated on MATLAB Simulink 

environment by NASA Ames Research Lab. The aero-engine model while creating the dataset is shown in Figure 

4. 

 

Figure 4. C-MAPSS turbofan engine [29] 

 

The dataset consists of 4 sub-datasets, each with different conditions and failure modes. These sub-datasets were 

generated at six different operational conditions by operating the engines at altitudes between sea level and 40000 

ft, in the speed range 0 to 0.84 Mach, and throttle resolver angle between 20 and 100. Also, RUL scenarios on the 

datasets were simulated on the deterioration of two of the engine's five rotating elements (Fan, LPC, HPC, HPT, 

and LPT) [29]. Input parameter values in each motor simulation in the dataset are changed to ensure that they have 

different RUL values. The engines in the training set were run to time that occurs break down. However, in the test 

dataset, the engines were run from the start to a specific time. The details of C-MAPSS are listed in Table 1.  

Table 1. Details of the C-MAPSS dataset 

Dataset 
NASA C-MAPSS 

FD001 FD002 FD003 FD004 

Train sets 100 260 100 249 

Test sets 100 259 100 248 

Operating Conditions 1 6 1 5 

Fault Conditions HPC HPC HPC, Fan HPC, Fan 

Training Samples 20631 53759 24720 61249 

Min/Max Cycles for Train set 128 / 362 128 / 378 145 / 525 128 / 543 

Min/max cycles for Test set 31 / 303 21 / 367 38 / 475 19 / 486 

The simulated engines were followed with 58 different sensor data, but a dataset was created with 21 of them. In 

addition, three sensor data measuring environmental conditions have been added to the dataset. The sensor data 

and their units are listed in Table 2, respectively. 
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Table 2. All sensors in the C-MAPSS dataset 

Symbol Description Units 
T2 Total temperature at fan inlet °R 
T24 Total temperature at LPC outlet °R 
T30 Total temperature at HPC outlet °𝑅 
T50 Total temperature at LPT outlet °𝑅 
P2 Pressure at fan inlet psia 
P15 Total pressure in bypass-duct psia 
P30 Total pressure at HPC outlet psia 
Nf Physical fan speed rpm 
Nc Physical core speed rpm 
epr Engine pressure ratio (P50/p2) - 

Ps30 Static pressure at HPC outlet psia 
phi Ratio of fuel flow to Ps30 pps / psi 
NRf Corrected fan speed rpm 
NRc Corrected core speed rpm 
BPR Bypass ratio - 
farB Burner fuel-air ratio - 

htBleed Bleed Enthalpy - 
Nf_dmd Demanded fan speed rpm 

PCNFR_dmd Demanded corrected fan speed rpm 
W31 HPT coolant bleed lbm / s 
W32 LPT coolant bleed lbm / s 

2.2.2. Normalization 

The C-MAPSS dataset comprises 26 columns with engine ID, time cycles, three operational conditions, and 21 

sensor values. Each of the 21 sensors that are comprised of the C-MAPSS dataset does not change over time. While 

some sensor values in the dataset decrease towards the end of the engine's life, some increase. Data collected from 

seven sensors numbered 1, 5, 6, 10, 16, 18, and 19 remain constant over time. These sensor signals are reported not 

to provide any helpful information by studies in the literature, but they are used in the scope of this work [30]. 

The data are normalized before training the model we propose. The z-score normalization process was used to 

ensure that the trained model converges fast and that the features with higher values than other sensor values do 

not dominate and adversely affect the model's training. Equation 2 shows the z-score normalization process. 

 𝑥𝑛𝑜𝑟𝑚
𝑖,𝑗 =

𝑥𝑖,𝑗 − 𝜇𝑗

𝜎𝑗
      ∀𝑖, 𝑗  (2) 

The 𝜇𝑗  value in Equation 2 shows the mean of the feature, and the 𝜎𝑗  shows its standard deviation of the feature. 

2.2.3. Time Windowing 

Data collected from sensors as time series must be preprocessed to train, especially to capture the associative 

connections in the time domain. The time windowing technique is used to capture these associative connections. 

Thus, the dataset is workable for dynamic and static networks. The sub-datasets in Table 1 have engines with 

different data lengths. In these sub-datasets, window sizes were determined according to the engine with the lowest 

data in order to be used in each engine training and test dataset. The FD001 and FD003 sub-datasets are used 

because the window sizes could be 30 in this study. As the engines in the FD002 and FD004 sub-datasets can have 

less than 30 samples, they did not use in this study. This windowing process is shown in Figure 4. In this study, the 

stride process in time windowing was set one. In the time windowing process shown in Figure 4, the status of the 
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features from the raw dataset after normalized and shifted is shown. 

 

Figure 4. Processing of time windowing with selected features 

2.2.4. RUL Labeling 

In real-world applications, it is thought that the life of the system studied will end linearly. It is expected that the 

life of the system or its part will decrease with each operating cycle. However, when the collected data is examined, 

there is not much change in the initial sensor values of the systems. Sensor values will be changed towards the end 

of their life compared to the start time. For this reason, Heimes et al. presented a piece-wise degradation model 

[31]. Linear and piece-wise degradation models are shown in Figure 5 together.  

 

Figure 5. Piece-wise linear degradation function 

 

In the piece-wise degradation model shown in Figure 5, the aero-engines were initially considered healthy. The 

Rearly value was determined according to the minimum number of samples in the training datasets. In the C-MAPSS 
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summary shown in Table 1, the minimum number of samples in the training data appears to be 128. In the literature, 

it is set between 120-130. Within the scope of this study, the Rearly value was set as 125.  

2.2.5. Evaluation Metrics 

All developed predictive models are evaluated with two different functions in the literature. These functions are 

RMSE and Score functions. Also, Mean Absolute Percentage Error (MAPE) evaluation metric is used in the 

prediction problems. The RMSE and MAPE functions are shown in equations 4 and 5, respectively. Also, RMSE 

is widely used in prognostic and health management problems.   

 𝑑𝑖 = 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙       (3) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝑑𝑖

2

𝑁

𝑖=1

      (4) 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙

𝑁

𝑖=1

      (5) 

In equations 3 and 4, the di value is shown as the difference between the estimated RUL and the actual RUL value. 

In addition, the score function was suggested to compare the models on the Data Challenge at the 2008 PHM 

conference [31]. In the score function expressed in equations 6 and 7, the errors obtained as positive and negative 

produce different values. While the errors obtained as negative are more tolerable, the errors with positive values 

create higher scores as they can cause catastrophic failures. 

 𝑆𝑖 = {
𝑒−

𝑑𝑖
13 − 1, 𝑓𝑜𝑟 𝑑𝑖 < 0

𝑒
𝑑𝑖
10 − 1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
           

(6) 

 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑆𝑖

𝑁

𝑖=1

  
            

(7) 

3. Result and Discussion 

In this section, the details of the proposed model and experimental work on the dataset are given. The procedures 

and methods of the experiments are explained. The results obtained with the proposed model are reported. In 

addition, the performances on the dataset in RUL estimation are given. Lastly, a comparative table of the results 

obtained with the proposed system and the other studies in the literature is presented. 

3.1. Experiments 

In the scope of this paper, the FD001 and the FD003 sub-datasets are selected from the C-MAPSS dataset. A new 

dataset is created, taking 21 sensor data that monitor aero-engines. Then, the dataset is normalized with the z-score 

normalization method and is made suitable for training. In order to make more accurate estimations by utilizing 

historical data, a time windowing technique has been applied to the dataset. The data was processed by determining 

a 30-length fixed time window (Ntw). Thus, each input data is sized as Ntw x Nft with 21 selected sensors (Nft). 

These processes have been applied to both the training and test datasets. RUL labeling was done with a piece-wise 
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linear degradation model for the values to be estimated during the training. Thus, the necessary preparations for 

training the proposed CSARN model were made, and then the hyperparameter settings were made.  

In the CSARN model, Self-Attention layers and ResNet layers are formed by cascade connection. Each layer and 

its hyperparameters in the model are given in Table 3. The model coefficients are adjusted to be optimized with 

adam optimizer [32]. The batch size was determined as 32 during model training. The random validation split was 

set as 20% for model validation during training. The model is set to train for 250 epochs. Early stopping was used 

to prevent overfitting. Model training is stopped 20 epochs after the training loss, and validation loss values start 

to diverge. Thus, model training was stopped beforehand to prevent overfitting before reaching the maximum 

number of epochs. 

Table 3.The details of the CSARN model 

Layer Name Input Size Output Size Description 

Gaussian Layer 30x21x1 30x21x1 Std value=0.01 

Conv 1 30x21x1 30x21x10 11x1,10 filter 

Self-Attention 30x21x10 30x21x10  

ResNet Layer 1 30x21x10 30x21x10  

Conv 2 30x21x10 15x21x10 7x1,10 filter, stride 2x1 

ResNet Layer 2 15x21x10 15x21x10  

Conv 3 15x21x10 8x21x10 7x1,10 filter, stride 2x1 

ResNet Layer 3 8x21x10 8x21x10  

Conv 4 8x21x10 2x21x5 7x1,5 filter  

Flatten 2x21x5 210  

Dropout + FC 210 140 Dropout rate=0.3 

Dropout + FC 140 90 Dropout rate=0.3 

FC 90 1  

Also, the loss function is proposed, like the score function from evaluation metrics. The proposed loss function is 

shown in equation 7. 

 

𝑙𝑜𝑠𝑠 = 5 × {
−𝑑𝑖 × 𝑒−

𝑑𝑖
13 − 1, 𝑓𝑜𝑟 𝑑𝑖 < 0

𝑑𝑖 × 𝑒
𝑑𝑖
10 − 1,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(8) 

 

In the above equation, di represents the difference between the predicted RUL and the actual RUL value. The 

trained model was used for RUL estimation in the test dataset. As with the score function, a loss function that is 

designed could tolerate negative values. 

3.2. Experimental Analysis and Results 

In this section, the performance of the proposed CSARN model on the FD001 and FD003 datasets has been 

examined. Model training was done with the training set of each sub-dataset and tested on its test dataset. There 

are 100 motors in the test datasets. In the data of these engines, data has been collected from the beginning, and at 

a point before the end of the engine's life, the data acquisition from the engine was stopped. As of this point, the 

RUL of the engine has been estimated. The estimation values obtained were also interpreted and examined 

according to the evaluation metrics used in the literature.  
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The estimations obtained for each engine in the FD001 test dataset are shown in Figure 6 from smallest to largest 

for better visualization. In addition, the actual RUL values and the RUL labeling part suitable for the piece-wise 

linear degradation model are given together. As seen in the figure, the estimations made towards the end of the life 

of the motors give more precise results. In addition, it is seen that the variance of the results obtained in the middle 

part of the estimated values is higher than in other parts. 

 

Figure 6. RUL estimation of all engines in the FD001 test dataset 

In the same way, the engine's lives are predicted for the FD003 test dataset and are shown in Figure 7. The graph 

shows the estimated RUL values, piece-wise RUL values, and actual RUL values. The obtained results with high 

score values are expected with the same model because the FD003 dataset has two failure modes. As in the FD001 

dataset, it is seen that the variance is higher in the middle part of the RUL values. 

 

Figure 7. RUL estimation of all engines in the FD003 test dataset 
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The evaluation results made on the sub-datasets used with the proposed model are given in Table 4. The evaluations 

were obtained with the RMSE and Score functions used in the literature. In the FD001 and FD003 sub-datasets, 

RMSE values were obtained as 11.017 and 12.629, respectively. Likewise, when the Score function is evaluated, 

it is seen that the results obtained are 157.19 and 218.6. Also, the obtained MAPE results are 0.127 and 0.193, 

respectively. When the dataset is examined under a single operating condition but in two different failure modes, 

the results obtained with the same model are higher. This situation shows that the data obtained from the system 

has become more complex, and the degradation model has become harder to predict. 

Table 4.The obtained results via the proposed model 

 FD001 FD003 

RMSE Score MAPE RMSE Score MAPE 

CSARN 11.017 157.19 0.127 12.629 218.6 0.193 

To illustrate the effect of the model on the motors in the training and test dataset, real and estimated RUL plots of 

randomly selected motors from the FD001 are shown in Figure 8. Likewise, random motors were selected in the 

FD003 dataset and are shown in Figure 9. 

 

Figure 8. RUL prediction results in each time cycles engine no 24 
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Figure 9. RUL prediction results in each time cycles engine no 75 

3.3. Comparison with other studies 

In this section, experimental studies and other state-of-the-art methods in the literature are compared. The results 

obtained in the comparison are given in chronological order. The results of the proposed CSARN method and other 

methods are shown in Table 5.  

Table 5. Comparison the CSARN model and the state-of-the-art models in literature 

Methods Year 
FD001 FD003 

RMSE Score RMSE Score 

MODBNE [11] 2016 15,04 334,23 12,51 421,91 

D-LSTM [13] 2017 16,14 338 16,18 852 

HDNN [18] 2019 13,017 245 12,22 287,72 

CNNTW [33] 2019 12,18 224,16 15,67 1279,85 

CapsNet [17] 2019 12,58 276,34 11,71 283,81 

DAG [20] 2019 11,96 229 12,46 535 

NPBLSTM [19] 2020 12,321 238,34 11,364 226,482 

ATS2S [22] 2020 12,63 243 11,44 263 

CNN-BiLSTM [34] 2021 12,13 174 11,96 242 

CNN+ATT [24] 2021 11,48 198 12,31 251 

LSTM-MLSA [30] 2021 11,567 252,86 12,134 370,39 

Bi-LSTM-Two Stream [35] 2022 11,96 206,33 13,41 223,36 

BiGRU-TSAM [36] 2022 12,56 213,35 12,45 232,86 

CSARN 2022 11,017 157.19 12,629 218,6 

As can be seen in Table 5, the proposed model gave the best results in the evaluation of score function in the FD001 

and FD003 sub-datasets compared to other models in the literature. However, in the FD003 sub-dataset, obtained 

the RMSE value is not the best, but it is a fair result. Especially in the score function, much better success was 

achieved compared to other studies. In the proposed model, the Self-Attention layer and the loss function that we 

have proposed have been effective. 
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4. Conclusion 

In this study, the effect of the cascaded structure of Self-Attention and ResNet layers on RUL estimation was 

investigated. It was focused on important points with the Self-Attention layer for better estimation in the time 

domain. The model was established as an end-to-end structure that can do automatic feature extraction with 

Convolution layers. In addition, with the ResNet structure integrated into the model, the effect of the loss value 

from the last layer to the first layer is effectively spread. Different actions were taken to prevent overfitting within 

the study's scope and in the tested models. First of all, Gaussian noise was added by modeling the data. Thus, it 

was ensured that the model works more robustly or produces results in noisy data. In addition, it was tried to prevent 

the model from memorizing during training by adding dropout layers between FC layers. However, the weight 

coefficients in each model layer were multiplied by a regularization coefficient to prevent overfitting. Finally, while 

training the model, it was ensured that the training process was stopped without memorizing the proposed model 

with the early stopping mechanism. The performance of the proposed model was tested on the FD001 and FD003 

sub-datasets of the C-MAPSS dataset. The best score value was obtained in these sub-datasets. In addition, the 

lowest RMSE value was found in the FD001 sub-dataset. These sub-datasets have been chosen because training 

can be done without structural changes in the proposed model. 

Compared to other state-of-the-art models in the literature, successful results were obtained on RUL estimation. In 

future studies, the proposed model's extension to other sub-datasets and its performance in other test datasets will 

be examined within the scope of this study. Also, on the second loss function, which merges with the proposed loss 

function because of the success on the score function, will be worked on. In addition, the contributions of other 

dynamic network structures (LSTM, GRU) found in the literature to the proposed model structure will be 

investigated in future studies. 
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