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ABSTRACT: This paper presents sums of generalized Pell and Pell-Lucas sequences. Tulay Yagmur introduced 
these sequences in 2019. We have used their Generating function, Binet’s formula and Induction method to derive 
the identities. We establish some connection formulae of involving them. Also, we present its two cross two matrix 
representation.  
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1. INTRODUCTION  

The Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, Jacobsthal 
sequence and Jacobsthal-Lucas sequence are most prominent examples of recursive sequences. 
 
The sequence of Fibonacci numbers [6], nF  is defined by 

1 2 0 1, 2 0, 1n n nF F F n with F F                 (1) 

The sequence of Lucas numbers [6], nL  is defined by 

1 2 0 1, 2 2, 1n n nL L L n with L L                 (2) 

The sequence of Pell numbers [7], nP  is defined by 

1 2 0 12 , 2 0, 1n n nP P P n with P P                 (3) 

The sequence of Pell-Lucas numbers [7], nQ  is defined by 

1 2 0 12 , 2 2, 2n n nQ Q Q n with Q Q                (4) 

 
Goksal Bilgici [1], defined new generalizations of Fibonacci and Lucas sequences for any real 
nonzero numbers a and b, 
 

2
1 2 0 12 ( ) , 2 0, 1k k kf af b a f k with f f                 (5) 

2
1 2 0 12 ( ) , 2 2, 2k k kl al b a l k with l l a                 (6) 
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Tulay Yagmur [9], defined generalizations of Pell and Pell-Lucas sequences 
2

1 2 0 12 ( ) , 2 0, 1k k kp ap b a p k with p p        
2

1 2 0 12 ( ) , 2 2, 2k k kq aq b a q k with q q a         

 
The main objective of this study is to give some Explicit sums of generalized Pell and Pell-
Lucas sequences. Moreover, we introduce the special sums of the generalized Pell and Pell-
Lucas sequences and prove them using Binet’s formula.  
 
 
2. PRELIMINARIES 

In this section, we review basic definitions and introduce relevant facts.  
 

For 2n  , The generalized Pell sequence [9], is defined by 
2

1 2 0 12 ( ) , 2 0, 1k k kp ap b a p k with p p                (7) 

 
First few generalized Pell numbers are 

   2 3 4 2 20,1,2 ,3 ,4 4 ,5 10 ,...np a a b a ab a a b b      

 
For 2n  , The generalized Pell-Lucas sequence [9], is defined by 

2
1 2 0 12 ( ) , 2 2, 2k k kq aq b a q k with q q a                (8) 

 
First few generalized Jacobsthal-Lucas numbers are 

   2 3 4 2 2 5 3 22,2 ,2 2 ,2 6 ,2 12 2 ,2 20 10 , ...nq a a b a ab a a b b a a b ab        

 
Any nonzero real numbers are in (7) and (8). 
 
If 1 & 2a b  , then we obtained classical Pell sequence and Pell-Lucas sequences, 

If 
1 9

&
2 4

a b  , then we obtained classical Jacobsthal and Jacobsthal-Lucas sequences, 

If 
1 5

&
2 4

a b  , then we obtained classical Fibonacci and Lucas sequences, 

If 
3 1

&
2 4

a b  , then we obtained classical Mersenne and Fermat sequences. 

 
For any positive integer k, 
 
If 1 & (1 )a b k   , then we obtained k-Pell and k-Pell-Lucas sequences, 

If 
24

&
2 4

k k
a b

 
   

 
, then we obtained k-Fibonacci and k-Lucas sequences, 

If 
28

&
2 4

k k
a b

 
   

 
, then we obtained k- Jacobsthal and k- Jacobsthal-Lucas sequences. 
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Generating function for generalized Pell and Pell-Lucas numbers are 

2 2
0 1 2 ( )

k
k

k

x
p x

ax b a x






                                                           (9) 

 

2 2
0

2 2

1 2 ( )
k

k
k

ax
q x

ax b a x








                                                         (10) 

 
The Binet’s formula for generalized Pell and Pell-Lucas numbers are 

1 2

1 2

k k

kp
 


 

                                                                   (11) 

 

1 2
k k

kq                                                                      (12) 

 
where 1 2and   are the roots of the characteristic equation, 

 
2 22 ( ) 0x ax b a                                                           (13) 

 
with 2

1 2 1 2 1 2 1 2, ; 2 , 2 ,a b a b a b a b                .  

Also 
2 2

1 1

( ) ( )k k k kk k
p p and q q

a b a b 


 
 

. 

 
 
3. IDENTITIES OF THE GENERALIZED PELL AND PELL-LUCAS SEQUENCE  
 
This section introduces and proves some interesting identities of generalized Pell and Pell-
Lucas sequences. 

 
3.1. Explicit Sums of generalized Pell and Pell-Lucas Sequence 
 
This section studies the sums of generalized Pell and Pell-Lucas sequences. This enables us to 
give in a straightforward way several formulas for the sums of such numbers. 
 
Theorem 1: Explicit sum formula for generalized Pell sequence 
 

1

2
2 1 2

0

1
(2 ) ( )

k

k i i
k

i

k i
p a b a

i

 
  

 



  
  

 
           (14) 

 
Proof: The proof is clear from the generating function of generalized Pell sequence. 
 
Theorem 2: Explicit sum Formula generalized Pell-Lucas sequence 

1

2 2
2 2 2 2

0 0

1
2 (2 ) ( ) (2 ) ( )

k k

k i i k i i
k

i i

k i k i
q a b a a b a

i i

   
      

 

 

     
      

   
        (15) 
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Proof: The proof is clear from the generating function of generalized Pell-Lucas sequence. 
 
Lemma 3: For every s and t , the following equality holds 

2
( 2) ( 1) ( )s

s n t s s n t sn tp q p a b p                 (16) 

 
Proof: From the Binet’s formula of generalized Pell and Pell-Lucas sequence, 
 

 
( 1) ( 1)

1 2
( 1) 1 2

1 2

s n t s n t
s s

s s n tq p
   

 

  
      

 

( 2) 2 2 ( 2)
1 1 2 2

1 2

1
( ) ( )s n t s sn t s sn t s n ta b a b                

 

   ( 2) ( 2) 2
1 2 1 2

1 2

1
( )s n t s n t s sn t sn ta b              

 

2
( 2) ( )s

s n t sn tp a b p      

 
then, equality becomes, 
 

2
( 2) ( 1) ( )s

s n t s s n t sn tp q p a b p           

 

Theorem 4: For fixed integers , 0 1s t with t s   , the following equality holds 

 
2 2

( 1)

2
0

( ) ( )

( ) 1

t sn
s n t s t t sn t

si t s
i s

p a b p p a b p
p

q a b
   




    


          (17) 

 
Proof: From the Binet’s formula of generalized Pell sequence, 
 

1 2

0 0 1 2

si t si tn n

si t
i i

p
 


 

 


    

                 1 2
0 01 2

1 n n
si t si t

i i

 

 

        
   

                 1 1 2 2

1 2 1 2

1

1 1

sn t s t sn t s t

s s

       
        

 

                 2 2
( 1)2

1
( ) ( )

( ) 1
s t

sn t s n t t s ts
s

a b p p p a b p
a b q             

 

                 
2 2

( 1)

2

( ) ( )

( ) 1

t s
s n t s t t sn t

s
s

p a b p p a b p

q a b
       


  

 

 
This completes the proof.  
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Corollary 5: Sum of odd new generalized Pell sequence,  
 
If 2 1s m   then Eq. (17) is 
 

2 2 (2 1)
(2 1)( 1) 2 1 (2 1)

(2 1) 2 (2 1)
0 (2 1)

( ) ( )

( ) 1

t mn
m n t m t t m n t

m i t m
i m

p a b p p a b p
p

q a b


      

  
 

    


        (18) 

 
For example 
 
(1) If  0 then s 1m    

2 2
1 1

2
0

( ) ( )

2 ( ) 1

tn
n t t t n t

i t
i

p a b p p a b p
p

a a b
   




    


          (19)  

  (i)      For 
2

1
2

0

1 ( )
0 :

2 ( ) 1

n
n n

i
i

p a b p
t p

a a b




  
 

     

 
(2) If 1then s 3m    

2 2 3
3 3 3 3

3 3 3 4 2
0

( ) ( )

(2 ) 3 (2 ) (3 ) 1

tn
n t t t n t

i t
i

p a b p p a b p
p

a a ab ab b a b
   




    


            (20) 

(i) For 
2 2 3

3 3 3
3 3 3 4 2

0

(3 ) ( )
0 :

(2 ) 3 (2 ) (3 ) 1

n
n n

i
i

p a b a b p
t p

a a ab ab b a b




   
 

       

(ii) For 
2 2 3

3 4 3 1
3 1 3 3 4 2

0

2 ( ) 1 ( )
1 :

(2 ) 3 (2 ) (3 ) 1

n
n n

i
i

p a a b a b p
t p

a a ab ab b a b
 




    
 

       

(iii) For 
2 2 2 3

3 5 3 2
3 2 3 3 4 2

0

( ) 2 ( )
2 :

(2 ) 3 (2 ) (3 ) 1

n
n n

i
i

p a b a a b p
t p

a a ab ab b a b
 




    
 

       

 
(3) If 2 then s 5m    

2 2 5
5 5 5 5

5 2 5
0 5

( ) ( )

( ) 1

tn
n t t t n t

i t
i

p a b p p a b p
p

q a b
   




    


         (21) 

(i) For 
2 5

5 5 5 5
5 2 5

0 5

( )
0 :

( ) 1

n
n n

i
i

p p a b p
t p

q a b




  
 

    

(ii)  For 
2 2 5

5 6 4 5 1
5 1 2 5

0 5

( ) 1 ( )
1 :

( ) 1

n
n n

i
i

p a b p a b p
t p

q a b
 




    
 

    

(iii) For 
2 2 2 5

5 7 3 5 2
5 2 2 5

0 5

( ) 2 ( )
2 :

( ) 1

n
n n

i
i

p a b p a a b p
t p

q a b
 




    
 

    

(iv)  For 
2 3 2 2 5

5 8 5 3
5 3 2 5

0 5

( ) 2 (3 ) ( )
3 :

( ) 1

n
n n

i
i

p a b a a b a b p
t p

q a b
 




     
 

      

(v) For 
2 4 2 2 5

5 9 5 4
5 4 2 5

0 5

( ) 4 ( ) ( )
4 :

( ) 1

n
n n

i
i

p a b a a b a b p
t p

q a b
 




     
 

    

(vi) For 
2 5

5 10 5 5 5
5 5 2 5

0 5

( )
5 :

( ) 1

n
n n

i
i

p p a b p
t p

q a b
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Corollary 6: Sum of even generalized Pell sequence, if 2s m  then Eq. (17) is 
 

2 2 2
2 ( 1) 2 2

2 2 2
0 2

( ) ( )

( ) 1

t mn
m n t m t t mn t

mi t m
i m

p a b p p a b p
p

q a b
   




    


          (22) 

 
For example 
 
(1) If 1then s 2m    

2 2 2
2 2 2 2

2 2 2
0 2

( ) ( )

( ) 1

tn
n t t t n t

i t
i

p a b p p a b p
p

q a b
   




    


          (23) 

(i) For 
2 2

2 2 2
2 2 2 2

0

2 ( )
0 :

(2 2 ) ( ) 1

n
n n

i
i

p a a b p
t p

a b a b




  
 

       

(ii) For 
2 2 2

2 3 2 1
2 1 2 2 2

0

( ) 1 ( )
1 :

(2 2 ) ( ) 1

n
n n

i
i

p a b a b p
t p

a b a b
 




    
 

       

(iii) For 
2 2

2 4 2 2
2 2 2 2 2

0

2 ( )
2 :

(2 2 ) ( ) 1

n
n n

i
i

p a a b p
t p

a b a b
 




  
 

     

 
(2) If 2 then s 4m    

            
2 2 4

4 4 4 4
4 2 4

0 4

( ) ( )

( ) 1

tn
n t t t n t

i t
i

p a b p p a b p
p

q a b
   




    


          (24) 

(i) For 
2 4

4 4 4 4
4 2 4

0 4

( )
0 :

( ) 1

n
n n

i
i

p p a b p
t p

q a b




  
 

      

(ii) For 
2 2 4

4 5 3 4 1
4 1 2 4

0 4

( ) 1 ( )
1 :

( ) 1

n
n n

i
i

p a b p a b p
t p

q a b
 




    
 

      

(iii) For 
2 2 2 4

4 6 4 2
4 2 2 4

0 4

( ) 2 2 ( )
2 :

( ) 1

n
n n

i
i

p a b a a a b p
t p

q a b
 




    
 

    

(iv) For 
2 3 2 4

4 7 3 4 3
4 3 2 4

0 4

( ) ( )
3 :

( ) 1

n
n n

i
i

p a b p a b p
t p

q a b
 




    
 

      

(v) For 
2 4

4 8 4 4 4
4 4 2 4

0 4

( )
4 :

( ) 1

n
n n

i
i

p p a b p
t p

q a b
 




  
 

    

 
(3) If 3 then s 6m    

             
2 2 6

6 6 6 6
6 2 6

0 6

( ) ( )

( ) 1

tn
n t t t n t

i t
i

p a b p p a b p
p

q a b
   




    


          (25) 

(i) For 
2 6

6 6 6 6
6 2 6

0 6

( )
0 :

( ) 1

n
n n

i
i

p p a b p
t p

q a b




  
 

    

(ii) For 
2 2 6

6 7 5 6 1
6 1 2 6

0 6

( ) 1 ( )
1 :

( ) 1

n
n n

i
i

p a b p a b p
t p

q a b
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(iii) For 
2 2 2 6

6 8 4 6 2
6 2 2 6

0 6

( ) 2 ( )
2 :

( ) 1

n
n n

i
i

p a b p a a b p
t p

q a b
 




    
 

    

(iv) For 
2 2 2 6

6 9 3 3 6 3
6 3 2 6

0 6

( ) ( )
3 :

( ) 1

n
n n

i
i

p a b p p a b p
t p

q a b
 




    
 

    

 

Theorem 7: For fixed integers , 0 1s t with t s   , the following equality holds 

2 2
( 1)

2
0

( 1) ( 1) ( ) ( )
( 1)

( ) 1

n n s tn
s n t sn t s t ti

si t s
i s

p a b p a b p p
p

q a b
   




      
 

        (26)

  

For different values of ands t : 

(i) 
2

1
2

0

( 1) ( 1) ( ) 1
( 1)

2 1

n nn
i n n

i
i

p a b p
p

a a b




    
 

    

(ii) 
2 2

2 2 2
2 2 2 2

0

( 1) ( 1) ( ) 2
( 1)

(2 2 ) ( ) 1

n nn
i n n

i
i

p a b p a
p

a b a b




    
 

     

(iii) 
2 2 2

2 3 2 1
2 1 2 2 2

0

( 1) ( 1) ( ) ( ) 1
( 1)

(2 2 ) ( ) 1

n nn
i n n

i
i

p a b p a b
p

a b a b
 




      
 

     

(iv) 
2 4

4 4 4 4
4 2 4

0 4

( 1) ( 1) ( )
( 1)

( ) 1

n nn
i n n

i
i

p a b p p
p

q a b




    
 

    

(v) 
2 4 2

4 5 4 1 3
4 1 2 4

0 4

( 1) ( 1) ( ) ( ) 1
( 1)

( ) 1

n nn
i n n

i
i

p a b p a b p
p

q a b
 




      
 

    

(vi) 
2 4 2 2

4 6 4 2
4 2 2 4

0 4

( 1) ( 1) ( ) ( ) 2 2
( 1)

( ) 1

n nn
i n n

i
i

p a b p a b a a
p

q a b
 




      
 

    

(vii) 
2 4 2 3

4 7 4 3 3
4 3 2 4

0 4

( 1) ( 1) ( ) ( )
( 1)

( ) 1

n nn
i n n

i
i

p a b p a b p
p

q a b
 




      
 

    

 
 
3.2. Product of Generalized Pell and Pell-Lucas Sequences 
 
In this section, we present identities involving the product of generalized Pell and Pell-Lucas 
numbers and related identities consisting of even and odd terms. 
 
Theorem 8: If k kp and q are generalized Pell and Pell-Lucas numbers, then holds for every

k and s , 
 

I. 2 2 1
2 2 1 4 1 1( ) k

k s k k s sp q p a b p
                (27) 

II. 2 2 2
2 2 2 4 2 2( ) k

k s k k s sp q p a b p
               (28) 

III. 2 2
2 2 4 ( ) k

k s k k s sp q p a b p             (29) 
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Theorem 9:  
 

I. 2 2 1
2 2 1 4 1 1( ) k

k s k k s sp q p a b p
                 (30) 

II. 2 2 1
2 2 1 4 1 1( ) k

k s k k s sp q p a b p
                (31) 

III. 2 2
2 2 4 ( ) k

k s k k s sp q p a b p              (32) 

 
Theorem 10: 
 

I. 2 2
2 2 4 ( ) k

k k s k s sp q p a b p             (33) 

II. 2 2
2 2 44 ( ) k

k k s k s sbp p q a b q             (34) 

III. 2 2
2 2 4 ( ) k

k k s k s sq q q a b q             (35) 

 
The proof is clear by the Binet’s formula of generalized Pell and Pell-Lucas numbers. 
 
3.2. Sum and difference of squares Generalized Pell and Pell-Lucas Sequences 
 
In this section, the sum and difference of generalized Pell and Pell-Lucas numbers are treated 
in the following theorem. 
 

Theorem 11:  2 2 2 1 2 2
1 1 2 2 2 24 2( ) {( ) 1}n

n n n nb p p q q a b a b
               (36) 

Theorem 12:  2 2 2 1 2 2
1 1 2 2 2 24 2( ) {( ) 1}n

n n n nb p p q q a b a b
               (37) 

The proof is clear by the Binet’s formula of generalized Pell and Pell-Lucas numbers. 

 
3.3. Matrix Representation of Generalized Pell and Pell-Lucas Sequences 

 
In this section, we present two crosses and two matrices for generalized Pell and Pell-Lucas 

sequences are given by 
2

2 1

( ) 0

a

b a

 
    

. 

Theorem 13: For n , we have 
1

2 2
1( ) ( )

n n

n n

p p

b a p b a p





   
    

    
      (38) 

 
Proof: To prove the result we will use induction on n. (6.1) is valid for n = 1. Suppose (38) is 
good for n, we get 

2
2 1

2 2
1 1

2 ( )

( ) ( )

n n n

n n

p ap b a p

b a p b a p

 

 

   
   

     
 

1

2 2

2 1

( ) 0 ( )

n

n

pa

b a b a p

  
       

 

2 2 2
1

2 1 2 1

( ) 0 ( ) 0 ( )

n

n

pa a

b a b a b a p 
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2
1

2 2

2 ( )2 1

( ) 0 ( )

n n

n

ap b a pa

b a b a p

   
        

 

1

2 2

2 1

( ) 0 ( )

n

n

pa

b a b a p

  
       

 

1

2( )

n

n

p

b a p

 
   

 
 

 

Theorem 14: For n , we have
1

2 2
1( ) ( )

n n

n n

q q

b a q b a q





   
    

    
      (39) 

 

Theorem 15: For , n  we have 
1 1

22
0( )( )

n n

n

p p

b a pb a p

   
       

      (40) 

 

Theorem 16: For n , we have 
1 1

22
0( )( )

n n

n

q q

b a qb a q

   
       

      (41) 

 
 
4. CONCLUSIONS 
 
This study describes explicit sums of generalized Pell and Pell-Lucas sequences. This enables 
us to give in a straightforward way several formulas for the sums of such generalized numbers. 
We describe some generalized identities involving the product of generalized Pell and Pell-
Lucas sequences. Also, we present identities related to their sum and difference of squares 
involving them and its two cross two matrices and find exciting properties such as the nth power 
of the matrix.  
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