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Research Article 

Abstract − Synchronization is a property of complex systems that manifests itself as the emergence of collective 

behavior from local interactions. Neurons are the basic building blocks of the nervous system, and in neuronal 

networks, the firing times of the neurons get synchronized via the electrical and chemical synapses among them. 

This property has been observed in both computational models and experimental studies. However, this 

synchronization's mechanisms have not yet been totally revealed. Here, we investigate the synchronization 

properties of quadratic integrate and fire (QIF) neurons from a computational modeling perspective. QIF neurons 

are simple yet effective models in the sense that they have the ability to capture complex behavior observed in 

neurons. We present analytical results concerning the spiking frequency of the QIF neurons and the relationships 

between membrane voltage and phase of the neurons. We give simulation results for a simple network of all-to-

all coupled QIF neurons, demonstrating the effects of different types of coupling among the network members. 

We show that electrical and inhibitory chemical synapses play complementary roles in the formation of 

synchronized behavior in a neuronal network. Our results contribute to our understanding of the brain to produce 

cognitive abilities and coordinated action. 

Keywords − Integrate and fire, neuron, phase, synchronization 

1. Introduction 

Computational modeling efforts in neuroscience generally seek a balance between biological realism and 

computational tractability. Biological realism brings complexity to the models, whereas simplicity is crucial 

to be able to arrive at generalizable inferences. The need for simplicity becomes even more crucial with the 

increasing usage of network models in neuroscience. Conductance-based models [1] can reproduce the output 

of many electrophysiological recordings. However, because of its inherent complexity, extending 

conductance-based single-neuron models to large networks of neurons is not easy. On the other hand, integrate 

and fire neuron models offer a great reduction in complexity but with the capability of representing the rich 

dynamical repertoire of neurons, especially at regions close to the firing threshold [2]. 

Integrate and fire neuron model is one of the earliest models in neuroscience, dating back to 1907 [3]. The 

model tracks the membrane potential and acts as an integrator of subthreshold stimuli. It incorporates a reset 

mechanism for the neuron to return to resting potential after triggering a spike [4]. Quadratic integrate and fire 

(QIF) neuron model is a type of integrate and fire neuron model, and it is actually the simplest form of a spiking 

neuron. Although simplistic in the sense that it is based on a single variable, the QIF model is widely used to 

model a wide range of neuronal phenomena [5], including learning [6], memory [7], and movement-induced 

rhythms [8]. It was also demonstrated that QIF is appropriate for modeling neural oscillations [9,10]. 

Neurons exhibit an oscillatory behavior [11], and a prominent feature of a neuron is its ability to synchronize 
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these oscillations with other neurons [12]. This synchronization takes place under the action of synaptic 

couplings and is the basis of all attention [13], memory [14], coordinated action [15], and related phenomena. 

Although the underlying mechanisms of this synchronization are still not totally revealed, it is known that it is 

an emergent property with no central executive coordinating this synchronization process [16]. Thus, 

synchronization is a global phenomenon arising from local interactions among the neurons [17]. 

Oscillatory behavior and activity synchronization are not an exclusive property of neurons and are observed 

in many natural systems [18,19]. Observing collective behavior at different levels in living systems, from micro 

to macro, is possible. Therefore, it is important to discover the underlying mechanisms of this behavior to 

understand living systems and adapt these principles to engineering systems [20]. 

The synchronization characteristics of QIF neurons have already been investigated in a number of studies and 

the link between the Kuramoto Model [21] and the QIF model has been established [22], voltage dependence 

of synchronization for electrical synapses has been explored [23] and a mean field approximation for networks 

of QIF neurons has been proposed [24]. Recently, it has been shown that spike timing dependent plasticity 

allows QIF neurons to form large clusters that generate synchronous oscillations [25]. Earlier work has shown 

that synchronization can be achieved both with the coordinated action of inhibitory and excitatory inputs [26] 

or with inhibition alone [27]. A number of works have reported that inhibitory synapses increase the 

synchronization capability of neuronal networks [28,29]. And although electrical synapses are thought to 

promote synchronization in general [30], it has also been observed that anti-synchronous activity can also 

emerge from weak electrical coupling [31]. Thus, the joint role of electrical and inhibitory chemical coupling 

is still elusive. Based on these findings, in this study we particularly aim at revealing the complementary roles 

of inhibitory chemical synapses and electrical synapses in the formation synchronous activity in a network of 

QIF neurons. In the Materials and Methods, we explain the basic temporal dynamics of a single QIF neuron 

and the relationship between its membrane voltage and phase. This enables us to describe the neuron as an 

oscillator. After investigating the phase sensitivity of a neuron, we extend our analysis to a network of QIF 

neurons and investigate its synchronization properties under different coupling conditions. After presenting 

the results with discussion we conclude the paper with a summary of our results and a description of future 

work. 

2. Materials and Methods 

We first consider a single isolated neuron subject to a constant external current, but with no synaptic input. 

The QIF model for this neuron reads (2.1), 

𝜏�̇� = 𝑣2 + 𝜂,    if  𝑣 > 𝑣𝑝,    then  𝑣 ← 𝑣𝑟 (2.1) 

where, 𝑣 is the membrane potential, 𝜏 is the membrane time constant and 𝜂 is external current noise. Since 

membrane voltage increases quadratically, a resetting rule is needed, which is given as the if statement in the 

equation. When 𝜂 < 0, the model has one stable equilibrium, which corresponds to the resting state of the 

neuron, i.e., 𝑉𝑟 = −√𝜂, whereas the other equilibrium point is unstable and acts as the threshold voltage for 

spike generation, i.e., 𝑉𝑝 = +√𝜂. In this study, we will consider the case 𝜂 > 0, which corresponds to the 

situation where there is no equilibrium point and the neuron acts as a self-sustained oscillator. If we set 

𝑣(𝑡 = 0) = 𝑣𝑟, then the time evolution of the membrane voltage may be determined by a simple separation of 

variables (2.2): 
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∫
1

𝑣 ′2 + 𝜂

𝑣(𝑡)

𝑣𝑟

𝑑𝑣 ′ =
1

𝜏
∫ 𝑑𝑡 ′

𝑡

0

 (2.2) 

which gives (2.3), 

𝑣(𝑡) = √𝑛tan (
√𝑛

𝜏
𝑡 + tan−1

𝑉𝑟

√𝑛
) (2.3) 

The period of oscillation, 𝑇, may be determined by calculating the time at which 𝑣(𝑡) = 𝑉𝑝, and is given by 

(2.4), 

𝑇 =
𝜏

√𝑛
(tan−1

𝑉𝑝

√𝑛
− tan−1

𝑉𝑟

√𝑛
) (2.4) 

A symmetric spike resetting is generally assumed, i.e., 𝑉𝑝 = −𝑉𝑟, in which case the period becomes (2.5): 

𝑇 = 2
𝜏

√𝑛
tan−1

𝑉𝑝

√𝑛
 (2.5) 

Generally, for mathematical analysis, 𝑉𝑝 is assumed to go to infinity, and this makes the period of spike 

generation a simple function of membrane time constant and external current (2.6): 

𝑇 =
𝜋𝜏

√𝑛
 (2.6) 

In practical cases, we can set 𝑉𝑝 ≫ √𝑛 for the above equation to hold. Thence, writing 𝜔 =
2𝜋

𝑇
=

2√𝜂

𝜏
, a phase 

variable may be introduced: 𝜙 = 𝜔𝑡 = (
2√𝜂

𝜏
) 𝑡, which may be derived from (2.3) as (2.7), 

𝜙 = 2arctan
𝑣

√𝑛
+ 𝜋 (2.7) 

This function may be seen as a mapping between membrane voltage and phase, which turns the neuron into a 

rotating oscillator on the unit circle that emits spikes when 𝜙 = 2𝜋. 

Figure 1 shows the time course of membrane voltage and phase for a QIF neuron. Membrane voltage obeys 

(2.1) and the phase is calculated for each voltage value from (2.7). It may be seen that the spiking period is 

close to 10 s, which may be confirmed from (2.6). The membrane voltage of the neuron has fast dynamics 

immediately after a spike and just before the spike and a slow increase governs the rest of its temporal 

dynamics. On the other hand, please note the linear increase in the phase of the neuron between the spikes. 

Actually, we had derived the angular velocity above, and thus, the mapping given in (2.7) converts the non-

linear temporal dynamics of membrane voltage to a linear phase system. We can also verify this using the 

chain rule (2.8): 

𝑑𝜙

𝑑𝑡
=

𝑑𝜙

𝑑𝑣

𝑑𝑣

𝑑𝑡
=

2

√𝜂 (1 +
𝑣2

𝜂 )

(𝑣2 + 𝜂)

𝜏
= 2

√𝜂

𝜏
 (2.8) 

This analysis shows that phase temporally depends on the external current and membrane time constant, and 

if these two parameters are constant then the phase of the neuron changes linearly between the spikes. 

In our simulations, we will consider nearly identical neurons, in the sense that their membrane time constants 

will be identical but the external noise they are exposed to will be stochastic with a definite mean and variance. 
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Thus, the instantaneous change of phase will be dependent on the instantaneous noise component but can be 

assumed to be constant over a long time which is determined by the mean of the external noise, 𝜂. 

 

Figure 1. The time course of membrane voltage, 𝑣, for a QIF neuron with 𝑉𝑝 = −𝑉𝑟 = 20, 𝜏 = 1, and 

𝜂 = 0.1 

2.1. Phase Sensitivity of a Neuron 

The phase of a QIF neuron is a function of its membrane voltage and perturbations in this voltage cause an 

alteration in the phase of the neuron. In (2.7), we have noted the derivative of phase with respect to voltage 

(2.9): 

𝑑𝜙

𝑑𝑣
=

2

√𝜂 (1 +
𝑣2

𝜂 )
 

(2.9) 

This equation tells us that the phase sensitivity depends both on the corresponding voltage and on the external 

noise component, and the sensitivity is maximum when 𝑣 = 0. It is also possible to derive the sensitivity of 

the phase to the noise component, 𝜂, and can be shown that phase sensitivity is maximum (for a constant 

voltage) at 𝜂 = 𝑣2. 

Phase sensitivity may be empirically determined by applying small perturbations to the membrane voltage at 

different phases, 𝜙 =
𝑡𝑠

𝑇𝑜
, where 𝑇𝑜 is the intrinsic period of the neuron and 𝑡𝑠 is the time between the last action 

potential and the perturbation. We can then measure the corresponding change in the period, 
(𝑇𝑜−𝑇𝑝)

𝑇𝑜
, where 𝑇𝑝 

is the period in the perturbed interval. This function, relating phase to voltage perturbation is also called the 

phase resetting curve (PRC) of a neuron [32]. It summarizes the responses of a neuron to external inputs, from 

neighboring neurons or other noise components. 

Figure 2 shows the analytical and numerical PRC of a QIF neuron. The two curves are in close agreement with 

each other, and they show that the neuron is rather insensitive to external perturbations immediately after and 

just before a spike, and the sensitivity is comparably much higher during the interval between these two ends. 

Another point to note is that phase sensitivity is always non-negative. Thus, positive perturbations will shorten 

the spike interval, whereas negative perturbations will cause a delay in the next spike time. 
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Figure 2. Analytical and empirical phase sensitivity curves for a QIF neuron. These curves show the 

normalized increase (or decrease) in the spiking period with an infinitesimal perturbation in the membrane 

voltage 

2.2. A Simple Network of QIF Neurons 

Neurons do not function in an isolated manner, and our main concern is the relationship among the interacting 

neurons. Equipped with a general understanding of phase sensitivity of a single neuron, we will now consider 

a network of QIF neurons, whose individual membrane voltages are evolving according to (2.10), 

𝜏�̇�𝑖 = 𝑣𝑖
2 + 𝜂𝑖 + 𝑆𝑖(𝑡),    if  𝑣𝑖 > 𝑣𝑝,    then  𝑣𝑖 ← 𝑣𝑟 (2.10) 

where 𝑖 ∈ {1,2, ⋯ , 𝑁} indexes all-to-all coupled 𝑁 neurons. 𝑆𝑖(𝑡), is the total time dependent synaptic input 

to the neuron and has two components: chemical and electrical synapses. Electrical synapses are gap junctions 

which permit the connected neurons to conduct electricity. In our model, electrical synapses are coupled to the 

neurons by the mean membrane voltage (2.11): 

𝑆𝑖
𝑒(𝑡) = 𝑔(𝜇𝑉(𝑡) − 𝑣𝑖),    𝜇𝑣(𝑡) = ∑ 𝑣𝑗(𝑡)

𝑁

𝑗=1

 (2.10) 

where 𝜇𝑣(𝑡) is the mean membrane voltage of the neuron population and 𝑔 is a constant denoting the strength 

of the synaptic coupling which may be seen as the average conductance of the synaptic channels. Chemical 

synapses, on the other hand, are biological junctions that act through neurotransmitters, and they allow the 

transmission of presynaptic signals to postsynaptic neurons. 

In the current model, chemical synapses are mediated by mean firing rate (2.12): 

𝑆𝑖
𝑐(𝑡) =

𝐶

𝑁
∑ ∑ 𝛿(𝑡 − 𝑡𝑗

𝑘)

𝑘

𝑁

𝑗=1

 (2.10) 

where 𝐶 is a constant denoting the strength of chemical couplings, 𝑡𝑗
𝑘 is the 𝑘th spike of the 𝑗th neuron, and 𝛿(⋅) 

is the Dirac delta function. 

Electrical and chemical synapses play complementary roles in neuronal network synchronization [33]. The 

strength of coupling needed for synchronization depends on the relative contributions of chemical and 
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electrical synapses [34]. Additionally, chemical synapses may be inhibitory or excitatory. Excitatory synapses 

increase the activity of the postsynaptic neuron, whereas inhibitory synapses work in the reverse direction. 

It has been shown that inhibitory synapses increase the synchronization capability of neuronal networks [28]. 

However, the exact roles of electrical and inhibitory coupling in the formation of synchronous activity is still 

under debate. Therefore, in this study we will only consider inhibitory chemical synapses and in order to 

investigate the effect of both types of coupling, we analyse the network in two different settings: 1) Only 

electrical coupling, 2) Inhibitory chemical coupling and electrical coupling. 

3. Results and Discussion 

Here, we present the results for a network of 𝑁 = 256 all-to-all coupled neurons. Since the membrane time 

constant, 𝜏, acts as an inverse multiplier of integration time in our simulations, without loss of generality, we 

will assume that 𝜏 = 1. To keep the heterogeneity among the neurons at a low level we impose the constraint 

that the mean of the Gaussian noise is much larger than the standard deviation. This is also needed to satisfy 

the weak coupling regime between the QIF neurons. Accordingly, the external noise has a Gaussian 

distribution with a mean of 0.1 and a standard deviation of 0.01. 

The QIF model is not directly related to physiological voltage levels. Nevertheless, to keep the voltage levels 

at reasonable ranges, the neurons were randomly initialized uniformly between – 1 and 1 𝑉 and time courses 

of their membrane voltages were determined by Euler integration with time steps of 0.01 s. 

3.1.  Only Electrical Synapses 

We first set 𝐶 = 0 and let the network interact only through electrical synapses. Beginning from a 𝑔 value of 

0.01, we incrementally increased 𝑔 with steps of 0.01 and check for synchronization. To quantify the 

synchronization, we calculated the index of dispersion (ratio of variance to mean) of spike intervals of the 

neurons. 

In Figure 3, it is observable that dispersion index drops close to zero beginning from 𝑔 = 0.04. Thus, we 

deducted that synchronization is achievable beginning from this value of 𝑔. 

 

Figure 3. Index of dispersion of spiking intervals with varying electrical coupling strength. Decrease in 

dispersion points to the emergence of synchronization 
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Figure 4. Top: Raster plots of neurons. Each firing of a neuron is represented as a dot at that time point. 

Synchronization in firings is evident as time progresses. Bottom: Evolution of spiking intervals of neurons. 

Spiking intervals converge as time progresses 

In Figure 4, we present the raster plot and the change in the spiking periods of the neurons for 𝑔 = 0.05. 

Beginning from an unsynchronized state, the neurons organize themselves towards a synchronized state. 

During this interval, their spiking periods converge to their intrinsic periods (~9.8 s). Since the external current 

is stochastic small fluctuations continue after convergence. Please note that this is the only achievable 

synchronized condition for identical neurons with electrical coupling. Since this coupling is mediated by mean 

membrane voltage, for those neurons whose membrane voltage is lower than the average, electrical coupling 

acts as an accelerator whereas for the ones that are higher than the average, coupling causes a deceleration. 

And as time progresses every neuron is pulled towards the mean and begins to trigger a spike at the same time. 

Interestingly, this pull towards synchronization also decreases the total amount of electrical coupling among 

the neurons. This phenomenon may be understood within the light of optimality of the brain [35]. Thus, 

synchronization is not achieved per se but is a state that comes out of a more general principle of energy 

minimization. 

3.2.  Inhibitory Chemical Coupling and Electrical Coupling 

After investigating the role of electrical synapses on the synchronization of the neuronal network, we proceed 

with analyzing the combined effects of inhibitory chemical synapses and electrical synapses. Cortical circuits 

display a layer-specific excitation-inhibition balance in generating synchronization between neuronal 

assemblies [36]. In the sequel, we conjectured that a certain amount of inhibitory coupling would corroborate 

the synchronization capacity of the network. To be able to test this conjecture we set an electrical coupling 

constant of 𝑔 = 0.02 (which is below the full synchronization level of the network). Then, we increased the 

inhibitory chemical coupling and checked the synchronization. We observed that the synchronization capacity 

increased after a certain level of inhibition, but began to decrease with further increase, which points to an 

optimum exhibition/inhibition ratio. In Figure 5, it may be observed that the network reaches synchronization 

with a larger time delay. As a further test, we lowered 𝑔 and found that inhibitory coupling should also be 

lowered in the same amounts for synchronization (Figure 6). 
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Figure 5. The definitions of the firts two plots are as in Figure 4. At the bottom we included the mean 

membrane voltage of the population. Electrical coupling constant 𝑔 is 0.02, inhibitory coupling constant 𝐶 =

−0.06. Please note that simulation time is 500 seconds 

 

 

Figure 6. The definitions of the plots are as in Figure 4. Electrical coupling constant 𝑔 is 0.01, inhibitory 

coup-ling constant 𝐶 = −0.12. Please note that simulation time is 1000 seconds 

4. Conclusion 

In this study, we provide further evidence for the complementary roles of inhibitory chemical synapses and 

electrical synapses in the formation of synchronized behavior in networks of coupled neurons. First, we showed 

that the network may become synchronized with only electrical coupling. This synchronization takes place at 

a certain amount of coupling, and we also made the observation that synchronized activity also decreased the 

total amount of coupling among the neurons. We related this observation to the optimality of the brain 

hypothesis since every interaction between the neurons needs energy consumption [37]. Second, we showed 

that with an injection of inhibitory coupling, it may become possible for the network to arrive at full 
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synchronization with less electrical coupling but with a larger time delay. It has been claimed that electrical 

coupling had increased the robustness of inhibition induced synchronization [38]. Our results do not directly 

relate to this conjecture but provide an alternative look at the interplay between inhibitory and electrical 

coupling. Interestingly, we also observed that further increases in inhibition causes a loss in the 

synchronization. This point is of note since it has been reported that for a total amount of coupling either 

electrical coupling only or inhibition only is better at arriving neural synchrony [39]. Please note that in our 

simulations only electrical coupling is more efficient for driving the network towards synchrony and with the 

addition of inhibition this electrical coupling should be decreased. And after the network reaches 

synchronization, further increase in inhibition deteriorates synchrony. 

This study analyzed quadratic integrate and fire neurons as use cases, however similar approaches can be 

extended to other neuron models. Physiologically inspired neuronal models and network structures may be 

used to explore the synchronization phenomenon in biologically more plausible settings. 
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