
Research Article / Araştırma Makalesi

Model Proposal for Testing Websites in Multiple Browsers: Case of
Selenium Test Tool

Çoklu Tarayıcılarda Web Sitesi Testine Yönelik Model Önerisi: Selenium Test Aracı Örneği

Cem Ufuk BAYTAR 1

ABSTRACT
Automated software testing has critical advantages when compared with manual software
testing. The selenium test tool is one of the test tools that specialists use to test web applications
or websites automatically. This test tool consists of 4 software components, i.e., Selenium IDE,
Selenium RC, Selenium WebDriver, and Selenium Grid. The main purpose of this article is to
implement a proposed model for cross-browser website testing by using Selenium WebDriver.
Selenium WebDriver is required to manage the actions of a web browser. Drivers are needed
to make a bridge between Selenium WebDriver and the relevant web browsers (chrome, edge,
firefox). Other components of the model were Python, Unittest as a test framework, and Py-
Charm. PyCharm was used as an editor to write test scripts. One positive scenario and one
negative scenario were applied to the relevant website. The results of automated test scenarios in
3 browsers were reported on the PyCharm screen. As a result, the model was validated because
automated test results had been supported by manual test results.

Anahtar Kelimeler:information system, selenium webdriver, automated software testing, website,
unittest

1 Istanbul Topkapı University, Management Information Systems Department, ufukbaytar@topkapi.edu.
tr, ORCID: 0000-0003-0844-8160

Topkapı Journal of Social Science, Vol. 1, No. 2, 2022

Geliş Tarihi (Received): 01.07.2022 / Kabul Tarihi (Accepted): 29.08.2022

https://orcid.org/0000-0003-0844-8160

106

Cem Ufuk BAYTAR

ÖZ
Otomatik yazılım testi, manuel yazılım testi ile karşılaştırıldığında kritik avantajlara sahip-
tir. Selenium test aracı, uzmanların web uygulamalarını ya da web sitelerini otomatik olarak
test etmek için kullandığı test araçlarından biridir. Bu test aracı, Selenium IDE, Selenium
RC, Selenium WebDriver ve Selenium Grid olmak üzere 4 yazılım bileşeninden oluşur. Bu
makalenin temel amacı, Selenium WebDriver’ı kullanarak birden fazla tarayıcıda web sitesi
testi için önerilen bir modeli uygulamaktır. Selenium WebDriver, bir web tarayıcısının eylem-
lerini yönetmek için gereklidir. Selenium WebDriver ile ilgili web tarayıcıları (chrome, edge,
firefox) arasında köprü kurmak için sürücülere ihtiyaç vardır. Modelin diğer bileşenleri Pyt-
hon, Unittest ve PyCharm bileşenleridir. PyCharm, test senaryosu komutlarını yazma editörü
olarak kullanılmıştır. İlgili web sitesine bir olumlu ve bir olumsuz senaryo uygulanmıştır. 3
tarayıcıdaki otomatik test senaryolarının sonuçları PyCharm ekranında raporlanmıştır. So-
nuç olarak, otomatik test sonuçları manuel test sonuçları tarafından desteklendiğinden öneri-
len modelin doğrulaması gerçekleşmiştir.

Keywords: bilgi sistemi, selenium webdriver, otomatik yazılım testi, web sitesi, unittest

1. Introduction

The testing process has an important role
in the life cycle of software development
to create high-quality software products
(Rana & Latif, 2020). Bugs in coding are
detected with the prepared test scenarios.
In this context, the level of fulfillment of
customer demands in an information sys-
tem project is also measured (Meriç &
Özbayoğlu, 2021). To find out software
errors, test specialists apply different test
techniques. Some examples are regression
testing, functional testing, and automated
testing (Koruyan & Uzun, 2019, p.55).

Regression testing is used to test any
changes in program codes. It aims to pro-
vide correctness of software which is de-
veloped (Nguyen & Le, 2021). Function-
al testing tries to make sure that software
meets necessary functional requirements.

It may be included in the regression test-
ing process (Simplified, 2019).

Manuel testing process is realized without
any tool. It is time-consuming and less
reliable because of human errors (Sharma
& Angmo, 2014). Automated testing is
a test technique to test any application,
for example, web applications, by using
a software framework or a software tool
(Yusifoğlu et al., 2015). According to Tak-
gil & Kara (2016), automated testing has
advantages as follows:

•	 Minimizing human effect on testing
•	 Finding more bugs in a short time
•	 Enabling re-use of test scenarios
•	 Increasing the percentage of code cove-
red by test scenarios
•	 Being able to apply test cases continu-
ously

107

Topkapı Jour of Soc Sci, Vol. 1, No. 2, 2022, pp. 105–119

People can visit many websites easily by
using electronic devices (desktops, lap-
tops, tablets, smartphones) connected to
the internet. Users prefer different web
browsers to open web pages. Every brows-
er has its features that interpret the source
code of a website differently. Browsers dis-
play changing technical behaviors among
each other. This situation may cause prob-
lems related to compatibility of the brows-
er, i.e., missing web elements on the web
page, functions not working properly, etc.
A website has to work correctly in every
browser (MS edge, chrome, firefox) as
much as possible to satisfy users. In other
words, it has cross-browser compatibili-
ty if it works appropriately in every type
of browser (Sabaren et al., 2018). That is
why automated testing of a website in var-
ious browsers plays an important role in
ensuring correctness and functionality for
a website to work properly and to make
customers spend much more time on web-
sites that have high quality.

In this paper, a model has been proposed to
be able to test a website in multiple brows-
ers (cross-browsing) by using the selenium
test tool. Selenium is an open-source test
framework (Garcia et al., 2020). It is used
especially to test web applications. It sup-
ports all web browsers and some program-
ming languages, such as Java, .Net, Perl,
PHP, and Python (Hanna et al., 2018).

•	 The objectives of this paper are:
•	 Carrying out the proposed model to
show how to implement cross-browser
web testing
•	 Validating the model by comparing
manual test results with automated test
results.
•	 Contributing to an understanding of
how the Selenium test tool works.

The remaining part of this paper is orga-
nized as follows; Section 2 gives informa-
tion about cross-browser testing, Section 3

describes Selenium, Section 4 defines the
research model, and Section 5 includes
implementation and validation of the
model. Finally, Section 6 summarizes the
results and possible future directions for
this work.

2. Cross Browser Testing

Cross-browser testing is to verify that web
applications or websites work properly for
various combinations of web browsers,
operating systems, and devices. Although
web browsers support standards of the
World Wide Web Consortium (W3C),
they might render code in different ways.
According to Datadog (n.d.), browser-re-
lated issues occur due to specified factors
as follows:

•	 Different default settings of a browser,
i.e., default font,
•	 Different user-defined settings, i.e., sc-
reen resolution,
•	 Different settings in hardware func-
tionality cause differences in some para-
meters, for example, color balancing, and
screen resolution.
•	 Differences in ways of processing web
instructions,
•	 Variations among web standards in
clients,
•	 Using handy technologies, i.e., screen
readers,
•	 Various JavaScript coding,
•	 Mistakes in CSS,
•	 Lack of supporting HTML5,
•	 Incompatibility between browser and
layout,
•	 Wrong frameworks,

One of the methodologies to carry out
cross-browser testing is to write scripts.
These scripts simulate behaviors of users
who visit a website, i.e., creating an ac-
count, logging on to a website, clicking
a button to send a message, etc. In addi-
tion, it is possible to add assertions, for

108

Cem Ufuk BAYTAR

example, to check whether a web element
appears on a page, etc. In this work, the se-
lenium test tool and python as a program-
ming language have been used to create
such scripts.

3. Selenium as Automated Test Tool

Selenium is an open-source integrated test
product. It is made up of some compo-
nents, such as Selenium IDE, Selenium
RC, Selenium WebDriver, and Selenium
Grid. Selenium IDE (Integrated Devel-
opment Environment) is a plugin for the
Firefox web browser. It allows users to re-
cord their actions to test a web application
by replaying those actions later. Seleni-
um RC (Remote Control) is a server that

builds a bridge between a JavaScript-en-
abled web browser and test cases. Seleni-
um Grid is used to carry out test scenarios
at the same time in different computers to
decrease execution time as much as possi-
ble. Selenium WebDriver is used to man-
age the behavior of a website to realize test
scripts.

In literature, there have been articles about
automated testing with the Selenium tool.
Related work is summarized in Table 1.

No Subject / Related to Tool Author
1 Introduction to regression test and

Selenium
Selenium Umesh et al.,

2015
2 Comparison of Watir with Selenium Watir, Selenium Gogna, 2014
3 Describing the standard environment

for testing with Selenium,
Selenium Holmes & Kel-

logg, 2006
4 Developing automated testing frame-

work
Webdriver, TestNG Gojare et al., 2015

5 Comparison of QTP with Selenium QTP, Selenium Jagannatha et al.,
2014

6 Descriptive survey on how the com-
munity uses Selenium

Selenium Garcia et al., 2020

7 Proposed automated testing frame-
work

Selenium Hanna et al., 2018

8 Comparison of some testing tools Selenium, QTP,
Fitnesse, Watir, Win-
Runner etc.

Sharma & Ang-
mo, 2014

9 Analysis of automated testing tools Ranorex, Test Com-
plete, Selenium

Kakaraparthy,
2017

10 Study on Selenium IDE Selenium IDE Sharma et al.,
2017

11 Evaluating WebRTC Selenium WebDriver Garcia et al., 2022

Table 1. Related Work

Selenium test tool is cross-platform. It supports all major browsers. Table 2 provides comparison
of different automated test tools (Sharma & Angmo, 2014).

109

Topkapı Jour of Soc Sci, Vol. 1, No. 2, 2022, pp. 105–119

No Tools Language
Use

Operating
system

Type Language
supported

Browser
supports

1 Sele-
nium

Java Cross - pla-
tform

Software
testing
framework
for web
application

Domain spe-
cific language

All major
browser

2 Watir Ruby Cross -platform Software
testing
framework
for web
application

Java, .NET,
c#

Originally
only for
Internet
Explorer

3 HP-
QTP

VB Script Microsoft Win-
dows

Test Au-
tomation
Tool

VBscript IE 6,7,8,10,
Firefox 3.0
and later

4 Test
Com-
plete

Java Microsoft Win-
dows

Test Au-
tomation
Tool

VBscript,
Jscript,
C++, Delphi
Script, c#
Script.

IE, Firefox,
Google
chrome

5 FitNes-
se

Java Cross - pla-
tform

Test Au-
tomation
Tool

C++, Python,
Ruby, Del-
phi, c# etc

Platform
independent

6 HP
Load
Run-
ner

C Microsoft win-
dows & Linux

Load Te-
sting Tool

VB, VB-
script, java,
javaScript, c#

Platform
independent

7 Te-
stNG

Java Window, Li-
nux, MAC

Testing
Fra-
mework

Java IE, FireFox,
chrome

8 Silktest 4Test
Scripting
Language

Microsoft Win-
dows

Test Au-
tomation
Tool

Java, 4Test,
VB, c#, VB.
net

IE, FireFox

9 Win
Run-
ner

C Microsoft
Windows and
Linux

Load Te-
stingTool

Test Scrip-
ting Langua-
ge (TSL)

IE, Netsca-
pe

Table 2. Comparison of Test Tools

110

Cem Ufuk BAYTAR

4. Research Model

The research model has been presented as
depicted in Figure 1. This model aims to
provide an infrastructure to implement
cross-browsing testing. In other words, us-
ers can carry out the same test scenario(s)
in 3 web browsers (chrome, edge, firefox).
Selenium WebDriver is an object-orient-
ed programming interface that effectively
controls a web browser to run test cases of
a web application or a website.

It uses language bindings and code imple-
mentations for driving a website. Web-
Driver is a suggestion of the World Wide
Web Consortium (W3C). It communi-
cates with a web browser through a driver,
which is an executable module whose task
is to manage the behavior of a web brows-
er. Every browser has its driver as shown
in Table 3. WebDriver sends a command
to a web browser. The browser answers it.
WebDriver has not any information about

test scenarios that are written for a web-
site. Test frameworks are necessary to ex-
ecute WebDriver and to run steps in test
scenarios. NUnit for .NET, JUnit for Java,
RSpec for Ruby, and Unittest for Python
are some examples of test frameworks
(Garcia et al., 2022; Selenium, n.d.). In
this work, Unittest has been used as a test
framework.

Unittest was originally inspired by JUnit.
It supports some important concepts for
test automation in an object-oriented way
as explained below (Python, n.d.):

•	 Test fixture: provides some facilities to
realize test scenarios and cleaning actions.
•	 Test case: represents a testing unit. Ac-
cording to some specific inputs, it cont-
rols some responses. A base class, which is
called TestCase, is used to create new test
cases.
•	 Test suite: helps test specialists to run
the relevant test cases together.

Figure 1. Research Model

Table 3. Drivers used in the Model

Browser Name Browser Version Driver Name Driver Version
Chrome 103.0.5060.66 chromedriver 103.0.5060.53
MS Edge 103.0.1264.37 msedgedriver 103
Firefox 101.0.1 geckodriver 0.31.0

111

Topkapı Jour of Soc Sci, Vol. 1, No. 2, 2022, pp. 105–119

•	 Test runner: is used to managing test
executions and to show test results on a
graphical interface.

PyCharm editor has been used to write
test scripts and to get a report about the
automated test result. Necessary tools to
build a test environment have been listed
as shown in Table 4 (Selenium-python,
n.d.).

It should execute the command “pip in-
stall selenium” in the command prompt
of the Windows operating system to in-
stall the Selenium package. This package
enables to access of Selenium WebDriver.
Pip is the installer program of Python.

5. Implementation of the Model

2 test scenarios have been designed. There
are similar test cases in the literature (Imti-
az et al., 2021; Hanna et al., 2018; Singla
& Kaur, 2014; Jagannatha et al., 2014;
Garousi et al, 2021). The first scenario is
a positive one, another one is a negative
test scenario. Dergipark’s website has been
tested with these test scenarios. Test scripts
were written in PyCharm editor to real-
ize test scenarios. In the positive scenario
as shown in Figure 2, firstly a user opens
the main page, then the language flag is
changed to English. After clicking on the
login button, the sign-in form is filled in.
The form includes an e-mail address and
password. Finally, the page “My Journals”
is opened.

Table 4. Tools to Build Test Environment

Tool Name Explanation
Python – 3.10.5 https://www.python.org/downloads/
Chromedriver
Msedgedriver
Geckodriver
PyCharm – community edition,
2022.1.2

https://www.jetbrains.com/pycharm/
download/

Selenium – 4.2

Figure 2. Positive Test Scenario

112

Cem Ufuk BAYTAR

In the negative scenario, as depicted in
Figure 3, after opening the login form, a
user begins to fill in the login form. After
the e-mail address, the related password
is entered in the wrong way. The website
shows an error message, i.e., “You have
entered an invalid e-mail address or pass-
word ”

Before writing a test case in the PyCharm
editor, it is necessary to make some set-
tings and to import some libraries, such
as unittest, webdriver etc. Service objects,
which are a new change in Selenium 4.0,
are created for every browser (chrome,
firefox, edge) separately as shown in Table
5, Table 6, and Table 7.

Table 5. Settings part of Scenarios for
Chrome Browser

Test Code
1 import unittest
2 from selenium import webdriver
3 from selenium.webdriver.common.by

import By
4 from selenium.webdriver.chrome.ser-

vice import Service
5 s = Service(‘C:\driver_\chromedriver.

exe’) # create a service object

6 driver = webdriver.Chrome(service=s)
create a driver for chrome

7 url = ‘https://dergipark.org.tr/tr/’ #
address of website

The parameter of service objects is the
name of the driver file belonging to a
browser, i.e., chromedriver, msedgedriver,
and geckodriver.

Table 6. Settings part of Scenarios for MS
Edge Browser

Test Code
1 import unittest
2 from selenium import webdriver
3 from selenium.webdriver.common.

by import By
4 from selenium.webdriver.edge.servi-

ce import Service
5 s = Service(‘C:\driver_\msedgedri-

ver.exe’) # create a service object
6 driver = webdriver.Edge(service=s) #

create a driver for edge
7 url = ‘https://dergipark.org.tr/tr/’ #

address of website

Figure 3. Negative Test Scenario

113

Topkapı Jour of Soc Sci, Vol. 1, No. 2, 2022, pp. 105–119

After creating service objects, drivers are
defined for every browser, i.e., driver =
webdriver.Firefox(service=s). Variable url
has the name of the website which is un-
der test.

Table 7. Settings part of Scenarios for
Firefox Browser

Test Code
1 import unittest
2 from selenium import webdriver
3 from selenium.webdriver.common.

by import By
4 from selenium.webdriver.firefox.

service import Service
5 s = Service(‘C:\driver_\geckodriver.

exe’) # create a service object
6 driver = webdriver.Firefox(service=s)

create a driver for firefox
7 url = ‘https://dergipark.org.tr/tr/’ #

address of website

After settings and imports, a positive test
case was created as shown in Table 8. Based
on the test scenario in Figure 2, the neces-
sary script was written using python lan-
guage. The full script is shown in Figure 4.

Table 8. Test Case part of the Positive Sce-
nario

Test Code
1 class MyFirstTestCase(unittest.

TestCase):
2 def test_cross_browsing(self): #

create a testcase
3 driver.get(url) # open the main

page

4 driver.find_element(By.LINK_
TEXT, “English”).click() # change
language flag (EN)

5 driver.find_element(By.XPATH,
‘//a[@href=”https://dergipark.org.
tr/en/login”]’).click()

open login page
6 driver.find_element(By.NAME,

“_username”).send_keys(“ufukbay-
tar@gmail.com”)

email address
7 driver.find_element(By.

NAME, “_password”).send_key-
s(“xX123456”) # password

8 driver.find_element(By.ID, “kt_
login_submit”).click() # click the
login button

9 driver.find_element(By.ID,
“item__ojs_journal_user_my”).
click()

open my journals page
10 if __name__ == ‘__main__’: # the

end of testcase

 unittest.main()

A negative test case was created as shown
in Table 9. Based on the test scenario in
Figure 3, the relevant script was written in
python

114

Cem Ufuk BAYTAR

Table 9. Test Case part of negative Scenar-
io

Test Code
1 class MyFirstTestCase(unittest.Test-

Case):
2 def test_cross_browsing(self): #

create a testcase
3 driver.get(url) # open the main

page
4 driver.find_element(By.LINK_

TEXT, “English”).click() # change
language flag (EN)

5 driver.find_element(By.XPATH,
‘//a[@href=”https://dergipark.org.
tr/en/login”]’).click()

open login page
6 driver.find_element(By.NAME,

“_username”).send_keys(“ufukbay-
tar@gmail.com”)

email address
7 l = driver.find_element(By.NAME,

“_password”)

8 l.send_keys(“xY123456”) # wrong
password

9 v = l.get_attribute(“value”) # assign
the password value to v

10 driver.find_element(By.ID, “kt_
login_submit”).click() # click the
login button

11 print(“Test result in the Chrome
driver”) # informative message

12 self.assertEqual(v, “xX123456”) #
comparing wrong password with
right password

13 if __name__ == ‘__main__’: # the
end of testcase

 unittest.main()

To validate the model as depicted in
Figure 1, automated test results (re-
ports) were compared with the results
of tests that were done manually.

Figure 4. Example Code of Positive Scenario

115

Topkapı Jour of Soc Sci, Vol. 1, No. 2, 2022, pp. 105–119

As shown in Figure 5, manual tests
have been completed successfully for
all browsers (chrome, firefox, edge).
The page “My Journals” was reached at
the end of the scenario. The results of
manual tests have been supported by
the results of automated tests as de-
picted in Figure 6. As an example, the
result of one of the automated tests was
okay as written in line 6. It took 7.055
seconds.

Based on the negative test scenario as de-
picted in Figure 3, manual tests have giv-
en an error message because of the wrong
password as shown in Figure 7.

This situation has been supported by the
results of automated tests as shown in Fig-
ure 8. The test result failed as written in
line 5. The reason for failure was an asser-
tion error as shown in line 10. In other
words, the password in the test case was

Figure 5. Manual Test Result for a positive scenario in 3 browsers

Figure 6. Automated Test Report for a positive scenario in 3 browsers

116

Cem Ufuk BAYTAR

different from the password entered on the
login page of the website.

As seen in Table 10, the time for testing
manually is at least 2 times longer than
automated test time. In other words, time
reduction is approximately 61 percent.

These time values show that the usefulness
level of the selenium test tool is high. It is
so easy for users to run test scenarios be-
cause it is enough to press the run button
whereas it is time-consuming to take every
step manually in the scenario.

Figure 7. Manuel Test Result of negative scenario in 3 browsers

Figure 8. Automated Test Report of negative scenario in 3 browsers

117

Topkapı Jour of Soc Sci, Vol. 1, No. 2, 2022, pp. 105–119

6. Conclusion

The testing process is so vital to develop-
ing reliable and well-done information
systems, i.e., web applications or websites.
To make customer engagement powerful,
websites should work properly in multiple
browsers. That is why cross-device testing
for websites plays an important role. For
achieving such a purpose, a model has been
proposed. To implement the model, some
components were needed, i.e., Python,
Selenium WebDriver, browsers’ drivers,
Unittest framework, and PyCharm editor.
Test scenarios were applied to the relevant
website in 3 different browsers (chrome,
edge, and firefox). There were one positive
scenario and one negative scenario. All
scenarios have been completed successful-
ly. PyCharm editor reported test results
on the screen. Automated test results have
been supported by manual test results.
This situation provided the validation of
the proposed model. In the future, some
studies may be conducted to measure
cross-browser performance metrics by us-
ing the Selenium test tool.

Author Contributions

The author contributed to the study fully.

Conflicts of Interest	

No conflict of interest was declared by the
author.

Test Name Number of
test steps

Automated Test Time (s) Manually test time (s)

Positive Test
Scenario

5 7.06 18

Negative Test
Scenario

5 8.55 24

Table 10. The assessment of the Selenium Test Tool

118

Cem Ufuk BAYTAR

References

Datadog (n.d.). Cross browser testing overview.
Retrieved 15.06.2022 from https:// https://
www.datadoghq.com/knowledge-center/
cross-browser-testing/

Garcia, B., Gallego, M., Gortázar, F., & Mu-
noz-Organero, M. (2020). A survey of the
Selenium ecosystem. Electronics, 9, 1067;
doi:10.3390/electronics9071067. Retrieved
from: https://www.researchgate.net/publica-
tion/342581217_A_Survey_of_the_Selenium_
Ecosystem

Garcia. B., Kloos, C.D., Alario-Hoyos, C., & Mu-
noz-Organero, M. (2022). Selenium-Jupiter: A
JUnit 5 extension for Selenium WebDriver. The
Journal of Systems & Software 189(2022) https://
dl.acm.org/doi/abs/10.1016/j.jss.2022.111298

Garousi, V., Keleş, A.B., Balaman, Y., Güler, Z.Ö.
& Arcuri. A. (2021). Model-based testing in
practice: An experience report from the web
applications domain. The Journal of Systems &
Software, 180(2021). https://doi.org/10.1016/j.
jss.2021.111032

Gogna, N. (2014). Study of browser based auto-
mated test tools WATIR and Selenium. Inter-
national Journal of Information and Education
Technology, 4(4), 336-339. Retrieved
from: https://www.researchgate.net/publica-
tion/284440228_Study_of_Browser _Based_
Automated_Test_Tools_WATIR_and_Seleni-
um

Gojare, S., Joshi, R., & Gaigaware, G. (2015).
Analysis and design of Selenium WebDriver
automation testing framework. Procedia Com-
puter Science 50(2015) 341-346. DOI: https://
doi.org/10.1016/j.procs.2015.04.038

Hanna, M., Aboutabl, A.E., & Mostafa, M.S.M.
(2018). Automated software testing framework
for web applications. International Journal of
Applied Engineering Research, 13(11), 9758-
9767. Retrieved from: https://www.ripublica-
tion.com/ijaer18/ijaerv13n11_141.pdf

Holmes, A., & Kellogg, M. (2006). Automating
functional tests using Selenium. IEEE, Proceed-
ings of AGILE 2006 Conference (AGILE’06).
Retrieved from: https://www.cs.swarthmore.
edu/~bylvisa1/cs97/f13/Papers/25620270.pdf

Imtiaz, J., Iqbal, M.Z., & Khan, M.U. (2021). An
automated model-based approach to repair test
suites of evolving web applications. The Journal
of Systems & Software, 171(2021), 110841

Jagannatha, S., Niranjanamurthy, M., Manushree,
SP., & Chaitra, G.S. (2014). Comparative
study on automation testing using Selenium
testing framework and QTP. Journal of Com-
puter Science and Information Technology, 3(10),
258-267. Retrieved from: https://www.ijcsmc.
com/docs/papers/October2014/V3I10201485.
pdf

Kakaraparthy, D. (2017). Overview and analysis of
automated testing tools: Ranorex, Test Com-
plete, Selenium. International Research Journal
of Engineering and Technology, 4(10), 1575-
1579. Retrieved from: https://www.irjet.net/
archives/V4/i10/IRJET-V4I10290.pdf

Koruyan, K., & Uzun, B. (2019). Yazılım test süre-
cinde durum raporlamasına genel bakış ve yak-
laşımlar. Yönetim Bilişim Sistemleri Dergisi, 5(1),
52-63. Retrieved from: https://dergipark.org.tr/
tr/download/article-file/876421

Meriç, Ö., & Özbayoğlu, A. (2021). Yapay öğrenme
ile yazılım test eforu tahmini. Veri Bilimi Dergi-
si, 4(1), 	 38-44. Retrieved from: https://der-
gipark.org.tr/tr/download/article-file/1205719

Nguyen, V., & Le, B. (2021). RLTCP: A rein-
forcement learning approach to prioritizing
automated user interface tests. Information and
Software Technology 136(2021) 106574. DOI:
https://doi.org/10.1016/j.infsof.2021.106574

Python. (n.d.). Unit testing framework. Retrieved
06.09.2021 from https://docs.python.org/3/
library/unittest.html#module-unittest

Rana, T., & Latif, B. (2020). A preliminary survey
on software testing practices in Khyber Pakh-
tunKhwa region of Pakistan. Turkish Journal of
Electrical Engineering & Computer Sciences,
28, 575-589. Retrieved from: https://journals.
tubitak.gov.tr/elektrik/issues/elk-20-28-1/elk-
28-1-42-1903-6.pdf

Sabaren, L., Mascheroni, M., Greiner, C., & Ir-
razábal, E. (2018). A systematic literature re-
view in cross-browser testing. Journal of Com-
puter Science & Technology, 18(1), 18-27.

Selenium. (n.d.). WebDriver. Retrieved 07.09.2021
from https://www.selenium.dev/documenta-
tion/webdriver

Selenium.dev. (n.d.). Getting started. Retrieved
01.09.2021 from https://www.selenium.dev/
documentation/webdriver/getting_started/

Selenium-python (n.d.). Installation. Retrieved
01.09.2021 from https://selenium-python.
readthedocs.io/installation.html

https://doi.org/10.1016/j.procs.2015.04.038

119

Topkapı Jour of Soc Sci, Vol. 1, No. 2, 2022, pp. 105–119

Sharma, M., & Angmo, R. (2014). Web based au-
tomation testing and tools. International Jour-
nal of Computer Science and Information Tech-
nologies, 5(1), 908-912. Retrieved from: http://
citeseerx.ist.psu.edu/viewdoc/download?-
doi=10.1.1.642.4838&rep=rep1&type=pdf

Sharma, R., Devi, J., & Bhatia, K. (2017). A
study on functioning of Selenium automation
testing structure. International Journal of Ad-
vanced Research in Computer Science and Soft-
ware Engineering, 7(5), 855-862. Retrieved
from: https://www.researchgate.net/publica-
tion/318930970_A_Study_on_Functioning_
of_Selenium_Automation_Testing_Structure

Simplified. (22.04.2019). Automated unit test-
ing of a web application in Python. Re-
trieved 10.09.2021 from https://medium.
com/@mashood.snhu/automated-unit-test-
ing-of-a-web-application-in-python-de426af-
da5a3

Singla S., & Kaur, H. (2014). Selenium keyword
driven automation-testing framework. Interna-
tional Journal of Advanced Research in Computer
Science and Software Engineering, 4(6), 125-129

Umesh, N., Saraswat, A., & Himanshi (2015).
Automation testing: An introduction to Sele-
nium. International Journal of Computer Appli-
cations, 119(3), 49-51. Retrieved from: https://
citeseerx.ist.psu.edu/viewdoc/download?-
doi=10.1.1.695.3234&rep=rep1&type=pdf

Takgil, B., & Kara, R. (2016). Android mobil
uygulamalar için yazılım testi. El-Cezerî Fen ve
Mühendislik 	 Dergisi, 3(2), 324-328. Re-
trieved from: https://dergipark.org.tr/tr/down-
load/article-file/230831

Yusifoğlu, V.G., Amannejad, Y., & Can, A.B.
(2015). Software test-code engineering: A sys-
tematic mapping. Information and Software
Technology 58(2015) 123 -147. DOI: http://
dx.doi.org/10.1016/j.infsof.2014.06.009

