
Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

e-ISSN: 2618-575X

Available online at www.dergipark.org.tr/en

INTERNATIONAL ADVANCED RESEARCHES

and

ENGINEERING JOURNAL

Journal homepage: www.dergipark.org.tr/en/pub/iarej

International

Open Access

Volume 06

Issue 03

December, 2022

* Corresponding author. Tel.: +90-232-7507875; Fax: +90-232-7507862.

E-mail addresses: belli@upb.de (Fevzi Belli), tugkantuglular@iyte.edu.tr (Tugkan Tuglular), euh46@missouri.edu (Ekincan Ufuktepe)

ORCID: 0000-0002-8421-3497 (Fevzi Belli), 0000-0001-6797-3913 (Tugkan Tuglular), 0000-0002-0156-4321 (Ekincan Ufuktepe)

DOI: 10.35860/iarej.1135989
© 2022, The Author(s). This article is licensed under the CC BY-NC 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/).

Research Article

A new approach to event- and model-based feature-driven software testing and

comparison with similar approaches
Fevzi Belli a,b , Tugkan Tuglular b,* and Ekincan Ufuktepe c
a University of Paderborn, Paderborn, Germany
b Izmir Institute of Technology, Izmir, Türkiye
c University of Missouri – Columbia, Columbia, MO, USA

 ARTICLE INFO ABSTRACT

Article history:

Received 26 June 2022

Revised 28 November 2022

Accepted 15 December 2022

 A software can be thought as a composition of features. Feature-oriented software development

(FOSD) builds the development process on features. Part of the FOSD process is testing, and

accordingly, it should be feature-driven. In model-based testing, test cases are systematically

generated using the model. This research concentrates on event-based graphical models and

utilizes event sequence graphs (ESGs). We develop a new test sequence generation algorithm for

ESGs and named it short and frequent test sequences (SFT). Then we compare it with the existing

test sequence generation algorithm called TSD. Moreover, we introduce two model-building

approaches, namely daisy and swim lane, for ESGs and analyze their effects on feature-driven

testing. For the evaluation, we use five different feature-driven software models. The evaluation

results shows that both modeling approaches are advantageous in certain test objectives. For

testing the software product as a whole, test sequence(s) should be generated by TSD from daisy

modeled ESG. If a certain feature within the software product or its interaction with another feature

is to be tested, then test sequence(s) should be generated by SFT from swim lane modeled ESG.

Keywords:

Event sequence graphs

Feature-oriented software
development

Model-based testing

1. Introduction

A feature is a semantically cohesive entity of a software

[1]. Feature-oriented software development (FOSD) aims

for the configuration and composition of features to obtain

a software [2]. FOSD enables software to be composed

from features with respect to configuration. This approach

enables reuse of features and managed variation of

software, which is highly beneficial in case of software

product families.

An important part of the FOSD process is testing.

Although there are various approaches in testing, our

scope in this research is model-based testing. In model-

based testing, test cases are systematically generated using

the model. The models are the behavioral specification of

the software. This systematic approach enables tester to

define test coverage criteria, which is important if only a

feature is to be covered by the test case(s) instead of the

whole software product.

Event sequence graphs (ESGs) are an event-based

modeling approach for representing software under test

(SUT) and generating tests case(s) or test sequence(s) [3].

Event sequence graphs can be obtained from finite state

machines (FSMs) by taking events and putting them into

the vertices of a graph, where each walk on this graph,

which is an ESG, can also be obtained by the

corresponding walk on the FSM. The details can be found

in [UYMS 2016]. ESGs are not the only approach that

utilizes events as the core concept in modeling software.

Event flow models [4] and event process chains [5] are two

other examples.

Test case, or test sequence, generation can be seen as an

optimization problem, where possible event sequences are

tried to be covered with minimum number of test cases.

For the building ESG models and for test sequence

generation from them, a tool called TSD, which can be

downloaded at http://download.ivknet.de/, was developed.

The test sequence generation algorithm in TSD is

optimized for end-to-end testing and feature-oriented

testing was not a goal at its design time. However, there is

a need for feature-oriented testing in model-based testing.

We propose to use ESGs, where not only SUT but also

features can be represented formally. As the first novelty

of this research, we develop a new test sequence

generation algorithm for ESGs and named it short and

http://www.dergipark.org.tr/en
http://www.dergipark.org.tr/en/pub/iarej
mailto:belli@upb.de
mailto:tugkantuglular@iyte.edu.tr
mailto:euh46@missouri.edu
https://doi.org/10.35860/iarej.1135989
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

195 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

frequent test sequences (SFT), which is suitable for

feature-oriented testing. We compare it with the existing

TSD test sequence generation algorithm.

While building ESG models to represent SUT, we

observed that there could be two different model building

approaches, namely daisy and swim lane, for ESGs. As the

second novelty of this research, we present them and

compare them to each other as well as investigate which

one suits better with TSD and SFT. As a result of this

research, we conclude that test sequence(s) should be

generated by TSD from daisy modeled ESG if the test

objective is product testing. If the test objective is feature

or feature interaction testing, then test sequence(s) should

be generated by SFT from swim lane modeled ESG.

The manuscript is structured as follows. After

Introduction section, the methods section presents the

fundamentals and explains the newly proposed SFT

algorithm whereas the following section outlines and

exemplifies the newly introduced daisy and swim lane

model building approaches. In the results section, we

present our findings and discuss them in the following

section with comparison to related work. The final section

concludes the paper.

2. Methods

2.1 Event Sequence Graphs

Event sequence graphs are a practical event-based

behavioral modeling approach for representing software

under test (SUT) and generating tests. They have a formal

foundation, the formal definitions and the detailed

explanations can be found in [3] and [6]. An ESG, which is

a directed graph, starts with pseudo entry node vertex ‘[’ and

ends with pseudo exit vertex ‘]’. These pseudo vertices and

their edges are not included in the vertex set and in the edge

set, respectively [3]. For the ESG given in Figure 1, the

vertex set V is {A, B, C}, and the edge set E is {(A, B), (A,

C)}. For the ESG given in Figure 1, A could be a Select event,

B be Play Classical Music event, and C be Play Pop Music

event. So, the SUT behaves either Select - Play Classical

Music or Select - Play Pop Music. Various examples can be

found in [3], [6], [7], and [8].

A test sequence, or complete event sequence (CES), starts

with the entry of the ESG and ends at its exit. One or more

CES can be used for feature testing, but all CESs are required

for product testing. We differentiate feature testing from

product testing so that covering feature vertex set and edge

set is sufficient for feature testing. We are not interested in

interaction among the features for feature testing, whereas

feature interaction is critical in product testing.

The following subsection outlines the existing test

generation algorithm for ESGs, which we will compare with

our newly developed test sequence generation algorithm for

ESGs, which is explained in Section 3.

2.2 Existing Test Generation Algorithm for Event

Sequence Graphs

One approach to generate CESs from ESG solves the

Chinese Postman Problem (CPP) [7]. Solving CPP means

finding the Euler cycles on the graph, i.e., starting from and

returning to the same vertex by visiting each edge exactly

once [8]. To achieve this, ESG is converted to a Euler graph

by creating a pseudo edge from exit vertex to entry vertex [7].

Then this graph is balanced by assigning a positive degree

vertex partition to a negative degree vertex partition and this

assignment problem is solved by the Hungarian Matching

Algorithm [9]. Further details can be found in [7] and [8].

The existing test sequence generation algorithm for ESGs is

referred as TSD, since it is used by the TSD tool. In summary,

this algorithm aims to cover all edges in ESG while trying to

avoid using a previously passed edge. The algorithm

achieves minimum number of tests.

2.3 New Test Generation Algorithm for Event Sequence

Graphs

We present our new test generation algorithm for ESGs,

which aims generating frequent but shorter test sequences

from ESG. For generating short test sequences, the algorithm

takes advantage of the well-known shortest path finding

Dijkstra algorithm. Furthermore, our test generation

algorithm trade upon the structure and nature of ESG. The

ESG graphs can be defined as Hammock graphs [10],[11],

which means that the graph has only one entry point/vertex

and one exit point/vertex. The brief and general strategy of

generating short and frequent test sequences is by randomly

selecting one vertex (except the starting and ending vertex),

then finding the shortest path from the starting vertex to the

randomly selected vertex and finding the shortest path from

the randomly selected vertex to the exit vertex. Finally, the

two paths are connected from the randomly selected vertex,

which represents the test sequence.

In Algorithm 1, we have given the formal algorithm to

generate frequent and short test sequences from ESGs. The

algorithm receives the ESG as an input to the algorithm and

returns a test suite as an output. The generated test suite

ensures that there is a 100% event-pair (edge) coverage.

However, before generating the test cases for the test suite,

the algorithm goes through a graph construction phase. The

Dijkstra algorithm [12] finds the shortest path based on the

vertices (events). Dijkstra algorithm has many applications

in graph theoretic problems such as route planning [13] and

path planning [14]. In graph theory, edges can be represented

as vertices, which transforms the original graph into a new

graph such as given in Figure 1. Once the graph is

transformed graph, it will be beneficial in several ways; (1)

enabling to perform the Dijkstra algorithm based on the

event-pairs from the original graph, (2) allowing to select

source and target event-pairs for finding shortest path, (3)

 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

196

simplifying and guaranteeing the 100% event-pair coverage.

After the ESG is transformed, we provide the transformed

ESG as an input to Algorithm 1 shown Figure 2. However,

we recall that the entry node to the original ESG is vertex “[”,

and the exit vertex is “]”. Therefore, in the transformed graph

of ESG, it is likely to have multiple options of starting

vertices and multiple options of exit vertices. The naive

approach would be randomly selecting among the multiple

starting vertices and multiple exit vertices. However, random

selection has the risks of selecting a longer path, which

violates the main objective of generating short test sequences.

To eliminate the possibility of generating longer test

sequences, while we have the chance to generate a shorter

path, we reconstruct the graph by inserting one pseudo

starting vertex (vs), and one pseudo exit vertex (ve). The vs

vertex has outgoing edges to the starting vertices from the

transformed graph, and the ve vertex has incoming edges

from the exit vertices from the transformed graph, such as

given in Figure 3. The graph reconstruction enables to have

a Hammock graph, which will simplify test sequence

generation process.

Once we have completed the graph reconstruction

(inserting one pseudo starting and one exit vertex) we are

able initiate the test generation process. Our test generation

algorithm has an option to generate feature-oriented test

sequences, or simply generate test sequences regardless of

any feature information given in prior. If feature-oriented test

sequences wanted to be generated, this information should

be given. The required information is simply by providing

which event-pairs (edges of the original ESG) are mapped to

the desired feature of the variant. Then, this information is

acquired by the “getFeatureRelatedEdges()” function in SFT

algorithm for ESG. However, if no such information is

provided, the function will return an empty set, and will not

generate feature specific test sequences.

Now we assume that we have two edges namely, “[→ A”

and “A → B” that are related to a feature. Therefore, initially

we must randomly select one edge among the feature related

edges. Such as given in Figure 4, assume that the “A → B”

vertex is randomly selected. Then, we find the shortest path

from vs to “A → B” (path P0), and the shortest path from “A

→ B” to ve (path P1).

• P0: vs → ([→ A) → (A → B)

• P1: (A → B) → (B →]) → ve

After finding the paths P0 and P1, we connect the two paths

from the end of P0 to the beginning of P1. Finally, the

connected two paths represent a test sequence t, which is

given below. We also notice that the generated test sequence

also contains the edge “[→ A” among feature related edges.

Since that “[→ A” edge is already covered in the generated

test sequence we do not specifically generate another test

sequence that targets the “[→ A” edge. However, other

generated test sequences might cover “[→ A” or even “A →

B”, but they will be covered by coincidence.

• t: vs → ([→ A) → (A → B) → (B →]) → ve

Figure 1. Graph transformation

Figure 2. SFT algorithm for ESG

Figure 3. Inserting one pseudo starting vertex (vs) and one

pseudo exit vertex (ve). On the left we have the transformed

graph, and on the right we have reconstructed graph, which is

now a Hammock Graph

Figure 4. Running example for SFT Algorithm 1

In the next iteration, we check if there is any remaining

edges that are not covered yet, and find that there are still 6

more edges that are not covered in the ESG, which are; ([→

D), (D → E), (E → A), (E → B), (A → C), (C →]). This

means, in the next iteration the randomly selected edge will

be among the remaining six edges.

This new test sequence generation algorithm for ESGs is

referred as SFT, since it aims short and frequent test

sequences. As opposed to TSD algorithm, its objective is not

an optimized solution rather it covers all edges in ESG with

short test sequences. Short test sequences have two

advantages. First, they are fast and second, if there is a failure

in the test sequence, other tests can still be executed.

In Algorithm 2 shown in Figure 5, we present the test

minimization that is applied after Algorithm 1 composes the

initial test suite. The test minimization has a straightforward

approach to minimize the test suite. The SFT algorithm is

likely to come up with test cases that can cover another.

These types of scenarios occur if there are cycles or self-loop

edges in the ESG. The number of generated tests and events

are reduced by first finding the covered edges for each test

cases. If the covered edges of a test are contained by another

test, the contained test is removed from the test suite.

Thereby, we cut down the number of tests and events to get

rid of any redundancy.

2.4 Model Building Approaches for Event Sequence

Graphs

We present that model building technique makes a

difference in test sequence generation and in the use of the

generated sequences. We utilize the bank account ESG as the

running example. The terms model and ESG will be used

interchangeably from this point on. Before explaining two

different model building approaches, we introduce the

definition of feature in ESGs.

A feature in ESG is a subgraph FG = (Fv, Fe), where Fv is

the vertex set of the vertices exist in the feature and Fe is the

edge set of the edges exist in the feature. Examples are given

in the following two sub-sections, where daisy and swim

lane model building approaches are outlined and exemplified.

Figure 5. Test suite minimization algorithm

Figure 6. Daisy model

2.4.1 Daisy Model

In the daisy model, the features are attached as daisy

leaves to the core of the model as given in Figure 6. The core

is the main operation existing in all possible products. In the

bank account ESG, it is a show menu event where all the

operations of the features start and end. Therefore, each

feature looks like a daisy leaf.

Figure 7 shows the bank account ESG as daisy model. An

example feature as daisy leaf is Credit feature, of which

edges are drawn in thick red. For the Credit feature,

Fv is {enter a credit amount, confirm credit approved,

confirm credit disapproved} and

Fe is {(show menu, enter a credit amount), (enter a credit

amount, confirm credit approved), (confirm credit approved,

show menu), (enter a credit amount, confirm credit

disapproved), (confirm credit disapproved, show menu)}.

Connection or variability point or vertex is show menu

event. The features are connected through the show menu

vertex.

197 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

Figure 7. Bank account ESG as daisy model

A feature may interact with other features. As seen in bank

account model, the DailyLimit feature, of which edges are

drawn in thick green, interacts with Withdraw feature, but

this does not affect the daisy leaf structure. For the features

interacting with other features, special care should be taken

in the process of ESG design in such a way that feature

interaction is loosely coupled so that addition and removal of

features do not affect the validity of ESG. For the DailyLimit

feature,

Fv is {enter daily withdraw limit, confirm daily limit

excess} and

Fe is {(show menu, enter daily withdraw limit), (enter

daily withdraw limit, enter daily withdraw limit), (enter daily

withdraw limit, show menu), (enter withdraw amount,

confirm daily limit excess), (confirm daily limit excess, entry

withdraw amount), (confirm daily limit excess, cancel

withdraw)}.

2.4.2 Swim Lane Model

In the swim lane model, the features are not attached as

daisy leaves to the core of the model. Instead, they go from

start, i.e., entry vertex of ESG, to finish, i.e., exit vertex of

ESG, as given in Figure 8. Figure 9 shows swim lane model

of the running example. The Credit feature, of which edges

are drawn in thick red, flows from its own lane without any

interaction with other features. For the Credit feature,

Fv is {enter a credit amount, confirm credit approved,

confirm credit disapproved} and

Fe is {([, enter a credit amount), (enter a credit amount,

confirm credit approved), (confirm credit approved,]), (enter

198

a credit amount, confirm credit disapproved), (confirm credit

disapproved,])}.

As seen in the swim lane ESG, the connection vertex is the

pseudo start event as opposed to the show menu vertex in the

daisy ESG.

The DailyLimit feature, of which edges are drawn in thick

green, interacts with Withdraw feature, but this does not

affect the swim lane structure. The necessary caution in ESG

design explained in Section 4.1 to achieve loosely coupled

features should also be taken in the swim lane model building

approach.

In the swim lane ESG,

Fv is {enter daily withdraw limit, confirm daily limit

excess} and

Fe is {([, enter daily withdraw limit), (enter daily

withdraw limit, enter daily withdraw limit), (enter daily

withdraw limit,]), (enter withdraw amount, confirm daily

limit excess), (confirm daily limit excess, entry withdraw

amount), (confirm daily limit excess, cancel withdraw)}

for the DailyLimit feature.

3. Results

In this section, we show that model building approach

makes a difference in test sequence generation and the use of

the generated sequences. We continue to utilize the bank

account ESG as the running example.

Table 1 outlines the number of test sequences generated

by both algorithms for two bank account (BA) ESGs, namely

daisy BA ESG and swim lane BA ESG, as well as the total

number of events in these test sequences, which is considered

as the length of the test suite. Table 1 shows that TSD covers

daisy BA ESG with one test sequence achieving its objective

of a minimum number of test sequences. On the other hand,

SFT covers daisy BA ESG with 18 test sequences with an

average of 5.28 events per test, achieving its objective of

short test sequences.

The reason is that due to the structure of the daisy model,

specific events are covered more than once in every test

sequence. These specific events inevitably cover or reach

other events in the ESG. Therefore, this causes to generate

test sequences with events that are already covered more than

once. On the other hand, due to the structure of the swim lane

model, there are alternative paths that could be reached by

other events that are not covered yet. Thereby, it is more

likely to generate a test suite with fewer events with fewer

duplicate events.

We repeat the experiments with other four models, namely

email, elevator, online shopping, and smart home. Like bank

account, they model feature-based software. All the model

drawings used in evaluation are available at

https://github.com/esg4aspl/comparison-of-event-based-

modeling-approaches/tree/master/models. Table 2 outlines

their number of features, events, and edges. The models are

from various domains with different number features. They

are sorted with respect to their number of events. Although

the difference between daisy model and swim lane model is

zero or just one event, the modeling approach critically

affects certain choices in testing, which are discussed after

delineating all the facts about the experiments.

Table 3 presents test sequence generation times for all

models with respect to the modeling approach. It is observed

that based on average SFT works faster than TSD. In Figure

10, we show the boxplot of execution times for SFT, which

includes the outliers as well. Even with the outliers, SFT

either faster or almost the same as TSD’s average execution

time.

Table 1 shows that TSD covers swim lane BA ESG with

15 test sequences and 49 events. Here, we see the effect of

the modeling approach. In the daisy model, the features are

like daisy leaves attached to the core feature, which enables

loops in the ESG. Because of these loops, TSD can cover

daisy BA ESG in one test sequence. However, since there are

no loops in the swim lane modeling approach and features

run (swim) to completion, we observe that TSD results in a

minimum of 15 test sequences with an average of 3.27 events.

On the other hand, SFT covers swim lane BA ESG with 18

test sequences with an average of 3.06 events. The loop

property of the daisy modeling approach affects SFT in the

total number of events.

Figure 8. Swim lane model

Table 1. Bank account ESGs

Modeling

Approach

TSD SFT

No of

test seq

No of

events

No of

test seq

No of

events

daisy

BA ESG

1 64 18 95

swim lane

BA ESG

15 49 18 55

199 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

https://github.com/esg4aspl/comparison-of-event-based-modeling-approaches/tree/master/models
https://github.com/esg4aspl/comparison-of-event-based-modeling-approaches/tree/master/models

 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

Figure 9. Bank account ESG as swim lane model

Table 2. Models under experiment

Models with

No of Features

Modeling

Approach

No of

events

No of

edges

Elevator

EL (3 features)

daisy 16 26

swim lane 15 24

Email

EM (5 features)

daisy 19 38

swim lane 18 36

Online Shopping

OS (4 features)

daisy 23 37

swim lane 23 37

Bank Account

BA (9 features)

daisy 26 46

swim lane 25 45

Smart Home

SH (16 features)

daisy 41 70

swim lane 41 70

Table 3. Test sequence generation times

Model
Modeling

Approach

TSD

(s)

SFT

(s)

Elevator
daisy 0.095 0.082

swim lane 0.097 0.082

Email
daisy 0.100 0.092

swim lane 0.108 0.088

Online Shopping
daisy 0.098 0.089

swim lane 0.099 0.890

Bank Account
daisy 0.103 0.098

swim lane 0.106 0.095

Smart Home
daisy 0.113 0.112

swim lane 0.120 0.106

200

Figure 10. Boxplot of execution times for each case study

Table 4. Number of test sequences and total number of events
in test sequences

Models

TSD SFT

No of

test seq

No of

events

No of

test seq

No of

events

EL-D 1 43 8 78

EL-S 4 38 8 60

EM-D 1 47 16 90

EM-S 9 37 16 57

OS-D 1 53 10 81

OS-S 5 53 10 75

BA-D 1 64 17 92

BA-S 15 49 19 56

SH-D 1 83 30 170

SH-S 26 170 30 189

Table 4 presents the number of tests produced by TSD for

all ten ESGs, five software modeled with two different

approaches. The models are ordered on the X axis by the

number of events shown in Table 2. Table 4 also presents the

number of tests produced by SFT for all ten ESGs. In Table

4, we observe that the number of events for the swim lane

model for SFT is less than the number of events from the

daisy model. The reason is because of the algorithm of SFT

and the structure of the daisy model. SFT aims to generate

short test sequences, and when used on a daisy model, it

generates test sequences with events and event pairs already

covered.

The number of test sequences and events given in Table 4

for the SFT algorithm is rounded up to integer average values.

Unlike the TSD algorithm, SFT has randomness, which may

generate a different number of tests with other events.

Therefore, in Figure 11 and Figure 12, respectively, we

present the boxplots of the number of generated test

sequences and the number of events for SFT.

4. Discussion

These experiments indicate that if the objective of

testing is to test the software product as a whole, then test

sequence(s) should be generated by TSD from daisy

modeled ESG. If a certain feature within the software

product is to be tested, then test sequence(s) should be

generated by SFT from swim lane modeled ESG.

Figure 11. Boxplots of the number of generated test cases for

each case study

Figure 12. Boxplots of the number of events from the generated

test cases for each case study

Moreover, if certain feature interactions are the goal of

testing, then again test sequence(s) generated by SFT from

swim lane modeled ESG should be preferred. Since both

model building approaches are advantageous in certain test

objectives, it would be favorable to prepare and keep ready

both daisy and swim lane ESG models. This would be a

tedious effort. Therefore, there should be a transformation

between two models, which we plan as a future work.

4.1 Threats to Validity

We discuss the limitations of our evaluations that

involves the internal and external threats to validity.

Internal Threats to Validity: The novel test generation

approach SFT is based on finding the shortest paths

between the start node to the selected node, and the

selected node to the exit node. However, the node between

the start and the exit node is selected randomly, which can

lead to generating a different number of tests, and events

on each run. Therefore, to evaluate if our test generation

approach generates a significantly different number of

tests and events, in Figure 11 and Figure 12, we show the

distribution of the number generated tests and events of 50

different executions. For 10 case studies, we have

observed that there are no outliers in terms of the number

of events.

For the generated tests, among ten case studies, eight of

them did not have any outliers. However, the remaining

two case studies (OS-S and EM-D) had outliers only that

generated a few numbers of test cases. We have carefully

investigated the two ESG models and noticed that the two

201 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

models had cycles, including self-loops. In other words,

there were edges defined in the ESG that caused feedback.

During random selection, if the feedback edges are not

initially selected and left for last, the SFT algorithm is

likely to generate more test cases. If the feedback edges

were selected earlier, it would produce fewer tests since

the test sequence included the self-loop will already cover

the test sequence without the self-loop. The outliers that

generated fewer test cases are scenarios in which the self-

loop edges were selected first compared to the other edges.

Therefore, to minimize the test cases, the random selection

process can assign a higher priority to self-loop edges in

an ESG.

External Threats to Validity: Even though we have studied

10 case studies, there could still be different scenarios that

may have not been included in this study. For instance, our

study is limited to two graph models which we have defined

as a daisy and swim lane. However, there could be different

graph structures or types that could result in different.

4.2 Comparison with Related Work

We summarize the research on model-based testing in

FOSD. Olimpiew and Gomaa [15] proposed an approach for

mapping the UML models, namely use case and sequence

diagrams, so that functional tests are systematically produced.

In Lamancha et al.’s work [16], feature scenarios are

described UML sequence diagrams. Through model

transformations, the sequence diagrams are converted into

test cases. These approaches utilize UML models that are not

formal and, therefore, error-prone compared to our proposed

method.

Petry et al. [17] conducted a systematic mapping study and

built a roadmap from 44 selected studies. Some of their

results concerning our research are as follows: "Finite State

Machines is the most used model to test SPLs" and

"Behavioral-based and Scenario-based are the most used

models" [17].

Lity et al. [18] utilized finite state machine models for

delta-oriented testing of SPLs. Uzuncaova et al. [19] and

Neto et al. [20] proposed repeated extensions through FSM

deltas for delta-oriented test generation. Lochau et al. [21]

proposed an integrated delta-oriented architectural test

modeling and testing approach for component as well as

integration testing. Their approach is component-based and

aimed for integration testing. Dukaczewski et al. [22]

proposed requirements-based delta-oriented SPL testing,

which takes requirements into focus and uses them to define

deltas.

Varshosaz et al. [23] proposed to utilize deltas for an

incremental structure to formulate FSM-based test models.

Devroey et al. [24] utilized featured transition systems for

test generation for SPL products. Although these approaches

are formal, they do not utilize a formal definition of features,

and software composition is incremental with deltas. In

contrast, we utilize a formal definition of features, and our

composition does not require any deltas.

Belli et al. [25] mapped feature models to ESGs. This

approach enabled holistic testing for the SPL and its variants.

Tuglular et al. [26] introduced featured event sequence

graphs, where there are distinct ESGs for each feature. They

proposed a test generation technique for each product from

any other smaller product, which is different than delta-

oriented testing. Both research [25] and [26] used original

TSD algorithm for test sequence generation and therefore are

different than this research. None of the above research have

introduced any model building approach.

5. Conclusion

Testing in feature-oriented software development requires

validation of features alone, validation of feature interactions,

and validation of the whole product. This research addresses

this problem from model-based testing perspective and

presents two novelties, a new test sequence generation

algorithm developed considering feature and feature

interaction testing and two model building approaches. An

evaluation on five feature-oriented software models is

performed and the results show that SFT with swim lane

model building fits well to feature testing whereas TSD with

daisy model building suits product testing. As seen with the

examples the model building approach makes a difference in

test generation. Moreover, depending on the test objective

different combinations of model building approach and test

generation algorithm should be used for efficient test

generation in model-based testing. In the future, we are going

to work on the formal definitions of the daisy and swim lane

modeling techniques and algorithms for daisy to swim lane

and vice versa model transformations.

Declaration

The authors declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article. The authors also declared that this article is

original, was prepared in accordance with international

publication and research ethics, and ethical committee

permission or any special permission is not required.

Author Contributions

References

1. Apel, S., Batory, D., Kästner, C., Saake, G., Feature-oriented

software product lines. 2016, USA: Springer-Verlag Berlin

Heidelberg.

2. Apel, S., Kästner, C., An overview of feature-oriented

software development. J. Object Technol, 2009. 8(5): p. 49-

84.

202

Tugkan Tuglular and Ekincan Ufuktepe developed the

methodology and performed the evaluation. Fevzi Belli

supervised and improved the study. All authors wrote and

proofread the manuscript together. The authors are given
in alphabetical order.

3. Belli, F., Finite state testing and analysis of graphical user

interfaces. Proceedings of the 12th IEEE International

Symposium on Software Reliability Engineering, 2001.

Washington, DC, USA: p. 34-43.

4. Memon, A.M., An event‐flow model of GUI‐based

applications for testing. Software testing, verification and

reliability, 2007. 17(3): p. 137-157

5. Amjad, A., Azam, F., Anwar, M.W., Butt, W.H., Rashid, M.,

Event-driven process chain for modeling and verification of

business requirements–a systematic literature review. IEEE

Access, 2018. 6: p. 9027-9048.

6. Belli, F., Budnik, C.J., White, L., Event based modelling,

analysis and testing of user interactions: approach and case

study. Software Testing, Verification and Reliability, 2006.

16(1): p. 3-32.

7. Belli, F., Budnik, C.J., Minimal Spanning Set for Coverage

Testing of Interactive Systems. Proceedings of the

International Colloquium on Theoretical Aspects of

Computing, 2005. Springer Berlin Heidelberg: p. 220-234.

8. Belli, F., Guler, N., Linschulte, M., Does" depth" really

matter? on the role of model refinement for testing and

reliability. Proceedings of the IEEE 35th Annual Computer

Software and Applications Conference (COMPSAC), 2011:

p. 630-639.

9. Burkard, R., Dell’Amico, M., Martello, S., Assignment

problems: revised reprint. 2012, SIAM.

10. Kas’ yanov, V.N., Distinguishing hammocks in a directed

graph. Proceedings of the Doklady Akademii Nauk, 1975.

11. Ferrante, J., Ottenstein, K.J., Warren, J.D., The program

dependence graph and its use in optimization. ACM

Transactions on Programming Languages and Systems, 1987.

9(3): p. 319-349.

12. Dijkstra, E.W., A note on two problems in connexion with

graphs. Numerische Mathematik, 1959. 1: p. 269-271.

13. Kim, S., Jin, H., Seo, M., Har, D., Optimal path planning of

automated guided vehicle using dijkstra algorithm under

dynamic conditions. Proceedings of the 7th IEEE

International Conference on Robot Intelligence Technology

and Applications, 2019. p. 231-236.

14. Luo, M., Hou, X., & Yang, J., Surface optimal path planning

using an extended Dijkstra algorithm. IEEE Access, 2020. 8:

p. 147827-147838.

15. Olimpiew, E.M., Gomaa, H., Model-based testing for

applications derived from software product lines. ACM

SIGSOFT Software Engineering Notes, 2005. 30(4): p. 1-7.

16. Lamancha, B.P., Díaz, O., Azanza, M., Polo, M., Software

product line testing: A feature oriented approach.

Proceedings of the IEEE International Conference on

Industrial Technology, 2012. p. 298-305.

17. Petry, K. L., OliveiraJr, E., Zorzo, A. F., Model-based testing

of software product lines: Mapping study and research

roadmap. Journal of Systems and Software, 2020. 167: p.

110608.

18. Lity, S., Lochau, M., Schaefer, I., Goltz, U., Delta-oriented

model-based SPL regression testing. Proceedings of the

Third International Workshop on Product LinE Approaches

in Software Engineering, 2012.

19. Uzuncaova, E., Khurshid, S., Batory, D., Incremental test

generation for software product lines. IEEE transactions on

software engineering, 2010. 36(3): p. 309-322.

20. Neto, P.A. da M.S., Machado, I. do C., Cavalcanti, Y.C.,

Almeida, E.S. de, Garcia, V.C., Meira, S.R. de L., A

Regression Testing Approach for Software Product Lines

Architectures. Proceedings of the Fourth Brazilian

Symposium on Software Components, Architectures and

Reuse, 2010. p. 41–50.

21. Lochau, M., Schaefer, I., Kamischke, J., Lity, S., Incremental

Model-Based Testing of Delta-Oriented Software Product

Lines. in Tests and Proofs, 2012. p. 67–82.

22. Dukaczewski, M., Schaefer, I., Lachmann, R., Lochau, M.,

Requirements-based delta-oriented SPL testing. Proceedings

of the 4th International Workshop on Product LinE

Approaches in Software Engineering, 2013. p. 49-52.

23. Varshosaz, M., Beohar, H., Mousavi, M.R., Delta-oriented

FSM-based testing. Proceedings of the International

Conference on Formal Engineering Methods, 2015: p. 366-

381.

24. Devroey, X., Perrouin, G., Schobbens, P.-Y., Abstract test

case generation for behavioural testing of software product

lines. Proceedings of the 18th ACM International Software

Product Line Conference, Companion Volume for

Workshops, Demonstrations and Tools, 2014: p. 86-93.

25. Belli, F., Tuglular, T., Ufuktepe, E., Heterogeneous Modeling

and Testing of Software Product Lines. Proceedings of the

21st IEEE International Conference on Software Quality,

Reliability and Security Companion, 2021: p. 1079-1088.

26. Tuglular, T., Beyazıt, M., Öztürk, D., Featured Event

Sequence Graphs for Model-Based Incremental Testing of

Software Product Lines. Proceedings of the 43rd IEEE

International Conference on Computer, Software and

Applications, 2019. Milwaukee, Wisconsin, USA: p. 197-

202.

203 Belli et al., International Advanced Researches and Engineering Journal 06(03): 194-203, 2022

