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Abstract 
 
This paper presents an application of a multi-objective non-dominated sorting genetic 

algorithm with a modified chromosome encoding for histogram shifting-based multiple 

reversible data hiding scheme in neuroimages which aims to minimize distortion and 

maximize capacity. The modified chromosomes encoding scheme is designed according 

to the zero-bin characteristic of the intensity histogram of the structural magnetic 

resonance imaging scans of the human brain. A detailed experimental study has been 

carried out for assessing the effect of non-dominated sorting for multi-objective 

optimization compared to Euclidian distance, the convenience of modified chromosome 

encoding scheme for medical images compared to non-medical images. The performance 

of the proposed method has been measured in terms of the peak signal-to-noise ratio 

(PSNR) for image quality and the bits per pixel (bpp) for capacity assessments. The 

experimental results show that the proposed method is better than its counterparts. 
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1. Introduction 

Data hiding is the process of sending confidential data covertly embedded into a digital media, such as digital 

images, video, and signals [1]. The idea behind the utilization of digital images as a carrier in data hiding 

technologies is based on the inability of people to notice small changes in digital images by naked eye. Many data 

hiding schemas have been proposed in the literature that successfully employed various kinds of images in several 

application areas, including medical images. The Health Insurance Portability and Accountability Act (HIPAA) of 

2003 and 2005 include a set of privacy and security rules that forces medical professionals and institutions to ensure 

patient confidentiality and privacy, even in digital media [2]. Since medical images contain critical information for 

diagnosis, the applied data hiding technique must ensure the reversibility of the cover image. Nowadays, it is of 

great interest to study data hiding techniques to hide identification information inside magnetic resonance images 

for establishing more secure data transmission channels. Most of the existing reversible data hiding schemes are 

based on histogram shifting (HS) , which was initially proposed by Ni et al. [1]. Kurnaz et al. proposed an 

histogram-shifting based method that does not require shifting while preserving the visual quality of stego images 

[3]. A typical HS-based data hiding scheme start by selecting one or more pairs of peak and zero bins in the 

histogram of a cover image. Then, it shifts the bins between peak bin and zero bin by one toward the zero bin. The 

main purpose is to create a gap for hiding a secret message in the size of the frequency of the peak bin, which the 

frequency of the selected bin determines the hiding capacity. On the other hand, the image distortion depends on 

the total number of shifted pixels. In a single-pair HS-based scheme, the peak bin with the highest frequency is 

matched to its nearest zero bin, thus, the number of pixels affected by shifting is the smallest [4]. A multiple 

embedding scheme should be considered in order to achieve a higher capacity, which consecutively employs more 

than one embedding procedure on pairs of different peaks and zero bins [5]. If it is aimed to increase the embedding 

capacity despite the high distortion in embedded images, the same pair selection procedure for a single pair can be 

repeated for multiple HS-based schemes by matching the next highest peak bin with its closest zero bin in case of 

a small number of zero bins existing in a histogram. However, multiple HS-based data hiding is a non-deterministic 

polynomial-time (NP)-hard problem when the size of the solution space is too large to find the best mapping of 

peak and zero bins. This problem is known as the rate-distortion optimization problem. Several algorithms have 

been proposed in the literature to find an optimal set of peak and zero pairs [6], [7] for multiple pair histogram 

shifting. Tian’s algorithm searches for redundancy in digital images to achieve high embedding capacity while 

keeping the distortion low [8]. In practice, when the solution space is too large to find an optimal solution in a 

reasonable time, heuristic algorithms [9] are recommended to search for an optimal solution [10]. Recently, Wang 

et al. proposed a genetic algorithm-based embedding scheme in order to automatically determine the number of 

peak and zero bin pairs and their corresponding values [11], [12] and [13]. Furthermore, dynamic programming-

based reversible data hiding algorithms were proposed to solve the optimization problem [14], [15].  

This study aimed to implement a reversible and high-capacity HS-based data hiding technique for magnetic 

resonance imaging (MRI), which is one of the most widely used medical imaging tools. MRI is a non-invasive 

technology that produces detailed anatomical and functional images of the inner body without any exposure to 

radiation. Thus, a genetic algorithm model is proposed in this paper for solving a rate-distortion optimization 

problem for HS-based multiple reversible data embedding schemes.  
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The paper is organized as follows: Section 2 provides background information on the medical imaging techniques 

that were used to obtain the data that are included in this study. Section 3 describes the dataset used to evaluate the 

proposed model. The framework for rate-distortion optimization on HS-based data hiding is demonstrated in sub-

section 3.2. Then, experimental test results are presented and discussed. Final remarks are summarized in the 

Conclusion Section.. 

2. Background and Motivation 

This section provides brief information about in vivo imaging of the human brain and how its intensity histogram 

characteristics inspired the chromosome structure of the proposed genetic algorithm (GA) model. 

A. Structural imaging of the human brain 

The human brain is the most complex organ of the human body and a part of the central nervous system (CNS). 

The brain is composed of two types of tissue: white matter (WM) and grey matter (GM). In addition, cerebrospinal 

fluid (CSF) is a clear plasma-like fluid that fills the brain ventricles. Grey matter contains relatively fewer 

myelinated neurons compared to white matter, which is mainly distributed on the surface of the brain cortex. The 

white matter appears white due to the abundance of the fatty substance (myelin) in its structure [16]. Magnetic 

resonance imaging is a widely used in vivo imaging technique for studying the human brain. Different tissue types 

have different longitudinal (or spin-lattice) relaxation times (T1) that is a measure of the time taken for spinning 

protons to recover about 63% of the magnetization along the longitudinal direction. T1-weighted (T1-w) imaging 

is one of the basic pulse sequences in MRI, which exhibits contrast differences between different tissue types. The 

excited hydrogen nuclei in fat recover more rapidly along the longitudinal axis; thus, regain much longitudinal 

magnetization during the repetition time (TR) interval. Due to the lipid composition of myelin, white matter has 

higher intensity values and appears lighter than grey matter in T1-weighted images of the healthy human brain. 

The lowest signal intensity is obtained from protons in the water molecules of CSF. Hereby, CSF appears black in 

T1-w imaging of the brain [17]. 

B. Motivation 

The histogram of T1-weighted imaging of the healthy human brain is characterized by three main mounds that 

correspond to three main tissue types: cerebrospinal fluid, grey matter, and white matter, respectively [17]. In this 

study, a group of non-zero neighboring bins delimited by zero bins of the histogram is called a “cluster", and 

similarly, a group of zero neighboring bins delimited by non-zero bins is called a “gap". A typical intensity 

histogram of a structural MRI image has either narrow gaps between thick clusters that create many candidate peak 

points per zero points or wider gaps between thin clusters that form many unmatched zero locations. This 

characteristic is the main motivation behind the algorithmic design of the presented algorithm. The chromosome 

structure of this study is designed to encode the selection of zero-bin pairs for histogram shifting, such that adjacent 

zero-bins within a gap are matched with the non-zero bins of the neighboring cluster. 
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C. Materials and Methods 

The efficiency of the proposed Genetic Algorithm (GA) is presented on axial slices of a set of T1-weighted imaging 

scans belonging to healthy elderly. Additionally, the proposed approach is compared with a non-heuristic schema. 

Furthermore, the proposed schema is tested for widely used non-medical images: Lena, Baboon, and Peppers. 

Experimental Dataset 

A total of 30 healthy elderly subjects have been included in this study. For each subject, their spatially normalized 

and skull-stripped anatomical MRI brain scans were downloaded from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) data archive. The scans are three-dimensional 16-bit depth magnetic resonance images with a 

size of 110×110×110 and a resolution of 2 mm×2 mm×2 mm. The experiments were performed on the 60th axial 

slice of the volumes at a size of 110×110. Fig.1 presents an axial slice of one of the MRI scans used in the 

experimental evaluation of the proposed model. 

 

Figure 1. An axial slice of the dataset used in the experiments. 

 

Proposed model for reversible data-hiding 

The conventional phases of a genetic algorithm have been performed, which includes (1) initial population 

generation, (2) parent selection, (3) crossover, (4) mutation, and (5) next population selection. The overall GA 

schema requires three system parameters and one input: the size of the population (𝑛𝑝), the number of epochs (𝑛𝑒) 

and the mutation probability (𝑟𝑚) are the system parameters; the histogram model of the cover image (H) is the 

input parameter. The aim of this GA model is to find an optimum set of zero-nonzero bin pairs based on the 

histogram model of a particular cover image. In this study, the model proposes a new chromosome encoding scheme 

based on the histogram structure, and employs a non-dominated sorting algorithm to find the best individual for 

the next population. 

Chromosome encoding based on the intensity histogram of the image 

The proposed chromosome structure is highly related to the histogram model of the cover image. The data structure 

of a histogram model (H) is composed of gaps (G) and clusters (C) denoted as 𝐻 = (𝐺, 𝐶) , where the number of 

gaps is represented by |𝐺| =  𝑛𝑔 and the number of clusters is represented by |𝐶| =  𝑛𝑐.  

G is a sorted sequence of gaps that are labelled as 𝑔𝑖 in such a way that 𝐺 =< 𝑔1, … . , 𝑔𝑛𝑔
>. Each gap 𝑔𝑖 
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corresponds to one of the zero-bin gaps of the histogram in ascending order that 𝑔𝑚 represents bins with smaller 

numbered bins than what 𝑔𝑛 represents when 𝑚 < 𝑛 ≤  𝑛𝑔. Thus, a single gap 𝑔𝑖 is implemented as a sequence of 

consecutive zero bin-numbers (𝑍𝐵𝑖). The number of zero-bins in a gap is at least one, but the size may vary 

according to the histogram of the image ( |𝑍𝐵𝑖| > 0).  

Similarly, C is used to represent all clusters of sequential non-zero bin-numbers 𝐶 =< 𝑐1, … . , 𝑐𝑛𝑐
> in ascending 

order. A single cluster  𝑐𝑖 has one or more non-zero bins associated with its intensity as a sequence of pairs (𝑁𝑍𝐵𝑖) 

in opposite to gaps since all intensities are zero in gaps. Thus, 𝑁𝑍𝐵𝑖 represents non-zero bins of the cluster 𝑐𝑖 as 

𝑁𝑍𝐵𝑖 =≪ 𝑏𝑖1, 𝑞𝑖1 >, … . , < 𝑏𝑖𝑘 , 𝑞𝑖𝑘 >>, where b’s are the bin numbers and q’s are the corresponding intensities 

of the bin numbers such that 𝑘 = |𝑁𝑍𝐵𝑖|>0 is the number of non-zero bins in the cluster𝑐𝑖. 

Since, we included the bin number 0 (zero) that does not exist in the ROI of the image and the bin number "one 

plus the highest intensity value of the image", a histogram model starts and ends with a gap, which yields  |𝐺| =

 𝑛𝑔 that is always equals to (|𝐶| =  𝑛𝑐) + 1 and the bin numbers of 𝑔𝑖 is always followed by the bin number of 𝑐𝑖. 

The following figure Fig.2 illustrates a symbolic histogram of an arbitrary image with a size of 10×10 and with 

intensity levels in the range of [1−36]. The bin numbers zero and 37 (one more than the highest intensity) are 

artificially added to the histogram to guarantee that it will start and end with a gap. Therefore, the sample histogram 

has four gaps (𝑛𝑔 = 4) and three clusters (𝑛𝑐 = 3). The gaps have three, six, six and three bin numbers in such that 

𝑍𝐵1 =< 0,1,2 >,  𝑍𝐵2 =< 9,10,11,12,13,14 >, 𝑍𝐵3 =< 23,24,25,26,27,28 > and 𝑍𝐵4 =< 35,36,37 >, 

respectively. The clusters are implemented as two-dimensional tuples that 𝑁𝑍𝐵1 =≪ 3,5 >, < 4,6 >, < 5,4 >, <

6,3 >, < 7,6 >, < 8,4 >>,𝑁𝑍𝐵2 =≪ 15,2 >, < 16, 5 >, < 17,8 >, < 18,7 >, < 19,5 >, < 20,5 >, < 21,3 >, <

22,4 >> and 𝑁𝑍𝐵3 =≪ 29,4 >, < 30,6 >, < 31,5 >, < 32,7 >, < 33,6 >, < 34,5 >>. As a crosscheck, the sum 

of intensities of all clusters (∑ ∑ 𝑞𝑖𝑘
𝑘
𝑗=1

𝑛𝑐
𝑖=1 ) is equals to the number of pixels (10 × 10 = 100). 

 

Figure 2. An illustration of an intensity histogram of an arbitrary image with a size of 10x10. 

 

The proposed chromosome encoding scheme based on the histogram model is a series of gene segments that are 

located in gaps. A gene segment is composed of zero or more encoder-genes and a regulatory gene, as illustrated 

in Fig.3. Each encoder gene is associated with one of the successive bins of the gap on which it is located. A 

regulator gene can take a boolean value that expresses (or suppresses) the corresponding encoder-genes. In addition 

to genes, a gene segment can be either left-handed or right-handed that determines the cluster for matching bin 

numbers, which is called “encode-direction”. If a gene segment of the gap 𝑔𝑖 is left-handed then bins of the gap are 

matched with the bins of the cluster 𝑐𝑖 otherwise they match with the cluster 𝑐𝑖+1. Each gap may hold zero or one 
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left-handed gene segment and zero or one right-handed gene segment except the  first and the last gaps. The first 

gap may contain zero or one right-handed gene segment, and the last gap may contain zero or one left-handed gene 

segment. Therefore, an individual chromosome may have at most  (2 × (𝑛𝑔 − 2)) + 1 + 1 = 2 × 𝑛𝑔 − 2 =

2 × (𝑛𝑔 − 1) = 2 × 𝑛𝑐  numbers of gene segments.  

There exist some constraints that must be considered during the training of genetic algorithm (GA) model. The first 

one says that two gene segments can not overlap, therefore the same zero bin will not be paired with more than one 

nonzero bin. The second one says the total number of encoder-genes of gene-segments that share the same cluster 

is limited by the number of bins of the cluster. The final one deals with where the gene-segment is placed in the 

gap, because a shorter distance between the matching points results in a higher PSNR value in the data embedded-

image. 

 

Figure 3. A gene segment 

 

The Fig.4 illustrates an instance of the proposed chromosome structure with three gene segments. The first gene 

segment is a left-handed gene segment that matches the zero-bins in the range of 9-13 with some non-zero bins of 

the first cluster. The second gene segment is inactivated. The last gene segment is an active and left-handed segment 

that has only three zero-bins to match with the bins of the third cluster. 

 

Figure 4. An instance of chromosome encoding on the sample histogram 

 

D. Training of the GA model 

The training procedure of the proposed GA model for the given histogram model is given in Algorithm 1. The 

procedure runs for the given number of epochs (𝑛𝑒 ). In each epoch, all individuals in the population are sorted 

using a non-dominated multi-objective sorting algorithm. The last two-thirds of the population having high scores 

are randomly paired to generate two offspring. The generated offspring are exposed to mutation with the given 

mutation probability (𝑟𝑚). This GA model employs customized implementations of crossover and mutation 
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according to the proposed chromosome algorithm. 

 

Algorithm 1: Training initial population for ne numbers of epochs 

 function GA_TRAIN( 𝑛𝑝 ,  𝑛𝑒,  𝑟𝑚, H) : P 
  Input: 𝑛𝑝 , 𝑛𝑒 , 𝑟𝑚 are system parameters; H is the histogram model of the image 

  Output: 𝑃 = {𝑃𝑖  | 𝑖 = 1. . 𝑛𝑝} is a sequence of trained individual chromosomes. 

 1  /* Initialization */ 

 2  for 𝑖 ← 1 𝑡𝑜 𝑛𝑝 

 3   𝑃𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 

 4  end 

 5  /* Training */ 

 6  for 𝑒𝑝𝑜𝑐ℎ ← 1 𝑡𝑜 𝑛𝑒 

 7   𝑃 ← 𝑺𝑶𝑹𝑻_𝑵𝑺𝑨(𝑃) 

 8   𝑄 ← ∅                            // Q will keep generated offspring 

 9   𝑘 ← ⌊𝑛𝑝 × (2 3⁄ )⌋         // k is the number parents 
 10   𝐼𝑥 ← 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 {𝑛 | 𝑛 = 1, 2, . . 𝑘} 

 11   for 𝑖 ← 1 𝑡𝑜 𝑘 𝑏𝑦 2 

 12    𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑪𝑹𝑶𝑺𝑺𝑶𝑽𝑬𝑹(𝑃𝐼𝑥𝑖
, 𝑃𝐼𝑥𝑖+1

) 

 13    if random_number(0,1) ≤ 𝑟𝑚 

 14     𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑴𝑼𝑻𝑨𝑻𝑬(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) 

 15    end 

 16    𝑄 ← 𝑄 ∪ 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔                           

 17   end 

 18   𝑃 ←   𝑺𝑶𝑹𝑻_𝑵𝑺𝑨 ( 𝑃 ∪ 𝑄) 

 19   𝑃 = {𝑃𝑖  | 𝑖 = 1. . 𝑛𝑝}                    // get better 𝑛𝑝 number of individuals 

 20  end 

 21  return P 

 22 end function 

 

E. Sub procedures of Training GA Model 

E.1. SORT_NSA Procedure: A non-dominated sorting algorithm (NSA) is applied to a population 𝑃 that consists 

of 𝑛𝑝 number of individuals denoted by {𝑃𝑖  | 𝑖 = 1. . 𝑛𝑝} ,  assigning each individual to one of the k number of Pareto 

Fronts 𝐹 =  {𝐹𝑖 | 𝑖 = 1. . 𝑘} . The pareto index (𝑖), is the ranking of the pareto front, where the pareto front 𝐹𝑚 provides 

better solutions than 𝐹𝑛  for a particular multi-objective optimization problem if 1 ≤ 𝑚 < 𝑛 ≤ 𝑘. On the other hand, 

the solutions of a Pareto front do not dominate each other. In this study, an iterative approach is followed in the 

implementation of NSA to sort solutions of the given population aiming to maximize both peak signal-to-noise 

ratio (PSNR) and data embedding capacity. Initially, all solutions of a population compose a set of remaining 

solutions. In each iteration of a loop with a counter variable (i) is incremented by one starting from one; the 

unassigned solutions that are not dominated by any other unassigned solutions are assigned to the Pareto front 𝐹𝑖, 

until there are no more solutions to assign. Fig.5 illustrates the first three iterations of a NSA procedure for an 

example population with ten individuals. At the end of the first iteration, two solutions marked with red-cross are 

selected for the Pareto Front 𝐹1, which are better solutions then all the remaining eight solutions, but they do not 

dominate each other. One of the red-crossed solutions is better in PSNR and the others offer higher capacities. 

Then, the second iteration runs for the remaining eight solutions to compose the second Pareto front 𝐹2 in the same 

way. At the end of the third iteration, only one solution remained, which will be assigned to the last and fourth 

Pareto front. If sorting within solutions of a Pareto front is needed, then crowd-distance is applied to measure the 

surrounding density of a solution. 
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Figure 5. An illustration of  non-dominated sorting procedure for a population with ten solutions 

 

The distance value of a particular solution among all solutions in a multi-objective optimization environment is 

defined as the sum of the differences between the values of the nearest two neighboring solutions when sorted 

separately according to each objective function. The crowding distance of solutions having the lowest and highest 

values in an objective function is considered with infinite values so that they are excluded. In this study, solutions 

with a smaller crowding distance are preferred to achieve optimum solutions in both objectives rather than just one 

purposive dominant one. This measurement is applied in the selection of the better 𝑛𝑝solutions for the next 

generation as it is in the 18𝑡ℎ line of the Algorithm 1 only for the Pareto front of Npth solution.  

The Algorithm 2 summarizes the procedure in pseudocode to calculate the crowding distance for all solutions of a 

particular Pareto front. The algorithm gets individuals (S) in a given Pareto and returns corresponding crowding 

distance values (CD). Initially all individuals have zero crowd-distance value. Then the algorithm considers each 

objective separately as an outer loop start in the sixth line. The individuals are sorted according to their 𝑗𝑡ℎobjective 

function values. Afterwards,  the individuals having the highest and lowest values are excluded with infinite 

crowded distance values. Finally, the absolute distance of its two neighboring solutions is added to its 

corresponding crowding distance values in the 11𝑡ℎline. 

Algorithm 2: Calculate crowding distances of individuals having the Pareto 𝑃𝑟 

 function CROWDING_DISTANCE(𝑺) : CD 
  Input: S= {𝑠𝑖  | 𝑖 = 1,2, . . , 𝑛} is a sequence of 𝑛 number of solutions in a given Pareto 

  Output: 𝐶𝐷 = {𝑐𝑑𝑖  | 𝑖 = 1,2, . . , 𝑛} is a sequence of crowding distances of individuals 
chromosomes.  1  /* Initialization */ 

 2  for 𝑖 ← 1 𝑡𝑜 𝑛 

 3   𝑐𝑑𝑖 ← 0  

 4  end 

 5  𝑀 = {𝑚𝑖,𝑗  | 𝑖 = 1,2, . . , 𝑛 𝑎𝑛𝑑 𝑗 = 1. .2} // M is a sequence of objective function 

values number of solutions          of 𝑛 number of solutions in a two-objective involving two objective environment. 

         𝑚𝑖,𝑗  stands for the 𝑗𝑡ℎobjective function value of 𝑠𝑖 
 6  for j ← 1 𝑡𝑜 2 

 7   𝑀′, 𝑇 ← 𝑆𝑂𝑅𝑇(𝑀∗,𝑗) // T= {𝑡𝑖  | 𝑖 = 1,2, . . , 𝑛} and 𝑀′ = {𝑚𝑖
′ | 𝑖 = 1,2, . . , 𝑛} 

                                        //   in such that 𝑚𝑖 
′ =  𝑚𝑡𝑖,𝑗 

 8   𝑐𝑑𝑡1
 ← ∞                             

 9   𝑐𝑑𝑡𝑛
 ← ∞                             

 10   for k ← 2 𝑡𝑜 (𝑛 − 1) 

 11    𝑐𝑑𝑡𝑘
= 𝑐𝑑𝑡𝑘

+  |𝑚𝑖−1 
′ − 𝑚𝑖+1 

′ | 

 12   end 

 13  end 

 14  return CD 

 15 end function 
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E.2. CROSSOVER Procedure: As a part of the presented algorithm, the crossover method was designed to 

preserve the proposed chromosome structure and to comply with the defined constraints. The crossover method 

starts with a randomly selected twenty-percent of all regulated gene segments of the first parent, which are inherited 

by the first offspring. The clusters belonging to the remaining clusters of the second parent were transferred to the 

first offspring (and vice versa for the second offspring). The intersecting encoder genes of the overlapping gene 

segments are cropped in favor of a randomly chosen one.  

Fig.6 illustrates the proposed crossover technique based on the histogram model used in Fig.2. Two different 

solutions of the histogram (Parent-A and Parent-B) are crossed over that generated O 

spring-A and Offspring-B.  The third of the three clusters is selected as crossover point to exchange gene-segments 

among parents, so that, the Offspring-A inherited its first and second gene-segments from Parent-B and its third 

and fourth gene-segments are inherited from Parent-B. 

 

a) Parents 

 

b) Offspring 

Figure 5. Illustration of a Crossover Operation 

E.3. MUTATE Procedure: The mutation affects both regulator genes and encoder-genes. The mutation of 

regulator genes is a simple procedure in which the regulator genes of randomly selected ten percent of the gene-

segments are toggled. Since the previously expressed regulator genes will begin to be suppressed and vice versa, 

this kind of mutation affects the total capacity. On the other hand, twenty percent of the gene segments were mutated 

by deleting the encoder-gene next to the regulator gene and entailing it to its complement gene segment. This kind 

of mutation does not change the capacity. On the other hand, since it affects the matching between zero-bins and 

peak-bins, such a mutation is related to the distortion. 

F. Alternative Distance Measure as opposed to NSA  

An Euclidean distance-based fitness value is used to sort individuals in a population as a comparison to NSA in the 

third and fifteenth lines of Algorithm 1. The fitness value of the chromosome is defined as the magnitude of the 

vector 𝑣 in such that 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  |�⃗�| =  〈𝑐, 𝑝〉𝑇 , where 𝑐 and 𝑝 are scalars in the range of [0 − 1]. 

 The scalar 𝑝 stands for the ratio of PSNR to the maximum possible PSNR value of the image; and, the scalar 𝑐 is 
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the ratio of the capacity in bits to the maximum possible capacity of the image.  

In this study, PSNR is calculated for 16-bit data as 𝑃𝑆𝑁𝑅 = (20 × log10(216 − 1)) − (10 × log10 𝑀𝑆𝐸), where 

MSE is the mean squared error between the original image and the data embedded-image. The maximum possible 

PSNR value is calculated by assuming MSE is equal to the epsilon that indicates the minimum distortion occurred 

by moving only one pixel by one, which is around 135 dB. 

3. Results and Discussion 

This section presents and discusses experimental results on the dataset explained in Section 2-C. 

A. Histograms of the Images of the Experimental Dataset  

As it is stated in the background and motivation section, this study is based on the characteristics of the histogram 

of a structural MRI image. In this section, the intensity histogram of one of the images of the dataset is presented 

in Figure 7. The histogram has 2125 bins, of which 335 of them are zero-valued bins that are around 16% of the 

total. Theoretically, the highest 335 peaks can be shifted to all zero locations, but, in practice, only 298 zero-bins 

are available for shifting due to the characteristics of the histogram. 

 

Figure 7. Pixel Intensity Histogram of an Image of the Dataset 

 

The gap-cluster statistics of the histogram are summarized as follows: The wideness statistics of all 231 clusters 

were 7.74 ±14.09 [1-171] (mean ±std[min-max]). Among 335 zero locations, only 298 of them can be used for 

shifting, 224 of which can be used for either one of two neighbourhood clusters for shifting. The histogram statistics 

of the three mounds are given separately in Table 1. The mean signal intensities of cerebrospinal grey matter and 

white matter are 574, 1228 and 1749, in that order. All three mounds are almost symmetrical bell-shaped (-0.5 ≤ 

skewness ≤ 0.5) but tails are thinner than the normal distribution (kurtosis <3) for cerebrospinal fluid and grey 

matter. 
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Table 1: Table explanation. 

 
Cerebrospinal 

fluid 

Grey  

matter 

White  

matter 

Mean Value 574 1228 1749 

Standard Deviation 199 220 122 

Median Value 557 1238 1750 

Minimum Value 186 744 1411 

Maximum Value 1313 1800 2124 

Mode 385 1336 1744 

25th Percentile 400 1059 1666 

75th Percentile 728 1403 1819 

Skewness 0.4 -0.2 0.23 

Kurtosis 2.52 2.17 3.22 

 

B. Experimental Results 

The system parameters are empirically set as 𝑛𝑝 = 100 , 𝑛𝑒  = 150 and 𝑟𝑚  = 10 for the proposed GA model. Fig.8 

presents scatter plots of the embedding capacity and PSNR values (in dB) of the individuals of the initial population, 

the evolved population with the NSA method and the evolved population with the Euclidian distance method; in 

black, green, and red colors, respectively. The embedding capacity is presented in a rate of embedded data length 

in bits to the maximum capacity in bits (listed in Table 2 ). Since, all individuals of the evolved population with the 

Euclidian distance method provide the solutions with the same capacity and PSNR values, all individuals plotted 

on top of each other. The mean capacity of the individuals of the initial population is computed to be 0.54 bpp, with 

a standard deviation of 0.0094. After 150 epochs of training with a procedure using NSA sorting algorithm, the 

mean PSNR value of the individuals on the first Pareto front of the population was statistically significantly 

increased compared with the initial population (p<0.001), with a  mean±std of 99.82±0.28, while the capacity 

value remained same statistically. On the other hand, after 150 epochs of training with a procedure using Euclidian 

distance sorting algorithm, the capacity value improved significantly (p<0.001), with a mean±std of 0.60±0.00, 

but, the PSNR value has decreased. 

 

Figure 8. Distortion against capacity of the initial and evolved population tested on the T1-w MRI slice 
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Table 2 provides a summary of the cluster characteristics of the whole dataset. There exist various numbers of 

clusters in the range of [115-640] with a high standard deviation. The zero bin numbers are given in the format of 

“a(s)/t", where t is the total number of zero bins that exist in the histogram. The number a indicates how many of 

the total t number of zero bins can be used for shifting. The number s denotes how many of the available zero bins 

can be paired with more than one cluster. The mean of the percentage of the ratio of the number a to the number t 

is 86.91 with a standard deviation of 0.06. In other words, around 13% of the total zero-bins are not considered to 

be used for shifting. 

Table 1: Cluster Statistics. 

 cluster 

count 

cluster       width 

(mean±std) 

zero bins count 

(a(s)/t)* 

maximum 

capacity 

1 231 7.74±14.09 298(224)/335 2022 

2 256 6.64±17.80 394(260)/439 2361 

3 314 5.72±10.72 495(288)/588 2583 

4 411 4.58±9.64 627(397)/744 2939 

5 299 5.17±10.95 461(271)/496 2429 

6 205 8.06±14.45 289(188)/326 1815 

7 494 4.37±8.98 745(473)/886 3016 

8 115 11.77±18.33 144(113)/181 1278 

9 287 6.32±12.41 408(280)/463 2140 

10 310 5.46±12.12 438(305)/479 2290 

11 521 3.99±5.62 833(481)/967 3035 

12 621 3.52±4.88 1020(564)/1317 3447 

13 561 3.86±5.78 819(584)/872 2874 

14 640 3.47±7.27 990(591)/1197 3400 

15 178 8.59±12.90 266(160)/306 1725 

16 118 12.76±23.80 145(122)/162 1130 

17 222 7.25±16.49 300(233)/306 1771 

18 360 5.46±7.05 516(368)/588 2260 

19 327 5.82±8.79 490(312)/576 2390 

20 198 8.17±11.40 257(216)/274 1468 

21 383 5.27±11.06 604(379)/703 3202 

22 325 5.60±8.31 464(320)/499 2192 

23 291 6.21±12.86 405(274)/465 2313 

24 151 10.56±23.20 206(163)/266 1777 

25 458 4.50±7.03 704(446)/830 2937 

26 132 11.20±35.07 182(137)/257 1887 

27 249 7.11±18.39 344(240)/361 2063 

28 348 5.54±9.66 475(366)/497 2268 

29 308 5.91±11.93 435(288)/604 2667 

30 262 6.86±10.26 351(279)/381 1914 

∗ The number of zero bins are given in a(s)/t; t = total number 
of zero bins; a = available number of zero bins for shifting; s = among available 
bins, how many of them are shared by two 
clusters 

 

Fig.9a and Fig.9b show the convergence characteristic curve of the capacity and PSNR values for training 

a GA model for 150 epochs.  The populations rapidly converged to an approximate equilibrium almost 

50 epochs later. The “multiple boxplot” MATLAB implementation of Ander Biguri (2021) was used to 

draw figures. 
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a) capacity vs epoch b) PSNR vs epoch 

Figure 9. Convergence characteristics curves 

 

Furthermore, the comparison of the performance obtained using the solutions proposed by the individuals of the 

first population and the evolved population is given in Table 3 in terms of PSNR values. Left-tailed t-tests 

confirmed that the proposed method significantly improved the populations (p<0.01) when the NSA sorting method 

is applied. Only three cases of the experiment with Euclidian distance reported significant improvement in PSNR, 

nevertheless, less than the one with the NSA method. 

C. Comparison with the case of using non-medical images 

The histograms of the preprocessed non-medical test images Lena, Baboon and Pepper had a total of 308, 43 and 

260 clusters, respectively. The Baboon image had fewer zero-bins than others with 85 zero-bins; on the other hand, 

only 65 percent of them could be included in the pairing procedure. Of the 424 zero bins, only 356 zero-bins were 

encoded in the GA model in the Lena image. After 150 epochs, the mean of the PSNR values of the individuals in 

the evolved populations is increased statistically significant compared to the initial populations for all three non-

medical images, respectively, with a little improvement in the rate observed for the image Baboon. 

D. Time complexity analysis 

To compute T(n), the running time of proposed model for the given Np number of individuals and Ne number of 

epochs as inputs into the training procedure, the products of the cost and times of each line in algorithm 1 are added 

together. The cost of each statement is a constant ci , where i indicates the line number of the statement. The running 

time of a statement depends on how many times the statement is repeated rather than the cost of  the statement [18]. 

Lines 2-3 are repeated 𝑛𝑝 times, if 𝑛𝑝 is expressed as 𝑝 times 𝑛 then the first loop of line 2-3 takes a time roughly 

proportional to n.  There is a second loop between lines 6 and 12, which has an inner loop between the line 10 and 

the line 11. By considering 𝑛𝑒 is a constant, the inner loop will be the main determining factor for the time 

complexity.  Thus, based on the complexity analysis of the GA training , the GA model has a running time of O(n). 
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4. Conclusion 

In this study, an evolutionary optimization algorithm  for solving the rate-distortion  trade-off  in  the HS-based 

multiple  reversible  data embedding  algorithm is  proposed.   For  this  purpose,  a  specially designed  genetic 

algorithm is proposed to determine the optimal pair of peak and zero bins for structural magnetic resonance imaging 

images. The chromosome encoding approach of the proposed GA model is inspired by the histogram characteristics 

of MR images. The proposed algorithm has been evaluated using a set of T1-weighted magnetic resonance images. 

The mean PSNR value of all individuals in the population after training with the proposed NSA-based GA 

procedure was statistically significantly increased up to 99.82. Experimental results show that the proposed 

algorithm yields higher quality embedded images without sacrificing embedding capacity in the field of medical 

imaging. 
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