

J Inno Sci Eng,2023, 7(1):13-28
https://doi.org/10.38088/jise.1120186

Research Article

13

A New Method for Verification and Evaluation of PLC Software

Muhammed A. Öz1 * , Özgür T. Kaymakci 2

1 Yıldız Technical University, Department of Control and Automation Engineering, İstanbul, Turkey
2 Canakkale Onsekiz Mart University, Department of Electrics and Electronics Engineering, İstanbul, Turkey

Cite this paper as: Muhammed A. Oz
and Ozgur T. K. (2023). A New
method for verification and evaluation

of PLC software. 7(1): 13-28.

*Corresponding author: Ozgur T.
Kaykamci

E-mail: okaymakci@comu.edu.tr

Received Date:24/05/2022
Accepted Date:09/09/2022
© Copyright 2023 by

Bursa Technical University.

Available online at
http://jise.btu.edu.tr/

The works published in the journal
of Innovative Science and

Engineering (JISE) are licensed
under a Creative Commons

Attribution-NonCommercial 4.0
International License.

Abstract

Varying market demands and changes in production standards require production systems to be

effortlessly modifiable and quickly operational. On the other hand, designing, developing, and testing

the control system of a new production system prove costly and time-consuming. Therefore, most

engineers write code intuitively and apply basic and insufficient tests. Moreover, most of the code

developed for industrial control systems is still written manually using the ladder programming

language. At the same time, almost all code development platforms support users with only manual

test interfaces. This causes the testing process to be very long and laborious. In addition, not all

possible input and output combinations of the code can be tested most of the time. This is a serious

handicap, especially for safety-related systems. This study aims to develop a reusable and quickly

implementable method that will accurately translate RTC program and the behavior of RTC in a

modular Petri net model. Through this translated model, the system and safety requirements written

in the Computation Tree Logic can be verified. An advantage of this method is that it does not require

a plant model which makes it reusable for new plants and provides a quick verification method for

code written intuitively. A case study is given to demonstrate the correctness of our method.

Keywords: Industrial automation, Programmable logic controller (PLC), Code verification, Safety.

http://jise.btu.edu.tr/
https://orcid.org/0000-0002-4347-3583
https://orcid.org/0000-0001-7553-6887

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

14

1. Introduction

Automation systems are an indispensable part of the industry because of their plentiful benefits. Even though these

systems save labor, energy, and materials improve quality and accuracy, they have a big disadvantage related to their

high initial costs. It takes a fairly long amount of time and resources to design and develop a new automation system.

Designing an automation system can be divided into two main tasks. The first task is to choose and assemble the right

components for the system. This task is relatively simple when compared with the second task which is to develop a

control algorithm and realize it on a real-time controller.

Most developers in the industry follow the V-model when a real-time control system is to be developed [1]. The model

includes the steps to take in the process of development, which are requirements, analysis, implementation, testing,

verification, and validation. To apply this V-model, the system must be modeled as a discrete event system, after the

requirements of the system are collected. A control strategy must be chosen and its result must be converted into real

time controller code. Ljungkrantz et al. proposed a method to develop specifications for safety components in PLC

programs. [2]. Viera et al. used automata theory to model flexible manufacturing systems consisting of several

subsystems and presented a method that allows designers to systematically convert supervisory control theory results

into a programmable logic controller code [3]. Hu et al. modeled and analyzed automatic manufacturing systems with

synchronous operations using petri nets [4]. Different modeling needs result in a variety of modeling techniques, for

scholastic systems a modified petri net called colored stochastic petri nets [5], and for time-critical systems called timed

arc Petri nets [6] can be used.

Röshe et al. and Ovatman et al. presented review papers on model based testing approaches [7, 8]. Methods on verification

of RTC programs can be classified into two general categories. One of the categories would include the methods where

the model to be verified is a combination of the plant model and the model of the RTC program. Bauer et al. presented a

method to convert timed sequential functional charts to discrete event timed automata. They also analyzed the converted

model UPPAAL [9]. Mertke and Frey worked on Signal Interpreted Petri Nets and presented a new graphical design

approach. They implemented the results on a benchmark problem. [10]. Alenlejung et al. introduced the discrete event

modeling language Sensor Graphs, which is intended for modeling physical systems from the perspective of a PLC

programmer and for usage within formal verification, process observation, and fault detection [11]. Nellen et al. presented

two CEGAR-based methodologies for the reachability analysis of SFC-controlled chemical plants [12].

A different approach of including system model is through using simulations. Carlsson et al. used OPC interface in order

to connect PLC and a simulation tool. They defined four major problems related to OPC and introduced two possible

solutions [13]. Rankin and Jiang developed a platform that provides a flexible simulated testing environment which

enables synchronized coupling between the real and simulated world [14]. Park et. al. introduced a visual verification

platform based on discrete event systems specifications approach. Here the models can be in a hierarchical, modular

manner [15]. Patil et al. presented how integrated circuit (IC) verification method can be used effectively for assuring

functional correctness and response time analysis of PLC program [16]. Koo et al. presented a framework of virtual plant

models for the verification of PLC logic through modeling and simulation [17]. Although including system model in the

verification process increases correctness, it also increases costs and start up time. Besides, this method requires a

specialist to model the system and methods are not reusable.

Another way to verify a RTC program is without using a plant model. Wang et al. has proposed a systemic method for

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

15

the construction of verification model. PLC system architecture and PLC features has been modeled as components and

connectors [18]. Zhang et. al. has proposed a method that generates timed event sequences and implemented this strategy

into a program named VETPLC [19]. Adiego et al. propose a general methodology to perform automated model checking

of complex properties expressed in temporal logics on PLC programs and is based on an intermediate model [20]. Xiao

et al. introduces the compositional verification framework for PLC programs [21]. Ulewicz et al. proposed a novel

method for regression verification of PLC code, which allows one to prove that two variants of a plant's software behave

identically in specified situations, despite being implemented differently [22]. He et al. proposed a model-based

verification of PLC programs using Simulink design [23]. Adiego et al. used PLCverif that was produced by CERN.

Here they tried to reveal the bugs in the PLC program that was generated from a functional safety perspective [24]. While

the methods above eliminate the need for a system model, they lack the critical components of verification such as

readability, modularity and reusability. In addition, the use of intermediate models are also problematic as they require

translating the system a few times and decrease the accuracy of the model.

Varying market demands and changes in the production standards require production systems to be effortlessly

modifiable and quickly operational. While physical parts of the production system can be built efficiently, designing,

developing and testing the control system prove costly and time consuming. Therefore, most engineers write a code out

of intuition and apply basic and insufficient tests. The aim of this study is to develop a reusable and quickly implementable

method to verify the safety and performance requirements of the respective system. This method will improve

modification and development times, financial costs and safety.

Main contribution of this study is to provide a method which accurately translates RTC program and the behavior of

RTC in a modular Petri net model. Through this translated model, the system and safety requirements can be verified.

An advantage of this method is that it does not require a plant model which makes it reusable for new plants as long as

requirements are updated. Petri net models are verified and viewed through TAPAAL, which is a tool for editing,

simulating, analyzing and verifying TAPN. The verification process is done on the basis of certain safety requirements,

which are written in Computation Tree Logic (CTL), which models time as a tree-like structure, formulation [25], [26].

A general schematic of the proposed method is given in Figure 1.

TransformationLD Program
Modular Petri

Net Model

Analyze

(TAPAAL)
Results

Requirements

Improve program and repeat if necessary

Figure 1. General schematic of the proposed method.

2. Modeling Real Time Controllers

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

16

Programmable logic controllers (PLCs) are among the most used RTCs in the industry. PLCs can be defined as cyclic

data processors meaning they repeat a predetermined control algorithm indefinitely. The algorithm that is executed

cyclically is called the program. To unify the syntax and semantics of programming languages for PLCs, the International

Electrotechnical Committee (IEC) published IEC 61131-3. One of the two graphical languages recommended by this

standard, the ladder diagram (LD) will be covered in this paper.

2.1. LD program

LD is a programming language that is represented by a graphical diagram based on the circuit diagrams of relay logic

hardware. It consists of a main program body and subprograms which perform a specific task and can be called from the

main program body. Consider an LD program 𝑃 having 𝑚 rungs and 𝑛 subprograms 𝑃1, … , 𝑃𝑛 each having 𝑚𝑖, 𝑖 =

1, … , 𝑛 rungs.

𝑃 = {(𝑗, 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑗)|𝑗 = 1, … , 𝑚} ∪ ⋃ 𝑃𝑖

𝑖≤𝑛

Program 𝑃 can be defined as given in equation where

𝑃𝑖 = {(𝑗𝑖 , 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑗𝑖
)|𝑗𝑖 = 1, … , 𝑚𝑖}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑛

Where 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑗(𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑗𝑖
) designates the diagram at rung 𝑗(𝑗𝑖) of 𝑃(𝑃𝑖).

2.2. Model of an LD Program

To describe the potential behavior of the program a Petri Net can be used. Let 𝑃𝑁 = (P, T, F, W, 𝑀0) be a 5-tuple where,

P is a finite set of places, T is a finite set of transitions, the places P and transitions T are disjoint (𝑃 ∩ 𝑇 = ∅) , 𝐹 ⊆

 (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is the flow relation, 𝑊 ∶ 𝐹 → (ℕ \ {0}) is the arc weight mapping, and 𝑀0 ∶ 𝑃 → ℕ is the

initial marking representing the initial distribution of tokens. PN model of an LD program can be constructed as follows:

Set of places P. 𝑃 = 𝑃𝑝 + 𝑃𝑏 + 𝑃𝑐

𝑃𝑝 is a set of places expressing the variables of the program defined by the programmer. Although LD supports many

data types in this paper only Booleans are discussed as they are most commonly used in the industry. Assuming the main

program 𝑃𝑟 contains 𝑛𝑝𝑟 variables and each subprogram 𝑃𝑟𝑖 contains 𝑛𝑝𝑟𝑖 variables, then 𝑃𝑝 = 𝑃𝑝𝑟𝑥𝑃𝑝𝑟2
𝑥 … 𝑥𝑃𝑝𝑟𝑛

where

𝑃𝑝𝑟 = 𝑃𝑟𝑣𝑎𝑟1
𝑥𝑃𝑟𝑣𝑎𝑟2

𝑥 … 𝑥𝑃𝑟𝑣𝑎𝑟𝑛𝑝𝑟
 and 𝑃𝑟𝑣𝑎𝑟𝑗

= {true, false} for 𝑗 = 1, … , 𝑛𝑝𝑟 .

𝑃𝑏 is a set of states expressing the behavior of the plc. In this approach, variables that are not defined in the program by

the user but are still needed to express some functions such as rising edge trigger. This function requires the previous

value of the variable. Thus, a place must be created to store value of the variable. Assuming the main program 𝑃𝑏

contains 𝑛𝑏 functions as describes above and each subprogram 𝑃𝑏𝑖
 contains 𝑛𝑏𝑖

 functions, then 𝑃𝑏 =

 𝑃𝑏𝑥𝑃𝑏1
𝑥 … 𝑥𝑃𝑏𝑛𝑖

where 𝑃𝑏 = 𝑃𝑏𝑣𝑎𝑟1
𝑥𝑃𝑏𝑣𝑎𝑟2

𝑥 … 𝑥𝑃𝑏𝑣𝑎𝑟𝑗
 and 𝑃𝑏 defines the variables needed for expressing all

functions in the appropriate subprogram and 𝑃𝑏𝑣𝑎𝑟𝑗
 defines the variables needed for the respective function in that

subprogram.

𝑃𝑐 is a set of places defining program counters. The program counter of each of the program modules together to form

the set 𝑆𝑃𝐶. Thus, 𝑆𝑃𝐶 = {1, . . . , 𝑚𝑎𝑥𝑝𝑐} × {1, . . . , 𝑚𝑎𝑥𝑝𝑐1} ×. . .× {1, . . . , 𝑚𝑎𝑥𝑝𝑐𝑛}. Adding the 𝑃𝑐𝑅𝑒𝑎𝑑𝑖𝑛𝑔
 a place to

define the reading cycle of PLC and 𝑃𝑐𝑊𝑟𝑖𝑡𝑖𝑛𝑔
 a place to define the writing cycle of PLC to this set, a PLC behavior can

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

17

be accurately modeled.

Flow relation, 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) describes how the tokens of the places change after the firing of each

transition. The condition described by the LD diagram is modeled using the firing rule of the transitions and the actual

firing of the transition models the action taken as a result of the respective conditional statement. Since this study only

deals with logical values of the software, places in the PN model can only have two values, as a result the upper limit of

tokens for our Petri net places is one. Here zero tokens express the value false whereas one token expresses the value

true. Furthermore, the weights of the arcs must always be set to one considering that places can only contain one token.

The Petri net will be self-looping because the input places lose their tokens when transition fires and their tokens must

be returned. A Petri net under these terms is called an ordinary, finite-capacity net with strict firing rule.

This study proposes modeling the RTC and its ladder program in three steps. First, rungs of the LD program are modeled

one by one as independent model components. Next, a behavioral model of the RTC is generated considering the

requirements of the LD program. Finally, model components of LD program and the behavioral model are assembled.

2.3. Model of an LD Program

The logic in a ladder diagram typically flows from left to right. The diagram which resembles a ladder can be divided

into sections called rungs. RTC executes these rungs one by one from top to bottom. Each rung typically consists of a

combination of input instructions and these instructions lead to a single output instruction. However, rungs may also

contain function block instructions. A rung can be tough as a condition and an action taken depending on the condition.

In this example a single rung of a LD program is given in figure A and its corresponding PN model is given Figure 1.

The condition on this rung is that 𝑃0 must be true and 𝑃1 must be false. The action taken depending on this condition is

setting the output variable 𝑃2 to true. In the case of 𝑃2 being true, meaning it already has a token, after the firing of

transitions its token will increase to more than one and this is not acceptable. Therefore, two transitions are needed to

take the respective action when the condition is satisfied. Transition 𝑇3 is fired when the previous value of 𝑃2 is false and

transition 𝑇2 is fired when previous value of 𝑃2 is true. Notice that in order to complete the execution in the PN model

the token of 𝑟𝑢𝑛𝑔𝑛 must be transferred to the place 𝑟𝑢𝑛𝑔𝑛+1. Consequently, transitions 𝑇0 and 𝑇1 are used to transfer

the token from 𝑟𝑢𝑛𝑔𝑛 to 𝑟𝑢𝑛𝑔𝑛+1 when the condition is not satisfied. The components with the dotted line are not

necessary to model the code but to model the behavior of the RTC. The places 𝑟𝑢𝑛𝑔𝑛 and 𝑟𝑢𝑛𝑔𝑛+1 are members of the

program counter set. The place 𝑟𝑢𝑛𝑔𝑛 is used to simulate the RTCs behavior of running the code line by line with order.

After 𝑟𝑢𝑛𝑔𝑛 loses its token 𝑟𝑢𝑛𝑔𝑛+1 recieves it and executes the PN model of the next rung.

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

18

P0

T1

P1

T3

P0 P1

P2Rungn

Rungn

P2

T0

T2

Rungn+1

BA

Figure 2. An example of a RTC instruction and its Petri net model correspondence.

An example of a RTC instruction and its corresponding Petri net model is given in Figure 2-A and Figure 2-B. The

instruction calculates the conjunction of variable P0 and the complement of variable P1, and writes the result on the

output variable P2. In the Petri net correspondence, in addition to the instruction rung indicators are used to run Petri net

model components in order just as a RTC. Furthermore, the component must complete the instruction operation in one

transition. At the end of the operation next rung indicator must get a token and the input variables must keep their initial

values. Petri net correspondences of commonly used instructions are given in the Appendix.

2.4. Model of PLC Scan Cycle

When the scan cycle starts, PLC checks each input card to determine its logical state and saves this information in a data

table to be used in the next cycle step. This speeds up the process while avoiding cases where an input changes from the

start to the end of the program. The PLC executes programs one instruction at a time using only the memory copy of the

inputs. When all instructions are completed, the outputs are updated using the temporary values in memory. The PLC

updates the status of the outputs based on which inputs were on during the first step and the results of executing a program

during the second step. The PLC now restarts the process by scanning inputs.

0,0

T0

T1

0,0

T2
[0,inf)

[0,inf)

[0,inf)

[0,inf)
[0,inf)

[0,inf)

P0

ScanCycleRead ExecuteInstruction1

Input1

Input2

Figure 3. Petri net model of RTC’s reading cycle.

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

19

Proposed method simulates the same behavior. Each scan cycle stage is indicated by a place and by connecting these

places to respective transitions, PLC scan cycle stages and one by one execution of the program instructions can be

achieved in the model. Similar to the PLC, the model first determines the logical states of the input places. Software that

is being tested should function safely under all conditions. Therefore, the model should allow all input combinations

even when they are not possible in the physical system. This is achieved using the PN model component given in Figure

3. This component takes advantage of the firing rules of PNs by enabling many transitions until 𝑇0 transition is fired and

all input combinations are possible. The place 𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑅𝑒𝑎𝑑 indicates the scan cycle step: read input values. When

𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑅𝑒𝑎𝑑 loses its token, the input combination is decided and will stay same until the next cycle. After this cycle

stage 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛1, which indicates that first instruction should be executed, receives a token and instructions

are executed in order. Each scan cycle step and each instruction is a component of the Petri network and interactions are

provided through shared places, and these shared places are shown with two circles where the outer one is dotted. This

improves readability, reduces design complexity of the network and pave the way to automatic modeling.

T0 T1

0,0
[0,inf)

ScanCycleWrite Reset

Input2

[0,inf)

ScanCycleRead

Input1

T2

T3

Figure 4. Petri net model of RTC’s output cycle.

Last scan cycle is the output cycle and its representation is given in Figure 4. 𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑊𝑟𝑖𝑡𝑒 is the indicator of this

cycle. This model component has two main tasks; the first task is to store the previous input logic states especially for

PLC instruction such as rising and falling edge trigger, and the second task is to clear all inputs before going into the

reading cycle step using sink transitions, transitions without any output place. This component is also important because

it represents when outputs are updated therefore must be kept in mind in the verification process. The values of outputs

should only be checked in the output cycle. Model representations of all scan cycle steps are shown in the Figure 5.

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

20

0,0

[0,inf)

ScanCycleRead ScanCycleWrite

[0,inf) [0,inf)[0,inf)

ExecuteInst1 ExecuteInst2

Read Input

Values

Execute Tasks

Output Values

In
stru

ctio
n

1

In
stru

ctio
n

2

Figure 5. Model representations of all scan cycle steps.

3. Case Study

A program that controls two robot arms which are a sub-system of a production line is used for the case study. A

representation of the system is given in Figure 6. There are two conveyors that carry materials inside the subsystem and

only one conveyor moves materials out of the system with the guidance of presence sensors. These conveyors are

controlled by a different higher level program of the production system. The control program is written for two robot

arms which pick up materials when ready from the assigned conveyor and places them on conveyor 3.

Conveyor 1

Conveyor 2

Conveyor 3

Robot Arm 1

Robot Arm 2

Figure 6. Schematics of the production system.

While the system is idle, which means it is waiting for a detection of a material on either conveyor, the robot arms are in

a position above their assigned conveyors with the robot’s gripper being at a certain height. When a material is detected

on either conveyor, the assigned robot arm lowers itself in order to pick the material with its gripper then goes back to

the original height and starts moving in circular motion towards conveyor 3. Once the robot arm lowers its gripper again

until it can place the material safely on conveyor 3 and moves back to its original height, it moves towards its assigned

conveyor. The process of moving a material is finished once it is in a position above its assigned conveyor.

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

21

S

S

S

S

S

R

R

R

R

S

R

S

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

SC_1 SC_3 OP_1 OP_2 OP_1

OP_1 SG_1 SH_1H SP_13 MR_13

OP_1 SG_1 SH_1H SP_11 MR_11

OP_1 SG_1 SH_1L SP_11 HR_1H

OP_1 SG_1 SH_1L SP_13 HR_1H

OP_1 SG_1 SH_1H SP_11 HR_1L

OP_1 SG_1 SH_1H SP_13 HR_1L

OP_1 SG_1 SH_1H SP_11 HR_1H

OP_1 SG_1 SH_1H SP_13 HR_1H

OP_1 SG_1 SH_1L SP_11 HR_1L

OP_1 SG_1 SH_1L SP_13 HR_1L

OP_1 SG_1 SH_1L SP_11 G_1

R

OP_1 SG_1 SH_1L SP_13 G_1

SP_11 OP_1

SC_2 SC_3 OP_1 OP_2 OP_2

P

If a material is detected on conveyor 1 and no material

is detected on conveyor 3 and no other process is

working then start the process of transferring material

from conveyor 1 to 3 (Process 1).

If Process 1 is active and arm it at moving height then

if an object is in the gripper and robot is not at

conveyor 3 then move to conveyor 3. If there is no

object in gripper and robot is not at conveyor 1 then

move to conveyor 1.

If Process 1 is active and arm is at gripping height

then start lifting the arm to moving height if an object

is in the gripper and robot is at conveyor 1 or if there

is no object in gripper and robot is at conveyor 3.

If Process 1 is active and arm is at moving height then

start lowering the arm to gripping height if an object is

in the gripper and robot is at conveyor 3 or if there is

no object in gripper and robot is at conveyor 1.

If Process 1 is active and arm is at moving height then

stop lifting the arm to gripping height if an object is in

the gripper and robot is at conveyor 1 or if there is no

object in gripper and robot is at conveyor 3.

If Process 1 is active and arm is at gripping height

then stop lowering the arm to gripping height if an

object is in the gripper and robot is at conveyor 3 or if

there is no object in gripper and robot is at conveyor

1.

If Process 1 is active and arm is at gripping height

then grab the object if an object is not on the gripper

and robot is at conveyor 1

If Process 1 is active and arm is at gripping height

then release the object if an object is on the gripper

and robot is at conveyor 3.

When the arm gets back to conveyor 1 stop process 1.

If there a material is detected on conveyor 2 and no

material is detected on conveyor 3 and no other

process is working then Start the process of

transferring material from conveyor 2 to 3 (Process 2).

Figure 7. Program for the production system and comments.

PLC code segment that is given in Figure 7 is an intuitively written program for the production line mentioned above.

This code segment except the last rung runs one of the robot arms. Rest of the program is just a copy of this segment

where the names of the inputs and outputs are changed accordingly to work with the other robot arm hence, space is

preserved, and readability is improved for the rest of the program which is not included. The process does not allow two

robots operate at the same time. Thus, just adding the last rung is enough to verify that under no circumstance robots

work simultaneously. All in all, the whole program can be verified by just verifying the program segment since the robots

operate the same. This program was tested on a simulative environment and no mistake or unwanted scenarios were

detected. Table 1 presents the lists of the inputs and the outputs used in the PLC code that will be verified using the

proposed method in this paper.

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

22

Table 1. Verification result before and after correction.

Sensor Inputs

SC_x Material presence detection on conveyor x (x={1,2,3})

SP_x1 Robot arm x is in position to pick materials from conveyor x (x={1,2})

SP_x3 Robot arm x is in position to place materials on conveyor 3 (x={1,2})

SH_xL Robot arm x is at the appropriate height to pick and place materials (x={1,2})

SH_xH Robot arm x is at the appropriate height to move materials (x={1,2})

SG_x Robot arm x is holding a material (x={1,2})

Control Outputs

MR_x1 Move the robot arm x towards the assigned conveyor x (x={1,2})

MR_x3 Move the robot arm x towards conveyor 3 (x={1,2})

G_x Controls the pick and place process of robot arm x (x={1,2})

MH_xL Decreases the height of the robot x gripper (x={1,2})

MH_xH Decreases the height of the robot x gripper (x={1,2})

Intermediate Variables

OP_x Starts the process of transferring material from conveyor x to conveyor 3 (x={1,2})

3.1. Transformation

Using the proposed approach, this program is transformed into a modular TAPN model so that each rung of the code is

a counterpart to a component of the model. This property simplifies modeling and increases the readability of the model

which is useful when searching for errors in the code. TAPAAL, a software tool for modeling and verifying TAPN

models, is used in this case study.

All transformation steps are standardized and ordered, which make automating the transformation process possible. First,

reading and writing cycles of the RTC are modeled using the variables of the program. Next, rungs of the program are

transformed beginning with the places associated with the controller’s operation cycle, such as program counter, being

implemented into the model component. Variables used in the rung are added as places into the model and with the help

of a transition the update of the output is simulated. Even though a transition is enough for this process other combinations

are implemented to ensure that the token is transferred between program counter places. Only a few components of the

resulting model is given here to preserve space. Transformed TAPN model component of rung 6 is given in Figure 8 part

A and transformed TAPN model component of rung 14 combined is given in Figure 8 part B.

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

23

T0

T1

T2

Op_1

Rung6

P_1

Rung7

T3

SG_1

SH_1H

SP_11

T4

T5

T0

T1

Rung14

P_1

Rung15

T2SP_11

SP_11_Pre

T3

Figure 8. The TAPN model of some rungs.

In the component TAPN model of rung 6, transition named 𝑇5fires when the right combination of input values that set

P_1 variable are present. 𝑇4 transition is there to keep P_1 place from receiving more than one token, which is an

unwanted situation. Any other combination of input values will fire one of the other transitions to transfer the token to

the next program rung. TAPN Model component of the Rung 14 is very similar.

3.2. Verification and Correction

To ensure the reliable operation of this system, some safety features must be maintained. These safety requirements are

added to the model with the help of Tapaal editor using Computer Tree Logic (CTL) formulation. CTL logic is a

branching-time logic. CTL logic formulas are evaluated over all possible paths of a Kripke structure. To verify the

formulized requirements Tapaal translates the TAPN model into Network of Timed Automata (NTA) and use Uppaal

verification on the produced NTA. All queries are checked via Tapaal Discrete Verification method based on the Breadth

First search order in state space. As the coverability tree is too large, it is not given in the study. Since the model simulates

a PLCs working behavior, outputs are formulized with scan cycle write place added. Safety requirements of the system

are given below with the corrections if the requirement is not satisfied.

SR1: The two robot arms must not operate concurrently. Since robots have overlapping operation routes, to avoid a

possible and highly likely to occur collision, concurrent working must not be allowed.

𝐴𝐺¬(𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑤𝑟𝑖𝑡𝑒 ≥ 1 ∧ 𝑂𝑃_1 ≥ 1 ∧ 𝑂𝑃_2 ≥ 1)

SR2: The robot arms cannot move horizontally while moving up. Difference between the heights of the conveyors can

cause robot extremities to collide with the conveyor.

𝐴𝐺¬(𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑤𝑟𝑖𝑡𝑒 ≥ 1 ∧ 𝑀𝐻_1𝐿 ≥ 1 ∧ (𝑀𝑃_10 ≥ 1 ∨ 𝑀𝑃_11 ≥ 1))

SR3: The robot arms cannot move horizontally while moving down. Just like safety requirement 2, difference between

the heights of the conveyors can cause robot extremities to collide with the conveyor.

𝐴𝐺¬(𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑤𝑟𝑖𝑡𝑒 ≥ 1 ∧ 𝑀𝐻_1𝐻 ≥ 1 ∧ (𝑀𝑃_10 ≥ 1 ∨ 𝑀𝑃_11 ≥ 1))

SR4: The robot gripper must not try to place its load while moving to conveyor 3. This can cause defective products,

which means high cost depending on the value of the material being carried.

𝐴𝐺¬(𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑤𝑟𝑖𝑡𝑒 ≥ 1 ∧ 𝑀𝑃13 ≥ 1 ∧ 𝑆𝐺_1 = 0)

SR5: The robot gripper must not try to place its load while moving to conveyor 3. This can cause defective products,

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

24

which means high cost depending on the value of the material being carried.

𝐴𝐺¬(𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑤𝑟𝑖𝑡𝑒 ≥ 1 ∧ 𝑀𝑃13 ≥ 1 ∧ 𝑆𝐺_1 = 0)

SR6: Robot must not move down to place its load when a product is present on conveyor 3. Same as safety requirement

4, this event can cause defective products, even worst it can cause damage to robots or the conveyor.

𝐴𝐺¬(𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑤𝑟𝑖𝑡𝑒 ≥ 1 ∧ 𝑀𝐻_1𝐿 ≥ 1 ∧ 𝑆𝑃_11 ≥ 1 ∨ 𝑆𝐶_3 ≥ 1)

SR7: The robot should not carry a load while all conveyors are occupied. This event is referred to as a deadlock in the

system where all allowed actions are blocked.

𝐴𝐺¬(𝑆𝑐𝑎𝑛𝐶𝑦𝑐𝑙𝑒𝑤𝑟𝑖𝑡𝑒 ≥ 1 ∧ 𝑆𝐶_3 ≥ 1 ∧ 𝑆𝐶_1 ≥ 1 ∧ 𝑂𝑃_1 ≥ 1)

Table 2. Verification Result Before and After Correction.

S. R. No Name of Safety Requirement

Verification Before

Correction

Verification After

Correction

Mb Second(s) Result Mb Second(s)
Resul

t

1 Concurrent Working 43 0.021 25 0.53

2 Unauthorized Movement Up 43 0.085 24 0.534

3 Unauthorized Movement

Down
23 0.223 25 0.535

4 Misplace 43 0.813 24 0.53

5 Lock 0 0.114 26 0.517

6 Collision 0 0.049 0 0.546

7 Deadlock 0 0.054 0 0.051

System Info

Intel Core I7-2630QM Cpu @2,00 Ghz x64

6 Gb Ram

 Windows 10 64-Bit

Verification tool TAPAAL 3.9.1

The power of this method comes from its straightforward application and ability to find errors that can be very rare or

even caused by faulty sensors. Within the case study, intuitively written program, which was tested before with no errors,

failed to satisfy almost all requirements except safety requirement 1 and 4. After verification, the results can be used to

correct the program. Failure to satisfy requirement 2 and 3 means that unnecessary variables are used in rung 8 through

11, which can prevent robot from stopping under rare circumstances. Requirement 5 indicates that rung 8 through 11 and

13 fails at resetting when OP_1 is false due to the fact that before operation resets anyone of the set functions can be

activated with no way to reset. Requirement 6 points out an obvious error where rungs, which run, place operation does

not include information from the sensor of conveyor 3. Corrected versions of these rungs are given in Figure 9.

Since conveyors are under control of another control system, the possibility of a deadlock cannot be evaded by changing

the program at hand. But since conveyors only carry materials in one direction the deadlock will not be permanent.

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

25

R

R

R

S

008

009

010

011

012

013

OP_1

SH_1H HR_1H

SH_1L HR_1L

MR_13 HR_1L

OP_1 SG_1 SH_1L SP_11 G_1

R

SG_1 SH_1L SP_13 G_1

OP_1

MR_11

OP_1

Figure 9. Corrected versions of faulty rungs.

4. Conclusion

Today, most of the code still developed for industrial control systems is written manually, usually using the ladder

programming language. Although most of the code developed for industrial automation systems is based on basic logic

relations, when the number of inputs and outputs and their possible combinations are considered, the entire code cannot

be tested. Generally, the process is progressed with test scenarios based on white box testing and black box testing

strategies. For this reason, code development platforms are content with developing interfaces where relevant test

scenarios can be run according to these strategies. On the other hand, showing that the safety-related code meets the

relevant safety conditions and proving that these conditions are met in all possible combinations will be a very valuable

output for the safety of the process.orship) are not allowed. After receipt of the corrected proofs, the article in PDF format

will be published online.

References

[1] Zhou, M.; Wan, H.; Wang, R.; Song, X.; Su, C.; Gu, M.; Sun, J. (2013). Formal component-based modeling and

synthesis for PLC systems, Computers in Industry, Vol. 64, No. 8, 1022–1034. doi:10.1016/j.compind.2013.07.003

[2] Ljungkrantz, O.; Akesson, K.; Yuan, C.; Fabian, M. (2012). Towards Industrial Formal Specification of

Programmable Safety Systems, IEEE Transactions on Control Systems Technology, Vol. 20, No. 6, 1567–

1574Presented at the IEEE Transactions on Control Systems Technology. doi:10.1109/TCST.2011.2169262

[3] Vieira, A. D.; Santos, E. A. P.; de Queiroz, M. H.; Leal, A. B.; de Paula Neto, A. D.; Cury, J. E. R. (2017). A Method

for PLC Implementation of Supervisory Control of Discrete Event Systems, IEEE Transactions on Control Systems

Technology, Vol. 25, No. 1, 175–191Presented at the IEEE Transactions on Control Systems Technology.

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

26

doi:10.1109/TCST.2016.2544702

[4] Chen, C.; Hu, H. (2015). Maximally permissive distributed control of automated manufacturing systems with

assembly operations using Petri nets, 2015 IEEE International Conference on Automation Science and

Engineering (CASE)Presented at the 2015 IEEE International Conference on Automation Science and

Engineering (CASE), , 532–538. doi:10.1109/CoASE.2015.7294134

[5] List, G. F.; Mashayekhi, M. (2016). A Modular Colored Stochastic Petri Net for Modeling and Analysis of

Signalized Intersections, IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 3, 701–

713Presented at the IEEE Transactions on Intelligent Transportation Systems. doi:10.1109/TITS.2015.2483324

[6] Wang, X.; Mahulea, C.; Silva, M. (2013). Fault Diagnosis Graph of time Petri nets, 2013 European Control

Conference (ECC)Presented at the 2013 European Control Conference (ECC), , 2459–2464.

doi:10.23919/ECC.2013.6669417

[7] Rösch, S.; Ulewicz, S.; Provost, J.; Vogel-Heuser, B. (2015). Review of Model-Based Testing Approaches in

Production Automation and Adjacent Domains—Current Challenges and Research Gaps, Journal of Software

Engineering and Applications, Vol. 08, No. 09, 499–519. doi:10.4236/jsea.2015.89048

[8] Ovatman, T.; Aral, A.; Polat, D.; Ünver, A. O. (2016). An overview of model checking practices on verification

of PLC software, Software & Systems Modeling, Vol. 15, No. 4, 937–960. doi:10.1007/s10270-014-0448-7

[9] Bauer, N.; Engell, S.; Huuck, R.; Lohmann, S.; Lukoschus, B.; Remelhe, M.; Stursberg, O. (2004). Verification

of PLC Programs Given as Sequential Function Charts, H. Ehrig; W. Damm; J. Desel; M. Große-Rhode; W.

Reif; E. Schnieder; E. Westkämper (Eds.), Integration of Software Specification Techniques for Applications in

Engineering: Priority Program SoftSpez of the German Research Foundation (DFG), Final Report, Springer,

Berlin, Heidelberg, 517–540. doi:10.1007/978-3-540-27863-4_28

[10] Mertke, T.; Frey, G. (2001). Formal verification of PLC programs generated from signal interpreted Petri nets,

2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics

in Cyberspace (Cat.No.01CH37236) (Vol. 4)Presented at the 2001 IEEE International Conference on Systems,

Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), , 2700–2705

vol.4. doi:10.1109/ICSMC.2001.972974

[11] Alenljung, T.; Lennartson, B.; Hosseini, M. N. (2012). Sensor Graphs for Discrete Event Modeling Applied to

Formal Verification of PLCs, IEEE Transactions on Control Systems Technology, Vol. 20, No. 6, 1506–

1521Presented at the IEEE Transactions on Control Systems Technology. doi:10.1109/TCST.2011.2168607

[12] Nellen, J.; Driessen, K.; Neuhäußer, M.; Ábrahám, E.; Wolters, B. (2016). Two CEGAR-based approaches for

the safety verification of PLC-controlled plants, Information Systems Frontiers, Vol. 18, No. 5, 927–952.

doi:10.1007/s10796-016-9671-9

[13] Carlsson, H.; Svensson, B.; Danielsson, F.; Lennartson, B. (2012). Methods for Reliable Simulation-Based PLC

Code Verification, IEEE Transactions on Industrial Informatics, Vol. 8, No. 2, 267–278Presented at the IEEE

Transactions on Industrial Informatics. doi:10.1109/TII.2011.2182653

[14] Rankin, D. J.; Jiang, J. (2011). A Hardware-in-the-Loop Simulation Platform for the Verification and Validation

of Safety Control Systems, IEEE Transactions on Nuclear Science, Vol. 58, No. 2, 468–478Presented at the

IEEE Transactions on Nuclear Science. doi:10.1109/TNS.2010.2103325

[15] Park, S. C.; Park, C. M.; Wang, G.-N.; Kwak, J.; Yeo, S. (2008). PLCStudio: Simulation based PLC code

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

27

verification, 2008 Winter Simulation ConferencePresented at the 2008 Winter Simulation Conference, , 222–

228. doi:10.1109/WSC.2008.4736071

[16] Patil, M. M.; Subbaraman, S.; Joshi, S. (2011). Exploring Integrated Circuit Verification Methodology for

Verification and Validation of PLC Systems, 2011 International Symposium on Electronic System

DesignPresented at the 2011 International Symposium on Electronic System Design, , 88–93.

doi:10.1109/ISED.2011.47

[17] Koo, L.-J.; Park, C. M.; Lee, C. H.; Park, S.; Wang, G.-N. (2011). Simulation framework for the verification of

PLC programs in automobile industries, International Journal of Production Research, Vol. 49, No. 16, 4925–

4943. doi:10.1080/00207543.2010.492404

[18] Wang, R.; Guan, Y.; Luo, L.; Song, X.; Zhang, J. (2013). Formal Modelling of PLC Systems by BIP Components,

2013 IEEE 37th Annual Computer Software and Applications ConferencePresented at the 2013 IEEE 37th

Annual Computer Software and Applications Conference, , 512–518. doi:10.1109/COMPSAC.2013.85

[19] Zhang, M.; Chen, C.-Y.; Kao, B.-C.; Qamsane, Y.; Shao, Y.; Lin, Y.; Shi, E.; Mohan, S.; Barton, K.; Moyne, J.;

Mao, Z. M. (2019). Towards Automated Safety Vetting of PLC Code in Real-World Plants, 2019 IEEE

Symposium on Security and Privacy (SP)Presented at the 2019 IEEE Symposium on Security and Privacy (SP),

, 522–538. doi:10.1109/SP.2019.00034

[20] Fernández Adiego, B.; Darvas, D.; Viñuela, E. B.; Tournier, J.-C.; Bliudze, S.; Blech, J. O.; González Suárez,

V. M. (2015). Applying Model Checking to Industrial-Sized PLC Programs, IEEE Transactions on Industrial

Informatics, Vol. 11, No. 6, 1400–1410Presented at the IEEE Transactions on Industrial Informatics.

doi:10.1109/TII.2015.2489184

[21] Xiao, L.; Li, M.; Gu, M.; Sun, J. (2014). A hierarchy framework on compositional verification for PLC software,

2014 IEEE 5th International Conference on Software Engineering and Service SciencePresented at the 2014

IEEE 5th International Conference on Software Engineering and Service Science, , 204–207.

doi:10.1109/ICSESS.2014.6933545

[22] Ulewicz, S.; Vogel-Heuser, B.; Ulbrich, M.; Weigl, A.; Beckert, B. (2015). Proving equivalence between control

software variants for Programmable Logic Controllers, 2015 IEEE 20th Conference on Emerging Technologies

Factory Automation (ETFA)Presented at the 2015 IEEE 20th Conference on Emerging Technologies Factory

Automation (ETFA), , 1–5. doi:10.1109/ETFA.2015.7301603

[23] He, N.; Oke, V.; Allen, G. (2016). Model-based verification of PLC programs using Simulink design, 2016 IEEE

International Conference on Electro Information Technology (EIT)Presented at the 2016 IEEE International

Conference on Electro Information Technology (EIT), , 0211–0216. doi:10.1109/EIT.2016.7535242

[24] Adiego, B. F.; Lopez-Miguel, I. D.; Tournier, J.-C.; Blanco, E.; Ladzinski, T.; Havart, F. (2022). Applying Model

Checking to Highly-Configurable Safety Critical Software: The SPS-PPS PLC Program, Proceedings of the 18th

International Conference on Accelerator and Large Experimental Physics Control Systems, Vol.

ICALEPCS2021, 5 pages, 0.178 MB. doi:10.18429/JACoW-ICALEPCS2021-WEPV042

[25] Ljungkrantz, O.; Akesson, K.; Fabian, M.; Yuan, C. (2010). Formal Specification and Verification of Industrial

Control Logic Components, IEEE Transactions on Automation Science and Engineering, Vol. 7, No. 3, 538–

548Presented at the IEEE Transactions on Automation Science and Engineering.

doi:10.1109/TASE.2009.2031095

Oz and Kaymakci J Inno Sci Eng 7(1)):13-28

28

[26] Bel Mokadem, H.; Bérard, B.; Gourcuff, V.; De Smet, O.; Roussel, J.-M. (2010). Verification of a Timed

Multitask System With Uppaal, IEEE Transactions on Automation Science and Engineering, Vol. 7, No. 4, 921–

932Presented at the IEEE Transactions on Automation Science and Engineering.

doi:10.1109/TASE.2010.2050199

	1. Introduction
	2. Modeling Real Time Controllers
	2.1. LD program
	2.2. Model of an LD Program
	2.3. Model of an LD Program
	2.4. Model of PLC Scan Cycle

	3. Case Study
	3.1. Transformation
	3.2. Verification and Correction

	4. Conclusion
	Today, most of the code still developed for industrial control systems is written manually, usually using the ladder programming language. Although most of the code developed for industrial automation systems is based on basic logic relations, when th...

	References

