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Abstract 

The Heisenberg spin chain concept is a fundamental and generic model that describes the exotic 

magnetic behavior of certain materials, such as ferromagnetism, antiferromagnetism, and 

ferrimagnetism under critical temperatures. The concept of spin chain is based on Coulomb 

interactions due to Pauli exclusion principle rather than dipole-dipole interactions in explaining 

the high energy observed in the Weiss molecular field. With certain improvements to the 

Hamiltonian proposed by Heisenberg, the model has became more sophisticated and used 

successfully in explaining many of the physical phenomena observed experimentally. This model 

has been extensively studied by physicists since the emergence of quantum physics at the 

beginning of the 20th century. Due to nonlinear interactions inherent in the model, soliton 

solutions that can be obtained have attracted the attention of mathematicians, in recent decades. 

In this study, triangular soliton, bell shaped solitary wave and kink shaped solitary wave solutions 

were obtained by applying the functional variable method to the nonlinear Heisenberg spin chain 

equation for a cubic lattice crystal.  
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1. Introduction 

Phase transitions are very important for any material [1]. In most cases materials properties (such as electrical, 

mechanical, thermodynamic and magnetic etc.) dramatically changes with the phase transition. For instance, the 

magnetization of a ferromagnetic material increases with increasing temperatures until a critical temperature so-called 

the Curie temperature and turns into a paramagnetic material with further increase. Or, a similar condition is valid for 

an antiferromagnetic material above a critical temperature so-called the Néel temperature. In the early 1900 the origin 

of exotic phenomena of ferromagnetism, ferrimagnetism and antiferromagnetism  tried to be explained by many 

scientists. Weiss comes up with the idea of magnetic domains which does not cause magnetism to a material when they 

randomly oriented but cause to magnetism with highly ordering by an external magnetic field. It is very complicated 

and nearly impossible to cover all the interaction of the magnetic moments of every single molecule of a crystal. It is 

inevitable to make some approaches based on the phenomena in the microstructure in explaining the phenomena seen 

in the macrostructure. Weiss introduced the molecular field model which assumes mean field is proportional to 

magnetization [2]. This model was successful in explaining specific heat anomaly and spontaneous magnetization. 

However, it failed to explain the origin of the molecular field that is proposed. The source of this field remained a 

mystery until the epoch of quantum physics came into play. This molecular field had to be able to produce energy that 

could not be explained by classical dipole-dipole interactions. Heisenberg realized that this field cannot be explained 

without quantum exchange interactions arising from the Pauli exclusion principle requiring the antisymmetric wave 

function with an exchange of space and spin coordinates. In other words, the source of this field had to be Coulomb 

interactions instead of magnetic interactions that have very few energies. In other words, the source of this field had to 

be Coulomb interactions instead of magnetic interactions that have very few energies. 

By considering only the interatomic interactions between the atoms at the sites of a lattice and the pauli exclusion 

principle (the requirement that the total wave function should be asymmetric), Heisenberg put forward the following 

Hamiltonian [3];  

𝐻 = − ∑𝑖,𝑗 𝜁𝑖𝑗𝑠𝑖 ⃖ ⋅ 𝑠𝑗 ⃖                (1.1) 

with  

 𝜁𝑖𝑗 = {
𝐽, if    𝑖, 𝑗    are neigbors
0, else               (1.2) 

where 𝜁𝑖𝑗 is coupling constant of two neighbor atoms, 𝑠𝑖 ⃖  and 𝑠𝑗 ⃖  are Spin vectors at 𝑖-th and 𝑗-th site, respectively. The 

spin chain concept is also due to these interatomic interactions. Heisenberg chain model is a very generic and essential 

model for magnetism in matter. Other interactions were added to the proposed Hamilton model and the sophistication 

of the model was studied extensively [4-7]. 

 The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation is given by [8-10]  

 𝑖𝜓𝑡 + 𝛼1𝜓𝑥𝑥 + 𝛼2𝜓𝑦𝑦 + 𝛼3𝜓𝑥𝑦 − 𝛼4|𝜓|2𝜓 = 0,    𝑖 = √−1       (1.3) 

 where 𝛼1 = 𝛾4(𝛽 + 𝛽2), 𝛼2 = 𝛾4(𝛽1 + 𝛽2), 𝛼3 = 2𝛾4𝛽2 and 𝛼4 = 2𝛾4𝐴. And, 𝛾 represents the lattice parameter that 

is related to the crystal structure of a solid material. It differs for each material and each unit cell, 𝛽, 𝛽1 represent the 
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coefficients of bilinear exchange interactions along the 𝑥- and 𝑦-directions, respectively. On the other hand, diagonal 

neighboring interaction coefficient and uniaxial crystal field anisotropy parameter are given by 𝛽2 and 𝐴, respectively. 

In this article functional variable method is considered to get the exact solutions of (2+1)-dimensional Heisenberg 

ferromagnetic spin chain equation.  To the best of our knowledge all the solutions are new and never seen in the literature.  

The soliton solutions derived in this work have numerous practical applications. For instance, they can be tested 

experimentally using magnetic resonance techniques or neutron scattering to observe soliton behavior and domain wall 

motion in materials like yttrium iron garnet or perovskite manganites. The bell-shaped solitons could correspond to spin-

wave excitations that are useful in designing magnon-based logic devices. Furthermore, controlling domain walls 

through kink solitons offers potential in spintronic devices, where magnetic states are manipulated for data storage or 

non-volatile memory. Future experimental setups could use these solutions to explore high-temperature ferromagnetism 

or quantum phase transitions, providing deeper insights into material behavior under extreme conditions. 

In this work, we have derived various soliton solutions, including triangular, bell-shaped, and kink solitons. These 

solutions have significant implications for understanding domain wall dynamics and phase transitions in ferromagnetic 

materials. For example, the triangular soliton may correspond to sharp transitions between magnetic domains under 

external fields. The bell-shaped solitons describe localized spin wave excitations, which could play a role in the thermal 

stability of the magnetization. Kink solitons, on the other hand, represent phase transitions between different magnetic 

states, potentially providing insights into the movement of domain walls in the presence of anisotropy or external 

magnetic fields. These soliton solutions offer a mathematical framework that could be experimentally verified in 

ferromagnetic materials through methods such as neutron scattering or magnetic resonance imaging, offering new ways 

to control or manipulate magnetic states in applied technologies such as spintronics or magnetic memory. 

2. Description of Functional Variable Method  

Functional variable method provides more accurate traveling wave solutions with additional free parameters with respect 

to other methods. This a great advantage over the other proposed methods. Functional variable method can simply be 

explained as follows [11-13]. Let us take into account a nonlinear partial differential equation in the form of;  

 𝑃 (𝜓,
𝜕𝜓

𝜕𝑡
,
𝜕𝜓

𝜕𝑥
,
𝜕𝜓

𝜕𝑦
,
𝜕2𝜓

𝜕𝑡2 ,
𝜕2𝜓

𝜕𝑥2 ,
𝜕2𝜓

𝜕𝑦2 , … ) = 0.           (2.1) 

 where 𝜓 is a space and time dependent arbitrary function and can be determined as  

 𝜓(𝑥, 𝑦, 𝑡) = Φ(𝜉), 𝜉 = 𝑎𝑥 + 𝑏𝑦 − 𝑣𝑡.           (2.2) 

Here, 𝑎, 𝑏 and 𝑣 are coefficients of the 𝑥, 𝑦 and 𝑡 variables, respectively. With the aid of the transform given by Eq.(2.2), 

the Eq.(2.1) becomes into an ordinary differential equation Eq.(2.3).  

 𝑄(Φ, Φ𝜉 , Φ𝜉𝜉 , Φ𝜉𝜉𝜉 , . . . ) = 0.            (2.3) 

In order to obtain an unknown function Φ, let us take into account a functional variable such as  

 Φ𝜉 = 𝐹(Φ).                (2.4) 

Some derivatives of Φ given in Eq.(2.5) can be obtained from the Eq.(2.4).  
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Φ𝜉𝜉 =
1

2
(𝐹2) ′ , 

Φ𝜉𝜉𝜉 =
1

2
(𝐹2) ′′√𝐹2, 

Φ𝜉𝜉𝜉𝜉 =
1

2
[(𝐹2) ′′′𝐹2 + (𝐹2) ′′(𝐹2) ′], 

⋮                       (2.5) 

where " ′" indicates the 
𝑑

𝑑Φ
. An ordinary differential equation given in Eq.(2.6) which depends on Φ, 𝐹 and the 

derivatives of 𝐹 upon Φ can be obtained by putting the (2.5) into (2.3).  

 𝑅(Φ, 𝐹, 𝐹 ′ , 𝐹 ′′ , 𝐹 ′′′ , 𝐹(4), . . . ) = 0.           (2.6) 

The solutions of Eq.(2.1) can be acquired by using 𝐹 (obtained by integrating Eq.(2.6)) in Eq.(2.4). 

3. Analytical Solutions of Heisenberg Ferromagnetic Spin Chain Equation  

Let us take the following complex wave transformation:  

 𝜓(𝑥, 𝑦, 𝑡) = Φ(𝜉)𝑒𝑖Ω, 𝜉 = 𝑎𝑥 + 𝑏𝑦 − 𝑣𝑡, Ω = 𝑝𝑥 + 𝑞𝑦 − 𝑟𝑡.       (3.1) 

Substituting Eq.(3.1) into Eq.(1.3), gives the following relationship  

 (𝑟 − 𝛼1𝑝2 − 𝑞(𝛼2𝑞 + 𝛼3𝑝))Φ − 𝛼4Φ3 + (𝛼1𝑎2 + 𝛼2𝑏2 + 𝛼3𝑎𝑏)Φ′′ = 0     (3.2) 

and  

𝑣 = 2𝑎𝛼1𝑝 + 2𝑏𝛼2𝑞 + 𝛼3(𝑏𝑝 + 𝑎𝑞). 

By substituting Φ′′ =
1

2
(𝐹2) ′ into (3.2) gives the following equation  

 𝐹(Φ) = Φ′ = √−
𝑟−𝛼1𝑝2−𝑞(𝛼2𝑞+𝛼3𝑝)

𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏
Φ2 +

𝛼4

2(𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏)
Φ4 + ℎ       (3.3) 

where ℎ is an integration constant. We get solutions of Eq. (1.3) by solving Eq. (3.3) as follows: 

Solution 1 For ℎ = 0, 
𝑟−𝛼1𝑝2−𝑞(𝛼2𝑞+𝛼3𝑝)

𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏
> 0 and 

𝛼4

2(𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏)
> 0, Eq. (1.3) has triangular soliton 

solutions as following: 

 𝜓1,2(𝑥, 𝑦, 𝑡) = ±√
2(−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟)

𝛼4
sec (√

−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟

𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2 𝜉) 𝑒𝑖Ω, 

 𝜓3,4(𝑥, 𝑦, 𝑡) = ±√
2(−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟)

𝛼4
csc (√

−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟

𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2 𝜉) 𝑒𝑖Ω. 

 Solution 2 For ℎ = 0, 
𝑟−𝛼1𝑝2−𝑞(𝛼2𝑞+𝛼3𝑝)

𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏
< 0 and 

𝛼4

2(𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏)
< 0, we get bell shaped solitary wave 

solutions for Eq. (1.3) as following: 
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 𝜓5,6(𝑥, 𝑦, 𝑡) = ±√
2(−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟)

𝛼4
sech (√

𝛼1𝑝2+𝑞(𝛼3𝑝+𝛼2𝑞)−𝑟

𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2 𝜉) 𝑒𝑖Ω, 

 𝜓7,8(𝑥, 𝑦, 𝑡) = ±𝑖√
2(−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟)

𝛼4
csch (√

𝛼1𝑝2+𝑞(𝛼3𝑝+𝛼2𝑞)−𝑟

𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2 𝜉) 𝑒𝑖Ω. 

Solution 3 For ℎ =
(−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟)2

2𝛼4(𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2)
, 

𝑟−𝛼1𝑝2−𝑞(𝛼2𝑞+𝛼3𝑝)

𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏
> 0 and 

𝛼4

2(𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏)
> 0, we get kink 

shaped solitary wave solutions for Eq. (1.3) as following: 

 𝜓9,10(𝑥, 𝑦, 𝑡) = ±√
−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟

𝛼4
tanh (√

−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟

2(𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2)
𝜉) 𝑒𝑖Ω, 

 𝜓11,12(𝑥, 𝑦, 𝑡) = ±√
−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟

𝛼4
coth (√

−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟

2(𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2)
𝜉) 𝑒𝑖Ω. 

 Solution 4 For ℎ =
(−𝛼1𝑝2−𝑞(𝛼3𝑝+𝛼2𝑞)+𝑟)2

2𝛼4(𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2)
, 

𝑟−𝛼1𝑝2−𝑞(𝛼2𝑞+𝛼3𝑝)

𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏
< 0 and 

𝛼4

2(𝛼1𝑎2+𝛼2𝑏2+𝛼3𝑎𝑏)
> 0, for Eq. (1.3), we 

obtain triangular soliton solutions as following: 

 𝜓13,14(𝑥, 𝑦, 𝑡) = ±√
𝛼1𝑝2+𝑞(𝛼3𝑝+𝛼2𝑞)−𝑟

𝛼4
tan (√

𝛼1𝑝2+𝑞(𝛼3𝑝+𝛼2𝑞)−𝑟

2(𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2)
𝜉) 𝑒𝑖Ω, 

 𝜓15,16(𝑥, 𝑦, 𝑡) = ±√
(𝛼1𝑝2+𝑞(𝛼3𝑝+𝛼2𝑞)−𝑟)

𝛼4
cot (√

𝛼1𝑝2+𝑞(𝛼3𝑝+𝛼2𝑞)−𝑟

2(𝑎2𝛼1+𝑎𝛼3𝑏+𝛼2𝑏2)
𝜉) 𝑒𝑖Ω. 

4. Applications of Some Solutions 

In this section, solutions of 𝜓5(𝑥, 𝑦, 𝑡) and 𝜓9(𝑥, 𝑦, 𝑡) are graphically represented to see the spatial-temporal distribution 

of probabilities of the wave function. In figure 1, a bell shaped solitary wave form can be seen for the probability along 

𝑥 and 𝑦 directions with time. On the other hand, a double kink shaped solitary wave forms along 𝑥 axis, a single kink 

shaped solitary wave forms along 𝑦 axis can be seen for the probability with time in figure 2(a) and 2(b), respectively. 

And consequently, a double kink shaped solitary wave form can be seen for the spatial distribution of probability. 

Probability distribution of the wave function  𝜓5(𝑥, 𝑦, 𝑡) showing a bell-shaped solitary wave. The figure illustrates the 

localized nature of the soliton along both the x and y directions over time, indicating stable spin wave excitations. These 

solutions are relevant for experimental studies of soliton interactions in low-temperature ferromagnetic materials. 

Probability distribution of the wave function 𝜓9(𝑥, 𝑦, 𝑡), showing kink-shaped solitary waves. The kink solitons 

illustrate phase transitions between magnetic domains. The double-kink shape along the x-axis and single-kink along 

the y-axis demonstrate the anisotropic nature of the soliton behavior, potentially corresponding to domain wall motion 

in ferromagnetic materials. 
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(a)𝑦 = 1 (b)𝑥 = 1 

 

(c)𝑡 = 1 

Figure  1 : Probability distribution of the wave function 𝜓5(𝑥, 𝑦, 𝑡) that illustrates a bell-shaped solitary wave for the parametres of 

𝑟 = 1, 𝛾 = 1, 𝛽 = 0.1, 𝛽2 = 1, 𝛽1 = 1, 𝐴 = −1, 𝑝 = 1, 𝑞 = 1, 𝑎 = 1, 𝑏 = 0.1. 

  

 
 

(a)𝑦 = 1 (b)𝑥 = 1 

 

(c)𝑡 = 1 

Figure  2 : Probability distribution of the wave function 𝜓9(𝑥, 𝑦, 𝑡) that corresponds to kink-shaped solitary waves.for the parametres 

of 𝑟 = 1, 𝛾 = 4, 𝛽 = 0.1, 𝛽2 = 0.1,   𝛽1 = 1, 𝐴 = 1, 𝑝 = −1, 𝑞 = 1, 𝑎 = 1, 𝑏 = 0.1. 
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5. Conclusion 

The Heisenberg chain model equation which is arising in describing ferromagnetism, antiferromagnetism and 

ferrimagnetism phenomena seen below a critical temperature of certain materials is solved by functional variable method 

with the help of computer software called Wolfram Mathematica. Sixteen solutions which have form of triangular 

soliton, bell shaped solitary wave and kink shaped solitary wave are obtained for a cubic lattice crystal. Some of the 

solutions are graphically represented to see the spatial and temporal variations and probability distribution of the wave 

function. One can easily obtain the expected values of energy, momentum or any other observables by applying the 

quantum operators to the wave functions attained in this study. 
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