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Abstract. In this paper, we introduce the notions of S-proximal Berinde g-

cyclic contraction of two nonself mappings and S-proximal Berinde g-contractions

of the first kind and second kind in an S-metric space and prove some coinci-
dence best proximity point theorems for these types of nonself mappings in this

space. Also, we give two examples to analyze and support our main results.

The results presented here generalize some results in the existing literature.

1. Introduction

Let (X, d) be a metric space and J : X → X be a self mapping. A fixed
point problem is to find a point x in X such that Jx = x or d(x, Jx) = 0. In
this direction, Banach [1] proved his famous result “Banach contraction principle”,
which states that “let (X, d) be a complete metric space and J : X → X be
a contraction mapping, then J has a unique fixed point”. Later, many authors
studied the results dealing with “fixed point” in different spaces (see, e.g., [2]-[7]).

Let (X, d) be a metric space, Y and Z be two nonempty subsets of X and
J : Y → Z be a nonself mapping. A point x ∈ Y is called a best proximity point of
J if d(x, Jx) = △Y Z where △Y Z = d(Y,Z) = inf{d(x, y) : x ∈ Y , y ∈ Z}. Clearly,
if J is a self mapping, then the best proximity point problem reduces to a fixed
point problem. In this way, the best proximity point problem can be viewed as a
natural generalization of a fixed point problem.

A coincidence best proximity point problem is to find a point x in Y such that
d(gx, Jx) = △Y Z , where g is a self mapping on Y . If g is an identity mapping on
Y , then it can be observed that a coincidence best proximity point is essentially a
best proximity point. Hence, the coincidence best proximity point problem is an
extension of the best proximity point problem. There are several results dealing
with proximity point problem in different spaces (see [8]-[12]).
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In 2011, Basha [13] studied and established best proximity point theorems for
the proximal contractions of the first kind and second kind, and proximal cyclic
contractions in a metric space. More recently, Klanarong and Chaiya [14] presented
coincidence best proximity point theorems for the proximal Berinde g-contractions
of the first kind and second kind, and proximal Berinde g-cyclic contractions which
are more general than the nonself mappings considered in [13].

In 2012, Sedghi et al. [15] introduced the notion of S-metric space and investi-
gated the topology of this space. They also characterized some well-known fixed
point results in the context of S-metric space. Later, some authors have published
the best proximity point and coincidence best proximity point results on the setting
of S-metric space (for details, see [16]-[18]).

Inspired and motivated by the above results, in this paper, we introduce the
notions of S-proximal Berinde g-cyclic contractions of two nonself mappings and
S-proximal Berinde g-contractions of the first kind and second kind in an S-metric
space and establish some coincidence best proximity point theorems for these kinds
of nonself mappings in this space. We also give two examples to support our results.
The results presented in this paper can be regarded as an extension of corresponding
results from a metric space to an S-metric space.

2. Preliminaries and lemmas

In this section, we recall some definitions and lemmas which are needed in the
sequel.

The notion of an S-metric space is introduced as a generalization of a metric
space as follows.

Definition 2.1. (see [15, Definition 2.1]) Let X be a nonempty set and S : X ×
X ×X → [0,∞) be a function satisfying the following properties:

(S1) S(x, y, z) ≥ 0;
(S2) S(x, y, z) = 0 if and only if x = y = z;
(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a)

for all x, y, z, a ∈ X. Then the function S is called an S-metric on X, and the pair
(X,S) is called an S-metric space.

Some geometric examples for S-metric spaces can be seen in [15].
The following lemma can be considered as the symmetry condition and it will

be used in the proofs of some theorems.

Lemma 2.1. (see [15, Lemma 2.5]) Let (X,S) be an S-metric space. Then

S(x, x, y) = S(y, y, x) for all x, y ∈ X.

We need the following result which can easily be derived from Definition 2.1 and
Lemma 2.1.

Lemma 2.2. (see [18, Remark 2.6]) Let (X,S) be an S-metric space. Then

S(x, x, z) ≤ S(x, x, y) + 2S(y, y, z) for all x, y, z ∈ X.

Sedghi et al. [15, 19] defined some basic topological concepts in an S-metric
space as follow.

Definition 2.2. (see [15, Definition 2.6]) Let (X,S) be an S-metric space. For
r > 0 and x ∈ X, the open ball BS(x, r) is defined as follows:

BS(x, r) = {y ∈ X : S(y, y, x) < r}.
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Definition 2.3. (see [15, Definition 2.8 (3)-(5)]) Let (X,S) be an S-metric space.
(i) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm) → 0 as

n,m → ∞. That is, for any ε > 0, there exists n0 ∈ N such that S(xn, xn, xm) < ε
for all n,m ≥ n0,

(ii) A sequence {xn} in X is said to converge to x ∈ X if S(xn, xn, x) → 0 as
n,m → ∞. That is, for any ε > 0, there exists n0 ∈ N such that S(xn, xn, x) < ε
for all n,m ≥ n0. We write xn → x for brevity.

(iii) The S-metric space (X,S) is called complete if every Cauchy sequence in
(X,S) is convergent in (X,S).

Definition 2.4. (see [19, Corollary 2.4]) Let X and X
′
be two S-metric spaces,

and let f : X → X ′ be a function. Then f is continuous at x ∈ X if and only if
f(xn) → f(x) for any sequence {xn} in X such that xn → x. We say that f is
continuous on X if f is continuous at every point x ∈ X.

Özgür and Taş [20, 21] defined the concepts of cluster point and closed set in an
S-metric space.

Definition 2.5. Let (X,S) be an S-metric space and Y ⊆ X be any subset.
(i) (see [20, Definition 4.2]) A point x ∈ X is a cluster point of Y if

(BS(x, r)− {x}) ∩ Y ̸= ∅

for every r > 0. The set of all cluster points of Y is denoted by Y
′

S .
(ii) (see [21, Definition 3.3]) Let (X,S) be an S-metric space and Y ⊆ X. The

subset Y is called closed if the set of cluster points of Y is contained by Y , that is,
Y

′

S ⊂ Y.

Özgür and Taş [21] also defined the concept of sub-S-metric space and gave a
property for closed subsets in complete S-metric spaces.

Definition 2.6. (see [21, Definition 3.2]) Let (X,S) be an S-metric space and Y
be a nonempty subset of X. Let a function SY : Y × Y × Y → [0,∞) be defined by

SY (x, y, z) = S(x, y, z) for all x, y, z ∈ Y.

Then SY is called a reduced S-metric and (Y, SY ) is called a sub-S-metric space of
(X,S).

Proposition 2.3. (see [21, Proposition 3.4]) If (X,S) is a complete S-metric space
and Y is a closed set in (X,S), then (Y, SY ) is complete.

The relation between a metric and an S-metric was given in [22] as follows.

Lemma 2.4. (see [22, Lemma 1.12]) Let (X, d) be a metric space. Then the fol-
lowing properties are satisfied:

1) Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.
2) xn → x in (X, d) if and only if xn → x in (X,Sd).
3) {xn} is a Cauchy sequence in (X, d) if and only if {xn} is a Cauchy sequence

in (X,Sd).
4) (X, d) is complete if and only if (X,Sd) is complete.

In [23], the function Sd was called an S-metric generated by d. We know some
examples of an S-metric which are not generated by any metric (see [22, 23] for
more details).
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On the other hand, Gupta [24] claimed that every S-metric on X defines a metric
dS on X as follows:

dS(x, y) = S(x, x, y) + S(y, y, x), ∀x, y ∈ X. (2.1)

However, the function dS(x, y) defined in (2.1) does not always a metric because
the triangle inequality is not satisfied for all elements of X everywhere (see [23] for
more details).

Khanpanuk [18] defined the following concepts in an S-metric space.

Definition 2.7. (see [18, Definition 3.4]) Let (X,S) be an S-metric space. A
mapping g : X → X is called an isometry if

S(gx, gy, gz) = S(x, y, z), ∀x, y, z ∈ X.

Clearly, a self mapping which is an isometry is continuous.

Definition 2.8. (see [18, Definition 3.5]) Let (X,S) be an S-metric space and Y ,
Z be two nonempty subsets of X. Let J : Y → Z be a mapping and g : Y → Y be
an isometry. The mapping J is said to preserve the isometric distance with respect
to g if

S(Jgx, Jgy, Jgz) = S(Jx, Jy, Jz) ∀x, y, z ∈ Y.

Klanarong and Chaiya [14] introduced the following new classes of nonself map-
pings in a metric space.

Definition 2.9. (see [14, Definitions 3.2 and 3.4]) Let (X, d) be a metric space and
Y , Z be two nonempty subsets of X. Let J : Y → Z and g : Y → Y be mappings.
The mapping J is said to be

(i) a proximal Berinde g-contraction of the first kind if there exist α ∈ [0, 1) and
L1 ≥ 0 such that

d(gu1, Jx1) = d(gu2, Jx2) = △Y Z

=⇒
d(gu1, gu2) ≤ αd(gx1, gx2) + L1 min{d(gx1, gu2), d(gx2, gu1)}

for all x1, x2, u1, u2 ∈ Y ,
(ii) a proximal Berinde g-contraction of the second kind if there exist β ∈ [0, 1)

and L2 ≥ 0 such that

d(gu1, Jx1) = d(gu2, Jx2) = △Y Z

=⇒
d(Jgu1, Jgu2) ≤ βd(Jgx1, Jgx2) + L2 min{d(Jgx1, Jgu2), d(Jgx2, Jgu1)}

for all x1, x2, u1, u2 ∈ Y .

In the case L1 = 0 (or L2 = 0) and gx = x for all x ∈ Y , it is easy to see that
a proximal Berinde g-contraction of the first kind (or the second kind) reduces to
proximal contraction of the first kind (or the second kind) which was introduced in
[13]. But the converse is not true (see [14, Example 3.3]).

Definition 2.10. (see [14, Definition 3.5]) Let (X, d) be a metric space and Y , Z
be two nonempty subsets of X. Let J : Y → Z, T : Y → Z and g : Y ∪ Z → Y ∪ Z
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be mappings. The pair (J, T ) is said to be a proximal Berinde g-cyclic contraction
if there exist γ ∈ [0, 1) and L ≥ 0 such that

d(gu1, Jx1) = d(gu2, Tx2) = △Y Z

=⇒
d(gu1, gu2) ≤ γd(gx1, gx2) + (1− γ)d(Y, Z) + Ld(gx1, gu1)

for all x1, gu1 ∈ Y and x2, gu2 ∈ Z.

In the case L = 0 and gx = x for all x ∈ Y ∪Z, it is easy to see that a proximal
Berinde g-cyclic contraction reduces to a proximal cyclic contraction which was
introduced in [13].

3. Main Results

Let (X,S) be an S-metric space and Y , Z be two nonempty subsets of X. We
define the following sets:

△S
Y Z = S(Y, Y, Z) = inf{S(x, x, y) : x ∈ Y, y ∈ Z},
Y0 =

{
x ∈ Y : there exists some y ∈ Z such that S(x, x, y) = △S

Y Z

}
,

Z0 =
{
y ∈ Z : there exists some x ∈ Y such that S(x, x, y) = △S

Y Z

}
.

Definition 3.1. Let (X,S) be an S-metric space and Y , Z be two nonempty subsets
of X. Let J : Y → Z and g : Y → Y be mappings. A point x ∈ Y is said to be a
coincidence best proximity point of the pair (g, J) if S(gx, gx, Jx) = △S

Y Z .

Note that if g is the identity mapping on Y in Definition 3.1, then the point x
is the best proximity point of J .

Definition 3.2. Let (X,S) be an S-metric space and Y , Z be two nonempty subsets
of X. Let J : Y → Z, T : Z → Y and g : Y ∪Z → Y ∪Z be mappings. An element
(x, y) ∈ Y × Z is called a coincidence best proximity point of the triple (g, J, T ) if
(gx, gy) ∈ Y × Z and S(gx, gx, Jx) = S(gy, gy, Ty) = S(x, x, y) = △S

Y Z .

Note that if g is the identity mapping on Y ∪Z in Definition 3.2, then the point
x and y is the best proximity point of J and T, respectively.

Now, we introduce the S-proximal Berinde g-contractions of the first kind and
second kind in an S-metric space.

Definition 3.3. Let (X,S) be an S-metric space and Y , Z be two nonempty subsets
of X. Let J : Y → Z and g : Y → Y be mappings. The mapping J is said to be

(i) an S-proximal Berinde g-contraction of the first kind if there exist α ∈ [0, 1)
and L1 ≥ 0 such that

S(gu1, gu1, Jx1) = S(gu2, gu2, Jx2) = △S
Y Z

=⇒
S(gu1, gu1, gu2) ≤ αS(gx1, gx1, gx2)

+L1 min{S(gx1, gx1, gu2), S(gx2, gx2, gu1)} (3.1)

for all x1, x2, u1, u2 ∈ Y ,
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(ii) an S-proximal Berinde g-contraction of the second kind if there exist β ∈
[0, 1) and L2 ≥ 0 such that

S(gu1, gu1, Jx1) = S(gu2, gu2, Jx2) = △S
Y Z

=⇒
S(Jgu1, Jgu1, Jgu2) ≤ βS(Jgx1, Jgx1, Jgx2) + L2 min{S(Jgx1, Jgx1, Jgu2),

S(Jgx2, Jgx2, Jgu1)} (3.2)

for all x1, x2, u1, u2 ∈ Y.

Now, we define the S-proximal Berinde g-cyclic contraction in an S-metric space.

Definition 3.4. Let (X,S) be an S-metric space and Y , Z be two nonempty subsets
of X. Let J : Y → Z, T : Z → Y and g : Y ∪ Z → Y ∪ Z be mappings. The
pair (J, T ) is said to be an S-proximal Berinde g-cyclic contraction if there exist
γ ∈ [0, 1) and L ≥ 0 such that

S(gu1, gu1, Jx1) = S(gu2, gu2, Tx2) = △S
Y Z

=⇒
S(gu1, gu1, gu2) ≤ γS(gx1, gx1, gx2) + (1− γ)△S

Y Z + LS(gx1, gx1, gu1)

for all x1, gu1 ∈ Y and x2, gu2 ∈ Z.

Next, we give the following coincidence best proximity point result in an S-metric
space.

Theorem 3.1. Let (X,S) be a complete S-metric space and Y , Z be two nonempty
closed subsets of X. Let J : Y → Z, T : Z → Y and g : Y ∪ Z → Y ∪ Z satisfy the
following conditions:

(i) J and T are S-proximal Berinde g-contractions of the first kind, i.e., there
exist α, β ∈ [0, 1) and L1, L2 ≥ 0 such that J and T satisfy the condition (3.1),
respectively;

(ii) J(Y0) ⊆ Z0 and T (Z0) ⊆ Y0;
(iii) g is an isometry with ∅ ≠ Y0 ⊆ g(Y0) and Z0 ⊆ g(Z0).
(iv) The pair (J, T ) is an S-proximal Berinde g-cyclic contraction.

Then, there exists a point x ∈ Y and there exists a point y ∈ Z such that

S(gx, gx, Jx) = S(gy, gy, Ty) = S(x, x, y) = △S
Y Z . (3.3)

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , for all n ∈ N

converges to the element x, and for any fixed y0 ∈ Z0, the sequence {yn} defined by

S(gyn+1, gyn+1, Tyn) = △S
Y Z , for all n ∈ N

converges to the element y. In addition, if α + L1 < 1 and β + L2 < 1, then the
there exists unique element x and there exists unique element y which satisfy the
equation (3.3).

Proof. Let x0 ∈ Y0 be given. Since J(Y0) ⊆ Z0, Jx0 ∈ Z0. Hence there is z1 ∈ Y
such that S(z1, z1, Jx0) = △S

Y Z which implies that z1 ∈ Y0. As Y0 ⊆ g(Y0), there
exists x1 ∈ Y0 such that gx1 = z1, so S(gx1, gx1, Jx0) = S(z1, z1, Jx0) = △S

Y Z . In
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a similar way, there is x2 ∈ Y0 such that S(gx2, gx2, Jx1) = △S
Y Z . Inductively, we

can construct a sequence {xn} in Y0 such that

S(gxn+1, gxn+1, Jxn) = △S
Y Z , ∀n ∈ N.

Since J is an S-proximal Berinde g-contraction of the first kind, for xn−1, xn, xn+1 ∈
Y0, S(gxn, gxn, Jxn−1) = S(gxn+1, gxn+1, Jxn) = △S

Y Z implies that

S(gxn, gxn, gxn+1) ≤ αS(gxn−1, gxn−1, gxn)

+L1 min {S(gxn−1, gxn−1, gxn+1), S(gxn, gxn, gxn)}
= αS(gxn−1, gxn−1, gxn)

for all n ∈ N. It follows from g being an isometry that

S(xn, xn, xn+1) = S(gxn, gxn, gxn+1)

≤ αS(gxn−1, gxn−1, gxn)

≤ α2S(gxn−2, gxn−2, gxn−1)

...

≤ αnS(gx0, gx0, gx1)

= αnS(x0, x0, x1) (3.4)

for all n ∈ N. Since α ∈ [0, 1), then we have

lim
n→∞

S(xn, xn, xn+1) = 0.

For positive integers m and n with m > n, it follows that

S(xn, xn, xm)

≤ 2S(xm−1, xm−1, xm) + S(xn, xn, xm−1)

≤ 2S(xm−1, xm−1, xm) + 2S(xm−2, xm−2, xm−1) + S(xn, xn, xm−2)

≤ 2S(xm−1, xm−1, xm) + 2S(xm−2, xm−2, xm−1) + ...+ S(xn, xn, xn+1).

Now, for m = n+ r; r ≥ 1 and (3.4), we obtain

S(xn, xn, xn+r) ≤ 2αn+r−1S(x0, x0, x1)+2αn+r−2S(x0, x0, x1)+...+αnS(x0, x0, x1).

By taking limit as n → ∞, we deduce

lim
n→∞

S(xn, xn, xm) = 0.

That is, {xn} is a Cauchy sequence in Y . Since (Y, SY ) is a complete S-metric space,
so there exists x ∈ Y such that xn → x as n → ∞. Similarly, since T (Z0) ⊆ Y0 and
Z0 ⊆ g(Z0), there exists a sequence {yn} in Z0 such that

S(gyn+1, gyn+1, T yn) = △S
Y Z , ∀n ∈ N,

and which converges to some element y ∈ Z. Since the pair (J, T ) is an S-proximal
Berinde g-cyclic contraction and

S(gxn+1, gxn+1, Jxn) = △S
Y Z = S(gyn+1, gyn+1, Tyn), ∀n ∈ N,

there exist γ ∈ [0, 1) and L ≥ 0 such that

S(gxn+1, gxn+1, gyn+1) ≤ γS(gxn, gxn, gyn) + (1− γ)△S
Y Z +LS(gxn, gxn, gxn+1).

It implies that

S(xn+1, xn+1, yn+1) ≤ γS(xn, xn, yn) + (1− γ)△S
Y Z + LS(xn, xn, xn+1).
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Taking limit as n → ∞, we have

S(x, x, y) ≤ γS(x, x, y) + (1− γ)△S
Y Z + LS(x, x, x)

yields that

S(x, x, y) ≤ △S
Y Z .

Then S(x, x, y) = △S
Y Z , that is, x ∈ Y0 and y ∈ Z0. Since J(Y0) ⊆ Z0 and

T (Z0) ⊆ Y0, then Jx ∈ Z0 and Ty ∈ Y0. Hence there exists w ∈ Y0 and z ∈ Z0

such that

S(gw, gw, Jx) = △S
Y Z = S(gv, gv, Ty)

since Y0 ⊆ g(Y0) and Z0 ⊆ g(Z0). Since J is an S-proximal Berinde g-contraction
of the first kind and

S(gw, gw, Jx) = S(gxn+1, gxn+1, Jxn) = △S
Y Z ,

we obtain that

S(gw, gw, gxn+1) ≤ αS(gx, gx, gxn) + L1 min {S(gx, gx, gxn+1), S(gxn, gxn, gw)}
= αS(gx, gx, gxn) + L1S(gx, gx, gxn+1)

for all n ∈ N. Taking limit as n → ∞, by the continuity of g, we get S(gw, gw, gx) =
0, and so, gx = gw. It is implies that

S(gx, gx, Jx) = △S
Y Z .

Similarly, it is easy to verify that S(gy, gy, Ty) = △S
Y Z . Thus, we can conclude that

S(gx, gx, Jx) = S(gy, gy, Ty) = S(x, x, y) = △S
Y Z

Therefore, the pair (x, y) is a coincidence best proximity point of the triple (g, J, T ).
Next, we will show that the pair (x, y) is unique. Suppose that α+L1 < 1, β+L2 < 1
and there exists x ̸= x∗ ∈ Y such that

S(gx∗, gx∗, Jx∗) = △S
Y Z .

Since J is an S-proximal Berinde g-contraction of the first kind, it follows that

S(gx, gx, gx∗) ≤ αS(gx, gx, gx∗) + L1 min {S(gx, gx, gx∗), S(gx∗, gx∗, gx)}
= (α+ L1)S(gx, gx, gx

∗).

Since α + L1 < 1, then we have S(gx, gx, gx∗) = 0. It follows that x = x∗, which
implies that there exists a unique x ∈ Y such that S(gx, gx, Jx) = △S

Y Z . Similarly,
we can show that there exists a unique y ∈ Z such that S(gy, gy, Ty) = △S

Y Z .
Therefore, the pair (x, y) is the unique coincidence best proximity point of the
triple (g, J, T ).

Now, we give an example to illustrate Theorem 3.1.

Example 3.1. Let (R2, d) be the Euclidean metric space. Define

S(x, y, z) = max {d(x, y), d(y, z), d(z, x)} .

Then (R2, S) is an S-metric space. Let Y = {(0, y);−1 ≤ y ≤ 1} and Z =
{(1, y);−1 ≤ y ≤ 1} . Then △S

Y Z = 1, Y0 = Y and Z0 = Z. Define the mappings
J : Y → Z, T : Z → Y and g : Y ∪ Z → Y ∪ Z by

J(0, y) =
(
1,

y

2

)
, T (1, y) =

(
0,

y

2

)
and g(x, y) = (x,−y).
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Clearly, Y0 = g(Y0), Z0 = g(Z0), J(Y0) =
{(

1, y
2

)
;−1 ≤ y ≤ 1

}
⊂ Z0, T (Z0) ={(

0, y
2

)
;−1 ≤ y ≤ 1

}
⊂ Y0 and the mapping g is an isometry. Obviously, the map-

pings J and T are S-proximal Berinde g-contractions of the first kind and the pair
(J, T ) is an S-proximal Berinde g-cyclic contraction. Hence, the all conditions of
Theorem 3.1 are satisfied and the element {(0, 0), (1, 0)} in Y × Z is the unique
coincidence best proximity point of the triple (g, J, T ).

If we take L1 = 0, L2 = 0 and L = 0 in Theorem 3.1, then we obtain the following
coincidence best proximity theorem.

Theorem 3.2. Let X,Y, Z, Y0, Z0, J, T and g satisfy the hypotheses of Theorem
3.1. Then, there exists a unique point x ∈ Y and there exists a uniqe point y ∈ Z
such that

S(gx, gx, Jx) = S(gy, gy, Ty) = S(x, x, y) = △S
Y Z .

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , for all n ∈ N

converges to the element x, and for any fixed y0 ∈ Z0, the sequence {yn} defined by

S(gyn+1, gyn+1, Tyn) = △S
Y Z , for all n ∈ N

converges to the element y.

If we take gx = x for all x ∈ Y ∪Z in Theorem 3.1, then we immediately obtain
the following theorem.

Theorem 3.3. Let X,Y, Z, Y0, Z0, J and T satisfy the hypotheses of Theorem 3.1.
Then, there exists a point x ∈ Y and there exists a point y ∈ Z such that

S(x, x, Jx) = S(y, y, Ty) = S(x, x, y) = △S
Y Z .

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(xn+1, xn+1, Jxn) = △S
Y Z , for all n ∈ N

converges to the element x, and for any fixed y0 ∈ Z0, the sequence {yn} defined by

S(yn+1, yn+1, Tyn) = △S
Y Z , for all n ∈ N

converges to the element y. In addition, if α + L1 < 1 and β + L2 < 1, then the
point x and y is the unique best proximity point of J and T, respectively.

If we suppose that J and T are continuous mappings instead of the condition
(iv) in Theorem 3.1, then we obtain the following theorem.

Theorem 3.4. Let (X,S) be a complete S-metric space and Y , Z be two nonempty
closed subsets of X. Let J : Y → Z, T : Z → Y and g : Y ∪ Z → Y ∪ Z satisfy the
following conditions:

(i) J and T are S-proximal Berinde g-contractions of the first kind, i.e., there
exist α, β ∈ [0, 1) and L1, L2 ≥ 0 such that J and T satisfy the condition (3.1),
respectively;

(ii) J and T are continuous mappings such that J(Y0) ⊆ Z0 and T (Z0) ⊆ Y0;
(iii) g is an isometry with ∅ ≠ Y0 ⊆ g(Y0) and Z0 ⊆ g(Z0).

Then, there exists a point x ∈ Y and there exists a point y ∈ Z such that

S(gx, gx, Jx) = S(gy, gy, Ty) = △S
Y Z . (3.5)
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Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , for all n ∈ N

converges to the element x, and for any fixed y0 ∈ Z0, the sequence {yn} defined by

S(gyn+1, gyn+1, Tyn) = △S
Y Z , for all n ∈ N

converges to the element y. In addition, if α + L1 < 1 and β + L2 < 1, then the
there exists unique element x and there exists unique element y which satisfy the
equation (3.5).

Proof. By the proof of Theorem 3.1, we get that the sequences {xn} in Y0 and {yn}
in Z0 such that

S(gxn+1, gxn+1, Jxn) = S(gyn+1, gyn+1, Tyn) = △S
Y Z , ∀n ∈ N. (3.6)

converge to some elements x ∈ Y and y ∈ Z, respectively. Since J, T and g are
continuous mappings, then we have that Jxn → Jx, Tyn → Ty and gxn+1 →
gx, gyn+1 → gy. Taking limit in (3.6) as n → ∞, we conclude that

S(gx, gx, Jx) = S(gy, gy, Ty) = △S
Y Z .

The proof of uniqueness of the elements x and y follows as in Theorem 3.1.
Next, we establish a coincidence best proximity point result for an S-proximal

Berinde g-contraction of the first kind and second kind in an S-metric space.

Theorem 3.5. Let (X,S) be a complete S-metric space and Y , Z be two nonempty
closed subsets of X. Let J : Y → Z and g : Y → Y satisfy the following conditions:

(i) J is an S-proximal Berinde g-contraction of the first kind and second kind,
i.e., there exist α, β ∈ [0, 1) and L1, L2 ≥ 0 such that J satisfies the conditions
(3.1) and (3.2), respectively;

(ii) J preserves the isometric distance with respect to g and J(Y0) ⊆ Z0;
(iii) g is an isometry with ∅ ≠ Y0 ⊆ g(Y0).

Then, there exists a point x ∈ Y such that

S(gx, gx, Jx) = △S
Y Z . (3.7)

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , ∀n ∈ N

converges to the element x. In addition, if α + L1 < 1 and β + L2 < 1, then the
there exists unique element x which satisfy the equation (3.7).

Proof. Following similar arguments to those given in proof of Theorem 3.1, we
deduce that the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , ∀n ∈ N

is convergent to some x ∈ Y . Since J is an S-proximal Berinde g-contraction of the
second kind and preserves the isometric distance with respect to g, then we have

S(Jxn, Jxn, Jxn+1)

= S(Jgxn, Jgxn, Jgxn+1)

≤ βS(Jgxn−1, Jgxn−1, Jgxn)

+L2 min{S(Jgxn−1, Jgxn−1, Jgxn+1), S(Jgxn, Jgxn, Jgxn)}
= βS(Jgxn−1, Jgxn−1, Jgxn)

= βS(Jxn−1, Jxn−1, Jxn).
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Similarly, in the proof of Theorem 3.1, we can show that {Jxn} is a Cauchy sequence
and converges to some element y ∈ Z. Therefore we can conclude that

S(gx, gx, y) = lim
n→∞

S(gxn+1, gxn+1, Jxn) = △S
Y Z ,

that is, gx ∈ Y0. Since Y0 ⊆ g(Y0), there exists z ∈ Y0 such that gx = gz and
so S(gx, gx, gz) = 0. By the fact that g is an isometry, we get S(x, x, z) =
S(gx, gx, gz) = 0. Hence x = z ∈ Y0 and so Jx ∈ J(Y0) ⊆ Z0. Then there
exists u ∈ Y0 such that

S(gu, gu, Jx) = △S
Y Z . (3.8)

It follows from J being an S-proximal Berinde g-contraction of the first kind that

S(gu, gu, gxn+1) ≤ αS(gx, gx, gxn) + L1 min{S(gx, gx, gxn+1), S(gxn, gxn, gu)}
≤ αS(gx, gx, gxn) + L1S(gx, gx, gxn+1) (3.9)

for all n ∈ N. Taking limit as n → ∞ in (3.9), we conclude that gu = gx. Therefore,
from (3.8), we have

S(gx, gx, Jx) = △S
Y Z ,

that is, x is a coincidence best proximity point of the pair (g, J). The proof of
uniqueness of the element x follows as in Theorem 3.1.

The following example illustrates the preceding coincidence best proximity point
theorem.

Example 3.2. Let X = R and S(x, y, z) = max {|x− y| , |y − z| , |z − x|} .Then
(R, S) is an S-metric space. Let Y = [−2, 2] and Z = {−3}∪ [3, 4]. Then △S

Y Z = 1,
Y0 = {−2, 2} and Z0 = {−3, 3} . Define the mappings J : Y → Z and g : Y → Y
by

Jx =

{
3, if x is rational
4, otherwise

and gx = −x.

Clearly, Y0 = g(Y0), J(Y0) = {3} ⊂ Z0 and the mapping g is an isometry. Obvi-
ously, the mapping J preserves the isometric distance with respect to g and it is
an S-proximal Berinde g-contraction of the first kind and second kind. Thus, the
all conditions of Theorem 3.5 are fulfilled and the element −2 in Y is the unique
coincidence best proximity point of the pair (g, J).

If we take L1 = 0 and L2 = 0 in Theorem 3.5, then we obtain the following
coincidence best proximity theorem.

Theorem 3.6. Let X,Y, Z, Y0, Z0, J and g satisfy the hypotheses of Theorem 3.5.
Then, there exists a unique point x ∈ Y such that

S(gx, gx, Jx) = △S
Y Z .

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(gxn+1, gxn+1, Jxn) = △S
Y Z , ∀n ∈ N

converges to the element x.

If we take gx = x for all x ∈ Y in Theorem 3.5, then we get the following
theorem.
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Theorem 3.7. Let X,Y, Z, Y0, Z0 and J satisfy the hypotheses of Theorem 3.5.
Then, there exists a point x ∈ Y such that

S(x, x, Jx) = △S
Y Z .

Moreover, for any fixed x0 ∈ Y0, the sequence {xn} defined by

S(xn+1, xn+1, Jxn) = △S
Y Z , ∀n ∈ N

converges to the element x. In addition, if α + L1 < 1 and β + L2 < 1, then the
element x is the unique best proximity point of J.

Remark. Since both the proximal contraction of the first kind and the proximal
Berinde g-contraction of the first kind are special cases of the S-proximal Berinde
g-contraction of the first kind, Theorems 3.1-3.3 generalize the corresponding results
for both the proximal contraction and the proximal Berinde g-contraction of the first
kind. Same is the case for Theorems 3.5-3.7 dealing with the S-proximal Berinde
g-contraction of the first kind and second kind.
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[2] C. Çevik, I. Altun, H. Şahin, and Ç.C. Özeken, Some fixed point theorems for contractive

mapping in ordered vector metric spaces, J. Nonlinear Sci. Appl. 10(4) (2017) 1424-1432.
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[4] Z. Kalkan, and A. Şahin, Some new results in partial cone b-metric space, Commun. Adv.
Math. Sci. 3(2) (2020) 67-73.
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