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Abstract 

In this study, the Landau-Ginzburg-Higgs (LGH) equation, which has the physically 

important wave solutions, is considered. This equation is discussed via the modified 

exponential function method (MEFM) to describe superconductivity. Some new 

solutions are discovered in the form of rational, hyperbolic, and trigonometric 

functions when compared with the ones taking part in the literature. The functions 

which are candidates to be the exact solutions of the nonlinear equation are tested by 

the Mathematica program at the end of the steps of the method and it is observed that 

they satisfy the LGH equation. Additionally, the 2-D and the 3-D graphs 

accompanying the density and contour plots are illustrated. 

 

 
1. Introduction 

 

Having an active role and the profound employment 

of the nonlinear partial differential equations 

(NLPDEs) in various fields such as fluid dynamics, 

electromagnetism, acoustic, optics, DNA vibration 

dynamics, electrical lines and etc., the exact solutions 

for understanding and interpretation of the nonlinear 

phenomenon become crucial. For instance, the 

Korteweg-de Vries equation used in fluid dynamics, 

aerodynamics, and continuum mechanics as a model 

for shock wave formation, solitons, turbulence, 

boundary layer behavior, and mass transport. The 

nonlinear Schrödinger equation describes the 

propagation of optical pulses in optic fibers.  The 

Zakharov–Kuznetsov equation arises in number of 

scientific models including fluid mechanics, 

astrophysics, solid state physics, plasma physics, 

chemical kinematics, chemical chemistry, optical 

fiber and geochemistry [1]-[3]. Due to its significant 

role in applied sciences, it is very important to obtain 

the solution of an NLPDE which allows us to analyze 

the phenomenon modeled via such equations. 

Therefore, various methods have been proposed to 

find exact solutions to NLPDEs, such as the 
(𝐺′ 𝐺⁄ , 1 𝐺⁄ )-expansion method [4], He’s variational 

methods [5], exp(−𝜑(𝜉))-expansion method, and 
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sine-cosine method [6], the Bernoulli sub-equation 

function method [7], the modified (𝐺′ 𝐺2⁄ )-
expansion approach [8], the extended Sinh-Gordon 

equation expansion method [9], the extended rational 

sinh-cosh method [10], the improved modified 

extended tanh-function method [11],  the modified F-

expansion method [12], sine-Gordon expansion 

method and (𝑚 + (𝐺′ 𝐺⁄ ))-expansion method [13], 

and so on.   

The LGH equation which is one of the 

common values of mathematics and applied sciences 

is utilized for comprehending the notions in 

superconductivity and cyclotron waves which have 

many usage areas such as medicine, plasma physics, 

chemistry, biology, electricity-electronic, 

transportation, and so on. The interpenetration of such 

essential applications and the LGH equation has 

turned the focus of this study to analyze the exact 

wave solutions. This equation is given by 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 −𝑚2𝑢 + 𝑛2𝑢3 = 0,                              (1) 

where 𝑢(𝑥, 𝑡) is the electrostatic potential of the ion-

cyclotron wave, m and n are real parameters, and  x 

and t define the spatial and temporal coordinates [14]. 

The executed methods in the literature for observing 

the soliton solutions of the LGH equations are 
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appeared in [14]-[20]. In this study, the MEFM is put 

to use which is not applied before. For this purpose 

the progress of the paper is as follows; in section2 the 

processes of the MEFM are given, the application of 

the method to the LGH equation comes immediately 

together with the graphical results in section3 and 

finally, the conclusion takes part at the end. 

 

2. Materials and Method 

 

The starting point of the MEFM is to convert an 

NLPDE into a nonlinear ordinary differential 

equation (NLODE) by the wave transform 𝜉 = 𝑘(𝑥 −

𝑐𝑡) where 𝑘 and 𝑐 represent the wave height and the 

wave frequency. Let the following NLPDE  

𝑄(𝑈,𝑈𝑥 , 𝑈𝑡 , 𝑈𝑥𝑥 , 𝑈𝑥𝑡 , 𝑈𝑡𝑡 , 𝑈𝑥𝑥𝑡𝑡 , … ) = 0,              (2) 

contains the highest order derivatives and the 

nonlinear terms. As mentioned above after the wave 

transform 𝜉 = 𝑘(𝑥 − 𝑐𝑡), the related derivatives in 

equation (2) are evaluated and substituted into 

equation (2) to obtain the following NLODE  

𝑁(𝑈,𝑈2, 𝑈′, 𝑈′′, … ) = 0,                                       (3) 

According to MEFM the solution of equation (3) is 

assumed to be  

𝑈(𝜉) =
∑ 𝐴𝑖[exp(−𝛺(𝜉))]

𝑖𝑁
𝑖=0

∑ 𝐵𝑗[exp(−𝛺(𝜉))]
𝑗𝑀

𝑗=0

  

         =
𝐴0+𝐴1 exp(−𝛺(𝜉))+⋯+𝐴𝑛 exp(−𝑛𝛺(𝜉))

𝐵0+𝐵1 exp(−𝛺(𝜉))+⋯+𝐵𝑚 exp(−𝑚𝛺(𝜉))
,           (4) 

where 𝐴𝑖, 𝐵𝑗 , (0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀) are constants 

with 𝐴𝑁 ≠ 0, 𝐵𝑀 ≠ 0 and will be determined by 

using a ready-made package program. Besides the 

coefficients, the upper bounds 𝑁,𝑀, and the function 

Ω(ξ) are required to expand equation (4). 𝑁 and 𝑀 are 

discovered by the balancing rule which enables a 

relation between them taking into account the highest 

order derivative and the highest order nonlinear term 

in equation (3). Finally, the Ω(ξ) function is the 

solution of the ordinary differential equation given 

below 

𝛺′(𝜉) = 𝑒𝑥𝑝(−𝛺(𝜉)) + 𝜇𝑒𝑥𝑝(𝛺(𝜉)) + 𝜆.           (5) 

The process goes on with the substitution of equation 

(4) into equation (3) taking into account equation (5) 

which leads to a system of algebraic equations. In this 

system, the coefficients are specified via 

Mathematica.  

The MEFM offers five families for the 

solutions, hence after writing the stated coefficients in 

equation (4) five classes are obtained for each case. 

These families are given in [21] as in the following. 

Family 1: When 𝜇 ≠ 0, 𝜆2 − 4𝜇 > 0,  

𝛺(𝜉) =  

ln (
−√𝜆2−4𝜇

2𝜇
tanh (

√𝜆2−4𝜇

2
(𝜉 + 𝐸)) −

𝜆

2𝜇
).           (6) 

Family2: When 𝜇 ≠ 0, 𝜆2 − 4𝜇 < 0,   

𝛺(𝜉) =  

ln (
√−𝜆2+4𝜇

2𝜇
tan (

√−𝜆2+4𝜇

2
(𝜉 + 𝐸)) −

𝜆

2𝜇
).           (7) 

Family3: When 𝜇 = 0, 𝜆 ≠ 0 and 𝜆2 − 4𝜇 > 0,   

𝛺(𝜉) = −ln (
𝜆

𝑒𝑥𝑝(𝜆(𝜉+𝐸))−1
).                                 (8) 

Family4: When 𝜇 ≠ 0, 𝜆 ≠ 0 and 𝜆2 − 4𝜇 = 0,  

𝛺(𝜉) = ln (−
2𝜆(𝜉+𝐸)+4

𝜆2(𝜉+𝐸)
).                                       (9) 

Family5: When 𝜇 = 0, 𝜆 = 0 and 𝜆2 − 4𝜇 = 0,  

𝛺(𝜉) = ln(𝜉 + 𝐸),                                                (10) 

where 𝐴0, 𝐴1, … , 𝐴𝑛, 𝐵0, 𝐵1, … , 𝐵𝑚, 𝐸, 𝜆, 𝜇 are 

constants.  

2.1. Application of the Method to LGH Equation 

 

Equation (1) is reduced to the following NLODE  

(𝑘2𝑐2 − 𝑘2)𝑈′′ −𝑚2𝑈 + 𝑛2𝑈3 = 0,                 (11) 

by the wave transform 𝜉 = 𝑘(𝑥 − 𝑐𝑡). The 

balancing rule reveals the relation between 𝑁 and 𝑀 

as 𝑀 + 1 = 𝑁. Therefore, it can be considered as 𝑁 =

2  and 𝑀 = 1. Thus, the assumed solution (4) of the 

equation (11) is in the form of 

𝑈(𝜉) =
𝐴0+𝐴1𝑒

−𝛺(𝜉)+𝐴2𝑒
−2𝛺(𝜉)

𝐵0+𝐵1𝑒−𝛺
(𝜉) .                       (12)                                     

A system of algebraic equation is derived 

when the required derivative terms are obtained from 

equation (12) and substituted in equation (11). Then 

by solving this system with the help of the package 

program, it is encountered with many possibilities for 

the coefficients. We have just given some of them 

starting with case1 as follows, 

𝐴0 =
𝜆𝐴2𝐵0

2𝐵1
, 𝐴1 =

1

2
, 𝐴2 = (𝜆 +

2𝐵0

𝐵1
),   

𝑛 = −
𝑖√2(−1+𝑐2)𝑘𝐵1

𝐴2
, 𝑚 = −

𝑖𝑘√(𝜆2−4𝜇)(−1+𝑐2)

√2
,  (13) 
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where 𝑖 = √−1. These coefficients are substituted in 

equation (12) and it was confirmed that this traveling 

wave solution function provides equation (11), by 

getting support from Mathematica. 

The coefficients in equation (13) and the 

families stated above in equations (6-10) are 

substituted in equation (12), respectively. Thus, the 

following situations are presented for the solution 

functions of equation (1). Besides, the graphs are 

shown under the related solutions by giving 

appropriate values to the variables in the resulting 

equations. 

Family 1 

The solution 𝑈1,1 and the relevant graphs in Figure1 

are obtained for case1/family1: 

𝑈1,1 =
𝐴2(𝜆

2−4𝜇+𝜆𝜔)

2𝐵1(𝜆+ω)
,                                            (14) 

where 𝜔 = √𝜆2 − 4𝜇Tanh[
1

2
(EE + 𝜉)√𝜆2 − 4𝜇] 

and 𝜉 = 𝑘(−𝑐𝑡 + 𝑥).  
Family 2 

The solution 𝑈1,2 and the relevant graphs in Figure2 

are obtained for case1/family2: 

𝑈1,2 =
𝐴2(𝜆

2−4𝜇−𝜆𝜃)

2𝐵1(𝜆−𝜃)
,      (15) 

where 𝜃 = √−𝜆2 + 4𝜇Tan[
1

2
(EE + 𝜉)√−𝜆2 + 4𝜇] 

and 𝜉 = 𝑘(−𝑐𝑡 + 𝑥).      

Family 3 

The solution 𝑈1,3 and the relevant graphs in Figure3 

are obtained for case1/family3: 

𝑈1,3 =
𝜆𝐶𝑜𝑡ℎ[

1

2
(𝐸𝐸+𝜉)𝜆]𝐴2

2𝐵1
.                                      (16) 

Family4 

The solution 𝑈1,4 and the relevant graphs in Figure4 

are obtained for case1/family4: 

𝑈1,4 =
𝜆𝐴2

(2+EE𝜆+𝜉𝜆)𝐵1
.                                             (17)   

Family 5 

The solution 𝑈1,5 and the relevant graphs in Figure5 

are obtained for case1/family5: 

𝑈1,5 =
𝐴2

(EE+𝜉)𝐵1
                                                     (18) 

 

Figure 1. The three dimensional, density and contour graphs of solution (14) for the values 𝜆 = 3, 𝜇 = 1, 𝐴2 =
0.5, 𝐵1 = 0.2, 𝑘 = 2, 𝐵0 = 1, 𝐴0 = 3.75, 𝐴1 = 3.25, 𝑐 = 2, 𝐸𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1 
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Figure 2. The three dimensional, density and contour graphs of solution (15) for the values 𝜆 = 1, 𝜇 = 3, 𝐴2 =
0.5, 𝐵1 = 0.02, 𝑘 = 2, 𝐵0 = 1, 𝐴0 = 12.5, 𝐴1 = 25.25, 𝑐 = 5, 𝐸𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  

 

 
Figure 3. The three dimensional, density and contour graphs of solution (16) for the values 𝜆 = 1, 𝜇 = 0, 𝐴2 =
0.5, 𝐵1 = 0.02, 𝑘 = 2, 𝐵0 = 1, 𝐴0 = 12.5, 𝐴1 = 25.25, 𝑐 = 5, 𝐸𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1 
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Figure 4. The three dimensional, density and contour graphs of solution (17) for the values 𝜆 = 2, 𝜇 = 1, 𝐴2 =
0.5, 𝐵1 = 0.02, 𝑘 = 2, 𝐵0 = 1, 𝐴0 = 25, 𝐴1 = 25.25, 𝑐 = 5, 𝐸𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  

 

 
Figure 5. The three dimensional, density and contour graphs of solution (18) for the values 𝜆 = 0, 𝜇 = 0, 𝐴2 =

0.5, 𝐵1 = 0.02, 𝑘 = 2, 𝐵0 = 1, 𝐴0 = 0, 𝐴1 = 25, 𝑐 = 5, 𝐸𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1 
 

We have discussed another possible coefficient 

group case2 below, 

 

𝐴0 = −
√(1−𝑐2)𝑘2𝜆𝐵0

√2𝑛
, 𝐴1 =

𝜆𝐴2

2
−

√2(1−𝑐2)𝑘2𝐵0

𝑛
,        

𝐵1 = −
𝑛𝐴2

√2(1−𝑐2)𝑘2
, 𝑚 = −

√(1−𝑐2)𝑘2(𝜆2−4𝜇)

√2
.       (19)  

 

The parameters in equation (19) are substituted in 

equation (12) regarding the five 𝜴(𝝃) options as 

given in equations (6-10). 

Family 1 

The solution 𝑈2,1 and the relevant graphs in Figure6 

are obtained for case2/family1: 

𝑈2,1 =  
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−

√(1−𝑐2)𝑘2𝜆𝐵0

√2𝑛
−
4𝜇2𝐴2
(𝜆+𝜔)2

+
𝜇(𝑛𝜆𝐴2−2√2√(1−𝑐

2)𝑘2𝐵0)

𝑛(𝜆+𝜔)

𝐵0+
√2𝑛𝜇𝐴2

√(1−𝑐2)𝑘2(𝜆+𝜔)

,          (20) 

 

where 𝜔 = √𝜆2 − 4𝜇Tanh[
1

2
(EE + 𝜉)√𝜆2 − 4𝜇] 

and 𝜉 = 𝑘(−𝑐𝑡 + 𝑥). 

Family 2 

The solution 𝑈2,2 and the relevant graphs in Figure7 

are obtained for case2/family2: 

 

 

 

𝑈2,2 =  

−

√(1−𝑐2)𝑘2𝜆𝐵0

√2𝑛
−
4𝜇2𝐴2
(𝜆−𝜃)2

+
𝜇(𝑛𝜆𝐴2−2√2√(1−𝑐

2)𝑘2𝐵0)

𝑛(𝜆−𝜃)

𝐵0+
√2𝑛𝜇𝐴2

√(1−𝑐2)𝑘2(𝜆−𝜃)

,          (21) 

where 𝜃 = √−𝜆2 + 4𝜇Tan[
1

2
(EE + 𝜉)√−𝜆2 + 4𝜇] 

and 𝜉 = 𝑘(−𝑐𝑡 + 𝑥).   

Family 3 

The solution 𝑈2,3 and the relevant graphs in Figure8 

are obtained for case2/family3: 

𝑈2,3 = −
√(1−𝑐2)𝑘2𝜆Coth[

1

2
(EE+𝜉)𝜆]

√2𝑛
.                       (22) 

Family 4 

The solution 𝑈2,4 and the relevant graphs in Figure9 

are obtained for case2/family4: 

𝑈2,4 = −
√2(1−𝑐2)𝑘2𝜆

𝑛(2+EE𝜆+𝜉𝜆)
.                                            (23) 

Family 5 

The solution 𝑈2,5 and the relevant graphs in Figure10 

are obtained for case2/family5: 

𝑈2,5 = −
√2√2(1−𝑐2)𝑘2

EE𝑛+𝜉𝑛
.                                          (24) 

 

 
Figure 6. The three dimensional, density and contour graphs of solution (20) for the values 𝜆 = 3, 𝜇 = 1, 𝑛 =

2.5, 𝐴2 = 0.25, 𝐵1 = −5.1031, 𝑘 = −0.1, 𝐵0 = 1, 𝐴0 = −0.0734847, 𝐴1 = 0.32601, 𝑐 = 0.5, 𝐸𝐸 = 0.75,𝑚 =

−0.136931 and two-dimensional graph for 𝑡 = 1 
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Figure 7. The three dimensional, density and contour graphs of solution (21) for the values 𝜆 = 1, 𝜇 = 3, 𝑛 = 2.5, 𝐴2 =

0.25, 𝐵1 = −5.1031, 𝑘 = −0.1, 𝐵0 = −1, 𝐴0 = 0.0244949, 𝐴1 = 0.17399, 𝑐 = 0.5, 𝐸𝐸 = 0.75,𝑚 = −0.203101𝑖 and 

two-dimensional graph for 𝑡 = 1 

 

 
Figure 8. The three dimensional, density and contour graphs of solution (22) for the values 𝜆 = 1, 𝜇 = 0, 𝑛 =

2.5, 𝐴2 = 0.25, 𝐵1 = −5.1031, 𝑘 = −0.1, 𝐵0 = −1, 𝐴0 = 0.0244949, 𝐴1 = 0.17399, 𝑐 = 0.5, 𝐸𝐸 = 0.75,𝑚 =

−0.0612372 and two-dimensional graph for 𝑡 = 1 
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Figure 9. The three dimensional, density and contour graphs of solution (23) for the values 𝜆 = 2, 𝜇 = 1, 𝑛 = 2.5, 𝐴2 =
0.25, 𝐵1 = −5.1031, 𝑘 = −0.1, 𝐵0 = −1, 𝐴0 = 0.0489898, 𝐴1 = 0.29899, 𝑐 = 0.5, 𝐸𝐸 = 0.75,𝑚 = 0 and two-

dimensional graph for 𝑡 = 1 
 

 
Figure 10. The three dimensional, density and contour graphs of solution (24) for the values 𝜆 = 0, 𝜇 = 0, 𝑛 =

2.5, 𝐴2 = 0.25, 𝐵1 = −5.1031, 𝑘 = −0.1, 𝐵0 = −1, 𝐴0 = 0, 𝐴1 = 0.0489898, 𝑐 = 0.5, 𝐸𝐸 = 0.75,𝑚 = 0 and two-

dimensional 
 

3. Results and Discussions  

The several solution forms of the LGH equation are 

illustrated above in Figures1-10. The kink type, 

singular kink type, and the periodic type solutions are 

observed. The solutions and the related graphics are 

different when compared to ([14]-[20]). 

Interpretation of these fresh solutions can put a new 

complexion on the applications of the LGH equation.  
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4. Conclusion  

We have determined the new exact solution forms of 

the LGH equation as hyperbolic, trigonometric, and 

rational functions via the modified exponential 

function method, which is an effective and 

functioning method. The application of the MEFM 

method for this equation is not encountered in the 

literature. The process of plotting the graphs and the 

computations is overcome with the aid of 

Mathematica. The LGH equation is used in 

superconductivity, which has a wide application 

area, as mentioned in Section1. Therefore, the newly 

obtained wave solutions may be helpful to widen the 

knowledge in the related field and may develop new 

ideas.   
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