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Abstract 

In this work, we investigated the mixing between strange axial vector mesons K1(1270) 

and K1(1400) by using QCD Sum Rules approach. Since these states couple to the same 

interpolating currents, we defined them in terms of orbital angular momentum eigen states 

K1A and K1B. By using the axial vector and tensor interpolating currents which are almost 

purely coupling to K1A and K1B, and then employing the orthogonality of the physical 

states, we obtained an analytical expression for the K1 mixing angle. We performed a 

Monte Carlo based numerical analysis to estimate the value of the mixing angle. 
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1. Introduction 

The Standard Model (SM) of particles was introduced in early 1960’s and has been successfully explaining the properties 

and interactions of fundamental particles [1-7] since then. Its particle content was fully observed with the milestone 

discovery of Higgs boson with the observations of ATLAS and CMS experiments at Large Hadron Collider (LHC) [8,9]. 

Even though SM is very successful in explaining fundamental particles and their interactions, it cannot explain 

cosmological observations such as matter dominance and dark matter. Thus, the model is incomplete and a new physics 

beyond SM, i.e. new particles and interactions are required to overcome SM’s deficiencies. Hints for the existence of 

such new particles or interactions might be seen in direct observations or their traces in SM interactions. A very recent 

and important observation as an example of the latter one is announced by LHCb experiment [10], which increased a 

huge interest and enthusiasm among particle physicists. Following previous results with low statistics [11,12] on the 

breaking of lepton universality, in March 2021, LHCb announced first 3.1 sigma significant lepton flavor universality 

breaking in b → s l+l- decays observed via B+→ K+ l+l- semileptonic decay channel [10]. In these decays, light u quark 

is accompanied by an anti-beauty quark for B+, and an anti-strange quark for K+, and charged leptons can be pairs of 

electrons, muons or taus. In SM, the ratio of final state muons to electrons in a given semileptonic B decay is called R 

ratio and it is described by [13] 

 

𝑅𝐻 =
𝑩(𝐵→𝐻 𝜇+𝜇−)

𝑩(𝐵→𝐻 𝑒+𝑒−)
                                                                                                                                (1) 

 

where H denotes the daughter hadron, and the branching ratios are calculated by integrating the differential branching 

ratios over the dilepton mass-squared range  𝑞𝑚𝑖𝑛
2 ≤ 𝑞2 ≤ 𝑞𝑚𝑎𝑥

2  [14,15]. Contrary to the SM predictions of the R ratio 

for K+, which is 𝑅𝐾 = 1.00 ± 0.01 [14,15], it is measured as 𝑅𝐾 = 0.846−0.039
+0.042 −0.012

+0.013 in the aforementioned LHCb 

analysis[10]. Since b → s transition does not occur in tree level, this discrepancy from the SM predictions is considered 

as an absolute indication of a particle arising from a Beyond SM (BSM) theory, such as a heavy vector boson Z’, running 

in the loop transition, or a hypothetical Lepto-Quark (LQ) enabling this transition in tree level., 

 

In QCD, the semileptonic b → s transitions do not occur only for pseudo-scalar Kaons, but they also happen in the 

decays of axial vector Kaons: K1(1270) and K1(1400), which have the same quark content. In this scenario, 𝐵 (�̅�) →

𝐾1(1270,1400)𝑙+𝑙− transitions1 should be investigated, where pseudoscalar and neutral B meson consists of 𝑏�̅�(𝑏�̅� or 

�̅�𝑏 for positive and negative charged ones), and K1 states are the axial vector members p-wave singlet and triplet with 

quark content 𝑠�̅�(𝑠�̅� or �̅�𝑠 for positive and negative charged ones). In Particle Data Group listings (PDG) [16],  I=1/2, 

axial vector strange mesons K1(1270) and K1(1400) are listed with the following masses, 𝑚𝐾1(1270) = 1253 ± 7 𝑀𝑒𝑉  

and 𝑚𝐾1(1400) = 1403 ± 7 𝑀𝑒𝑉, respectively. Since decays of K1(1270) and K1(1400) to 𝐾𝜌 and 𝐾∗𝜋 final states are 

not observed to be equal, and the lighter (heavier) is observed to decay in to  𝐾𝜌 (𝐾∗𝜋) more, a large mixing between 

pure orbital angular momentum and G-parity eigen states is proposed [17]. In SM, a real hadron should be represented 

 
1For brevity, 𝐾1(1270,1400) is used as a short hand notation for 𝐾1(1270) and 𝐾1(1400), such as 𝐵 (�̅�) → 𝐾1(1270,1400)𝑙+𝑙− means 𝐵 (�̅�) →
𝐾1(1270)𝑙+𝑙−  and 𝐵 (�̅�) → 𝐾1(1400)𝑙+𝑙−. 
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in terms of physical mass eigen states. However, K1 states appearing in the quark model are 1P1 (1
+-) and 3P1 (1

++), which 

are p-wave excited orbital angular momentum states. These states are named as K1A and K1B, where the former is the 

member of the singlet and the second is the member of the triplet, and they are mixed and they form the observable 

physical states K1(1270) and K1(1400) as follows 

 

(
|𝐾1(1270)〉
|𝐾1(1400)〉

) =  (
𝑠𝑖𝑛𝜃𝐾1 𝑐𝑜𝑠𝜃𝐾1

𝑐𝑜𝑠𝜃𝐾1 −𝑠𝑖𝑛𝜃𝐾1
) (

|𝐾1𝐴〉
|𝐾1𝐵〉

),                                                                                  (2) 

 

where 𝜃𝐾1
 is defined as the K1 mixing angle [17-19]. In addition to the possibility of measuring 𝑅𝐾1 through semileptonic 

𝐵 → 𝐾1 transitions and testing recent LHCb findings, the mixing nature of these states keeps igniting scientific curiosity. 

 

In literature, K1(1270) and K1(1400) states and their mixing are studied widely by different approaches;  however, no 

consensus has been reached on the value of 𝜃𝐾1
. By using the experimental data as of 1977, Carnegie et al. found that 

𝜃𝐾1
= 33𝑜 [20].  In Suzuki (1993) [17], the mixing angle 𝜃𝐾1

 was estimated via analysis of partial decay widths and 

masses, and  𝜃𝐾1
= 33𝑜 was favored. In Blundell et al.(1996), authors extracted 𝜃𝐾1 from the ratio of the weak decays 

𝜏 → 𝜈𝜏𝐾1(1270,1400) and found it as 𝜃𝐾1
≃ 45𝑜 [21]. In Burkovsky and Goldman (1997), a nonrelativistic constituent 

quark model approach was used to obtain the constraint 35𝑜 ≤ 𝜃𝐾1
≤ 55𝑜 [22]. An experimental analysis performed by 

CLEO collaboration suggested that 𝜃𝐾1
= (69 ± 16 ± 19)𝑜 or 𝜃𝐾1

= (49 ± 16 ± 19)𝑜 [23]. In Cheng (2003), the 

author analyzed 𝐷 → 𝐾1(1270,1400)𝜋 decays in Isgur-Scora-Grinstein-Wise quark model and concluded that negative 

values of the mixing angle were allowed and 𝜃𝐾1
≃ −58𝑜 was favored [24]. In Roca et al. (2004), a phenomenological 

Lagrangian was proposed for the members of axial vector SU(3) nonet, and from the ratio of the branching ratios, the 

mixing angle was estimated as 30𝑜 ≤ 𝜃𝐾1
≤ 60𝑜 favoring 𝜃𝐾1

≃ 45𝑜 [25]. In Li and Li (2006), a nonrelativistic quark 

model study was performed and by comparing strong decays of K1(1270) and K1(1400) states, mixing angle was 

estimated as 𝜃𝐾1
= ±(59.29 ± 2.87)𝑜 [26]. In a light cone QCD sum rules analysis, Hatanaka and Yang (2008) 

estimated the mixing angle from the ratio of radiative B decays and favored 𝜃𝐾1
= −(34 ± 13)𝑜 [27]. In Cheng (2012), 

the author investigated axial meson mixing through isosinglet and isotriplet mixing angles via Gell-Mann Okuba 

relations and obtained that 𝜃𝐾1
≤ 45𝑜 was favored [28]. In Divotgey et al. (2014), authors studied explicit breaking of 

flavor symmetry in a relativistic effective model and obtained |𝜃𝐾1
| = (33.6 ± 4.3)𝑜  [29]. In Liu et al. (2014), a 

perturbative QCD (pQCD) analysis for 𝐵± → 𝜙𝐾1
±(1270,1400) decays was performed and 𝜃𝐾1

≃ 33𝑜 was favored 

[30]. In Zhang et al. (2018), authors conducted a pQCD analysis for 𝐷+ → 𝐽/𝜓𝐾1
±(1270,1400) decays and supported 

that 𝜃𝐾1
≃ 33𝑜 [31]. Lastly, BESIII collaboration observed the semileptonic 𝐵± → �̅�1

0 (1270)𝑒+𝜈𝑒 decay and reported 

its branching fraction for the first time, which supported the values 𝜃𝐾1
= 33𝑜 or 𝜃𝐾1

= 57𝑜, and ruled out negative 

possibilities. In addition to these studies concerning the axial vector mixing angle, and related to recent LHCb 

observation on the violation of lepton universality [10], there are several approaches to investigate the new physics 

beyond SM through properties and decays of K1(1270) and K1(1400) states, which used models such as Supersymmetry, 

Non-universal Z’, Leptoquarks, Two Higgs Doublet and Fourth Generation, and all of which concluded that transitions 
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involving  𝐾1 states are sensitive to New Physics, hence sensitive to  𝜃𝐾1
as well [29 - 39]. As seen from this introductory 

summary of the status of 𝜃𝐾1
, its value has not been determined yet, and it needs further investigations.  

 

In this work, motivated by the findings listed above, we are revisiting 𝐾1 states to estimate 𝜃𝐾1
 by a theoretical analysis 

for the very first time by using QCD Sum Rules. In this analysis, we benefit from the orthogonally of the physical states 

and follow the mechanism introduced by Sugiyama et al. (2007) [40],  and Aliev et al. (2011) [41], to estimate the value 

of 𝜃𝐾1
. We also perform a detailed Monte Carlo based statistical analysis to extract the numerical results. 

 

This work is organized as follows: In section 2, we construct the sum rules and obtain the analytical expressions for 

tan 𝜃𝐾1
and 𝜃𝐾1

. In section 3, we present the numerical analysis, our findings and discussions. In section 4, we present 

our summary and concluding remarks.  

 

2. Theoretical Framework 

In QCD, Sum Rules (QCSR) are widely and very successfully applied to study physical properties of hadrons, such as 

masses, decay constants, couplings or form factors (for foundations and applications, see References [42-44]).  In 

QCDSR, the main aim is to calculate the correlation function, and for axial vector states with one Lorentz index it is 

written as 

 

𝛱𝜇𝜈
𝐻 = 𝑖∫ 𝑑4𝑥 𝑒𝑖𝑞𝑥 〈0 |𝑇{ 𝑗𝜈

𝐻(𝑥)𝑗𝜇
𝐻†

(0)}| 0〉 ,                                                                                       (3) 

 

where T denotes the time ordered product and 𝑗𝜇
𝐻†

(𝑥) is the interpolating current creating (the same current without 

dagger annihilates) the hadron tower with the quantum numbers of desired hadron H at point x. In QCDSR, this 

correlation function is calculated twice in the regions where hadrons are formed and also where quarks and gluons are 

free. While calculating the correlation function in terms of quark and gluon degrees of freedoms, operator product 

expansion (OPE) is used to formulate non-perturbative contributions. By equating these calculations and applying 

techniques to isolate the ground state of the hadron tower, such as Borel transformation and continuum subtraction, one 

can get the mass sum rules of hadron H (for a detailed review, please see Reference [44]). In the current problem, we 

will not aim to find the masses of the ground states; however, we are motivated to extract the mixing angle defined in 

Equation 3. Thus, we will not proceed with the conventional sum rules analysis. Instead, we will follow References [40] 

and [41]. In this approach we will start with the correlation function in the form 

 

𝛱𝜇𝜈
𝐻1−𝐻2 = 𝑖∫ 𝑑4𝑥 𝑒𝑖𝑞𝑥 〈0 |𝑇{ 𝑗𝜈

𝐻2(𝑥)𝑗𝜇
𝐻1

†
(0)}| 0〉                                                                               (4) 

 

where H1 is 𝐾1(1270) and H2 is 𝐾1(1400). Since 𝐾1(1270) and 𝐾1(1400) are mass eigenstates and they are assumed 

to be orthanormal, i.e. 𝑗𝜇
𝐻1 creates (or its dagger annihilates) only H1, and 𝑗𝜇

𝐻2 does the same for only H2, the above 

correlation function will naturally give zero, i.e. 
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𝑗𝜇
𝐾1(1270)

= 𝑠𝑖𝑛𝜃𝐾1 𝑗𝜇
𝐴 +  𝑐𝑜𝑠𝜃𝐾1 𝑗𝜇

𝐵 ,  

 

𝑗𝜇
𝐾1(1400)

= 𝑐𝑜𝑠𝜃𝐾1 𝑗𝜇
𝐴 −  𝑠𝑖𝑛𝜃𝐾1 𝑗𝜇

𝐵 ,                                                                                                  (6) 

 

where 𝑗𝜇
𝐴 and 𝑗𝜇

𝐵 are the interpolating currents of the orbital angular momentum eigenstates K1A and K1B, and one has to 

choose proper currents for these. Even though these states are axial vector states, in SU(3) symmetry  K1A  couples to 

pure axial vector current and K1B couples to pure tensor current. When SU(3) symmetry is broken, the intermingling is 

only at the order of their Gagenbauer moments, which is either zero or negligible. Thus, pure axial vector and tensor 

currents can be used in calculating the correlation function given in Equation 4 [18,19,27]. The relevant matrix elements 

that appear in the first step of calculation of the vanishing correlation function provided in Equation 4 are given as 

 

〈𝐾1𝐴(𝜖)|�̅�𝛾𝜇𝛾5𝑑|0〉 =  𝑖 𝑓𝐴𝑚𝐴𝜖𝜇
∗  ,  

 

〈𝐾1𝐵(𝜖)|�̅�𝜎𝜇𝜈𝛾5𝑑|0〉 =  −𝑖 𝑓𝐵𝑚𝐵(𝜖𝜇
∗  𝑝𝜈 − 𝜖𝜈

∗ 𝑝𝜇) ,                                                                           (7) 

 

and 

 

〈𝐾1𝐴(𝜖)|�̅�𝜎𝜇𝜈𝛾5𝑑|0〉 =  −𝑖 𝑎0,𝐴
⊥  𝑓𝐴𝑚𝐴(𝜖𝜇

∗  𝑝𝜈 −  𝜖𝜈
∗  𝑝𝜇) ≃ 0 ,   

 

〈𝐾1𝐵(𝜖)|�̅�𝛾𝜇𝛾5𝑑|0〉 =  𝑖 𝑎0,𝐵
∥ (1𝐺𝑒𝑉)𝑓𝐵𝑚𝐵𝜖𝜇

∗ ≃ 0 ,                                                                            (8) 

 

where shorthand notation A and B used to denote K1A and K1B in sub-indices, 𝑓𝐴,𝐵 and 𝑚𝐴,𝐵 are the decay constants and 

the masses of 𝐾1(𝐴,𝐵) states. In Equation 8,  𝑎0,𝐴
⊥  and 𝑎0,𝐵

∥  are the zeroth order Gagenbauer moments which vanish under 

SU(3) symmetry, and which are negligible when SU(3) symmetry is broken. This will let us define the interpolating 

currents as 𝑗𝜇
𝐴 = �̅�𝛾𝜇𝛾5𝑑 and 𝑗𝜇

𝐵 = �̅�𝜎𝜇𝜈𝛾5𝑝𝜈𝑑. Substituting these interpolating currents in the vanishing correlation 

function given in Equation 4 and playing with some algebra, one gets the relation 

 

𝑡𝑎𝑛𝜃𝐾1
(𝐶𝐴

2𝛱𝜇𝜈
𝐴𝐴 − 𝐶𝐵

2𝛱𝜇𝜈
𝐵𝐵) + (1 − 𝑡𝑎𝑛2𝜃𝐾1

)𝐶𝐴
∗𝐶𝐵𝛱𝜇𝜈

𝐴𝐵 = 0 + ⋯                                                     (9) 

  

where 𝐶𝐴 = (𝑖𝑓𝐴𝑚𝐴)−1  and 𝐶𝐵 = (−𝑖𝑓𝐵𝑚𝐵
2 )−1,  and we used the polarization formula 𝜖𝜇𝜖𝜈

∗ = −𝑔𝜇𝜈 + 
𝑝𝜇𝑝𝜈

𝑚2  . In 

Equation 9, 𝛱𝜇𝜈
𝐴𝐴, 𝛱𝜇𝜈

𝐵𝐵 and 𝛱𝜇𝜈
𝐴𝐵 are the correlation functions in terms of pure states K1A and K1B, which appear in the 

vanishing correlation function, and they can be written as 

 

𝛱𝜇𝜈
𝐴𝐴(𝑝2) = 𝑖∫ 𝑑𝑥 𝑒𝑖𝑝𝑥 𝑇𝑟[(𝛾𝜇𝛾5)

†
𝑖𝑆𝑑(−𝑥)(𝛾𝜈𝛾5)𝑖𝑆𝑠(𝑥)]  , 

 

𝛱𝜇𝜈
𝐴𝐵(𝑝2) = 𝑖∫ 𝑑𝑥 𝑒𝑖𝑝𝑥  𝑇𝑟[(𝛾𝜇𝛾5)

†
𝑖𝑆𝑑(−𝑥)(𝜎𝜈𝛽𝑝𝛽𝛾5)𝑖𝑆𝑠(𝑥)]  , 
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𝛱𝜇𝜈
𝐵𝐵(𝑝2) = 𝑖∫ 𝑑𝑥 𝑒𝑖𝑝𝑥  𝑇𝑟[(𝜎𝜇𝛼𝑝𝛼𝛾5)

†
𝑖𝑆𝑑(−𝑥)(𝜎𝜈𝛽𝑝𝛽𝛾5)𝑖𝑆𝑠(𝑥)] ,                                                   (10) 

 

where for 𝑞 = 𝑑, 𝑠 light quarks, the light propagator in position space up to quark condensates in the form 

 

𝑖𝑆𝑞(𝑥) =
𝑖 𝛾.𝑥 

2 𝜋2𝑥4 −
𝑚𝑞

4 𝜋2𝑥2 −
〈𝑞�̅�〉

12
 (1 −

𝑖𝑚𝑞

4
𝛾. 𝑥)                                                                                      (11) 

 

is used in calculations. As seen from the Lorenz indices of correlation functions of pure states given in Equation 10, they 

have two Lorentz indices and any object carrying two Lorentz indices can be expended in terms of structures 𝑝𝜇𝑝𝜈 and 

𝑔𝜇𝜈 as follows 

 

𝛱𝜇𝜈 = 𝛱′𝑔𝜇𝜈 + 𝛱𝑝𝜇𝑝𝜈 ,                                                                                                                        (12) 

 

where we omitted the superscripts A and B for simplicity, and 𝛱′ and 𝛱 are the coefficients of the Lorentz structures 

𝑝𝜇𝑝𝜈 and 𝑔𝜇𝜈. As seen in Equation 9, any structure and its coefficient can be used to construct the sum rules. After 

choosing structure 𝑝𝜇𝑝𝜈, and inserting the definition of the quark propagator, we proceed with Borel transformation with 

respect to Borel parameter 𝑀2, apply quark hadron duality, and define the Borel transformed coefficients as 

 

𝛱𝑖𝑗(𝑠0, 𝑀2) =
1

𝜋
∫ 𝑑𝑠 𝑒−𝑠/𝑀2𝑠0

𝑠𝑚
𝐼𝑚[𝛱𝑖𝑗],                                                                                               (13) 

 

where 𝑠0 is the continuum threshold, and 𝑠𝑚 is the kinematical limit. The analytical expressions of the correlation 

functions of the pure states are obtained as 

 

𝛱𝐴𝐴(𝑠0, 𝑀2) = (1 − 𝑒
−

𝑠0
𝑀2 ) (

𝑀2

12 𝜋2 −  
𝑚𝑠〈𝑠𝑠̅〉

3𝑀2 ) ,  

 

𝛱𝐴𝐵(𝑠0, 𝑀2) =
𝑀2

8𝜋2 (1 −
3

𝜋2) (𝑀2– 𝑠0)𝑒
−

𝑠0
𝑀2 +

𝑚𝑠〈𝑑�̅�〉

3
 ,  

 

𝛱𝐵𝐵(𝑠0, 𝑀2) =
−𝑚𝑠𝑀2

8𝜋2 (1 − 𝑒
−

𝑠0
𝑀2 ) +

〈𝑠𝑠̅〉−〈𝑑�̅�〉

3
 .                                                                                   (14) 

 

In terms of these coefficient, we get the analytical expression for the sum rules of the mixing angle of 𝐾1(1270) and 

𝐾1(1400) states for the first time as follows 

 

tan(2𝜃𝐾1
) =

−2𝐶𝐴
∗ 𝐶𝐵�̅�𝐴𝐵

𝐶𝐴
2�̅�𝐴𝐴−𝐶𝐵

2�̅�𝐵𝐵 .                                                                                                                   (15) 
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3. Numerical Analysis, Results and Discussions 

After constructing the framework to study 𝜃𝐾1
, we now proceed with estimating its numerical value. For this purpose, 

we need to determine the input parameters, such as quark masses, condansate values, decay constants and the masses of 

K1A and K1B. These input parameters are taken from literature and provided in Table 1. 

 

 

𝑚𝑠 = 95 ± 5 𝑀𝑒𝑉 

〈𝑑�̅�〉 = −(240 ± 10 𝑀𝑒𝑉)3 

〈𝑠�̅�〉 = 0.8 〈𝑑�̅�〉 

𝑚𝐴 = 1.31 ± 0.06 𝐺𝑒𝑉 

𝑚𝐵 = 1.34 ± 0.08 𝐺𝑒𝑉 

𝑓𝐴 = 250 ± 13 𝑀𝑒𝑉 

𝑓𝐵 = 190 ± 10 𝑀𝑒𝑉 

 

Table 1: Input parameters (all taken from Reference [44]). 

 

As seen in the previous section, the expression of 𝑡𝑎𝑛(2𝜃𝐾1
) obtained in Equation 15 does not depend on the properties 

of 𝐾1(1270) and 𝐾1(1400) states, but consists of two auxiliary parameters 𝑠0 and 𝑀2 arising from the QCDSR 

mechanism, and physical input parameters provided in Table 1. Physical parameters are taken from literature, however 

the values of auxiliary parameters  𝑠0 and 𝑀2 are problem dependent. The continuum threshold, 𝑠0, was introduced in 

to formalism from duality of quarks and hadrons in the infinite tower contributing the calculation of  correlation 

functions; thus, it should be greater than the square of the mass of the hadron under investigation. In conventional sum 

rules, it is usually chosen as 𝑠0 = (𝑚𝐻 + 𝛿)2 , where 𝛿 varies between  0.3 𝐺𝑒𝑉2 and 0.8 𝐺𝑒𝑉2. On the other hand, 

Borel mass parameter (𝑀2) is used to suppress the subtraction terms, i.e. to suppress the additional terms denoted with 

dots appearing in Equation 5. In traditional QCDSR calculations, the obtained results usually get an uncertainty at the 

order of 30%, where the main source is 𝑠0.  Therefore, the values of parameters  𝑠0 and 𝑀2 should be chosen very 

carefully.  Usually working regions of the QCDSR expressions are determined by the following criteria: 

 

• The physical results obtained from QCDSR should weakly depend on 𝑠0 and 𝑀2, 

 

• Working regions of 𝑠0 and 𝑀2 should satisfy pole dominance; i.e., the constraint on the ratio 

 

�̃�𝑖𝑗  =
𝛱𝑖𝑗(𝑠0, 𝑀2)

𝛱𝑖𝑗(∞, 𝑀2)
⁄ > 0.5                                                                                      (16)   

 

should be satisfied for all 𝛱𝑖𝑗 given in Equation 14. 

 

• Within the working regions of 𝑠0 and 𝑀2, OPE convergence should be guaranteed; i.e., the constraint on the ratio 
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�̃�𝑖𝑗(𝑂𝑃𝐸) =
𝛱𝑖𝑗,𝐷3(𝑠0, 𝑀2)

𝛱𝑖𝑗(𝑠0, 𝑀2)
⁄ < 0.2                                                                       (17) 

 

should be satisfied for all 𝛱𝑖𝑗 given in Equation 14, where 𝛱𝑖𝑗,𝐷3 denotes the contributions of  dimension 3 terms in 

the correlation functions.  

 

In order to observe the dependence of 𝜃𝐾1
 on 𝑠0 and 𝑀2, we plotted tan (2𝜃𝐾1

) vs 𝑠0 and 𝑀2 in Figure 1, and 𝜃𝐾1
 vs 𝑠0 

and 𝑀2 in Figure 2. It is seen from both graphs that dependence on both parameters are mild, which is not enough to 

provide any constraint on 𝑠0 and 𝑀2.  

 

          

Figure 1. Dependence of  𝑡𝑎𝑛2𝜃𝐾1
 to 𝑠0 and 𝑀2 . 

 

 

Figure 2. Dependence of 𝜃𝐾1
 (in degrees) to 𝑠0 and 𝑀2 . 

To analyze the pole dominance and OPE convergence, we plotted �̃�𝑖𝑗 > 0.5 and �̃�𝐵𝐵(𝑂𝑃𝐸) < 0.2 regions in 𝑠0 - 𝑀2 

plane for correlations functions given in Equation 14 in Figure 3, where �̃�𝐴𝐵(𝑂𝑃𝐸) <  0.2 and �̃�𝐴𝐴(𝑂𝑃𝐸) < 0.2 are 

satisfied in the whole plane; hence, they are not shown. It is seen from Figure 3 that main constraint on the working 
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regions of continuum threshold and Borel mass comes from �̃�𝐴𝐵, and sets an additional condition, such as 𝑀2 ≤

1.05 𝑠0
2 − 0.45 𝐺𝑒𝑉2. Since regions for �̃�𝐴𝐴 limit the pole dominance around 𝑠0 ≃ 2.5 𝐺𝑒𝑉2, we set the constraint 𝑠0 >

2.5 𝐺𝑒𝑉2, consistent with traditional QCDSR analysis [18,42-45]. 

 

Combining the interpretations from Figures 1, 2, 3 and 4, we set the working regions of 𝑠0 and 𝑀2 as follows 

 

2.5 𝐺𝑒𝑉2 < 𝑠0 < 4.0 𝐺𝑒𝑉^2,  

2.15 𝐺𝑒𝑉2 < 𝑀2 < 3.75 𝐺𝑒𝑉2,                                                                                                           (18) 

 

where the upper bound of 𝑠0 is borrowed from traditional QCDSR analysis, and an additional condition 

 

𝑀2 < 1.05 𝑠0 − 0.45 𝐺𝑒𝑉2 ,                             (19) 

 

is obtained from Figure 3, following discussions in Ref. [45]. 

 

In traditional QCDSR analysis, it is not possible to consider the constraint given in Equation 19, which gives the relation 

between 𝑀2 and 𝑠0. In addition, the uncertainties are obtained by varying parameters between their minimum and 

maximum values, which result in higher relative errors. In order to improve the reliability of our results, we perform a 

Monte Carlo (MC) based statistical analysis following Mutuk (2021), where further discussions, additional comments 

and a literature summary can be found [46]. Since we constructed a relation between 𝑀2 and 𝑠0., we did not impose a 

𝜒2 test. For MC analyses, we generated 106 Gaussian distributed input values for  𝑀2 and 𝑠0, within the range given in 

Equation 18. Then we filtered the results satisfying the relation given in Equation 19. Finally we imposed the conditions 

𝑠0
2 > 𝑚𝐻

2  and 𝑀2 > 2.15 𝐺𝑒𝑉2 to filter out unphysical results. This process resulted in 𝑛 = 362476 data points. We 

plotted the distributions of generated and filtered data sets of 𝑀2 and 𝑠0 in Figure 4. As seen from the Figure, allowed 

values of 𝑠0 are shifted to the right, and allowed values of 𝑀2 shifted to the left, and remaining data of 𝑛 points could 

produce statistically reliable results. 

 

Finally, we generated 𝑛 Gaussian distributed values for input parameters provided in Table 1, and by inserting this data 

in analytical expression given in Equation 15 and computing it 𝑛 times, we get the resulting set of values for tan(2𝜃𝐾1
). 

We plotted these values and their corresponding angles in the first quadrant in histograms in Figure 5. It is seen from 

Figure 5 that both distributions can be modeled as a dimidiated Gaussian, and where  tan(2𝜃𝐾1
) has a longer tail in the 

right side, 𝜃𝐾1
 has a longer tail in the left side of the distributions. Even though the distributions of the input sets are 

almost Gaussian, the resulting distributions can be approximated as a dimidiated Gaussians, i.e. two Gaussians with 

different standard deviations around the same mean. The histograms provided in Figure 5 corresponds to numerical 

results 

 

tan(2𝜃𝐾1
) = 6.04−1.34

+1.49 ,                                                                                                                     (20) 
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and 

 

𝜃𝐾1
= 39.91−1.42

+1.05 𝑜 ,                                                                                                                            (21) 

 

where in obtaining asymmetric errors, we followed the recipe given in Barlow (2002) for dimidiated Gaussian 

distributions [47]. 

 

The results obtained in this study are the first ever QCDSR estimation of 𝜃𝐾1
, and despite the dissension on the value of 

𝜃𝐾1
 in literature, our results are in good agreement with references favoring positive values [17,20-23,25,26,28-30], 

including experimental determination by BESIII[31].  

 

 

Figure 3. Regions satisfying pole dominance, i.e.,  �̃�𝑖𝑗 > 0.5  and OPE convergence for  �̃�𝐵𝐵(𝑂𝑃𝐸) < 0.2 in 𝑠0 - 𝑀2 plane. 

�̃�𝑖𝑗  are described by filling colors on plot. The boundary of �̃�𝐵𝐵(𝑂𝑃𝐸) < 0.2 is given by dashed red curve. Allowed 

values of 𝑠0 and  𝑀2 are in green. 

 

 

 

 

Figure 4. The histogram of Gaussian generated (yellow) and filtered (gray)  𝑠0 (left) and 𝑀2 (right) values.  
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Figure 5. The histogram of 𝑡𝑎𝑛2𝜃𝐾1
 (left) and 𝜃𝐾1

 in degrees (right) from 362476 matches. 

 

4. Conclusions 

In the present work, we employed a theoretical QCDSR based investigation to estimate the mixing angle between axial 

vector K1(1270) and K1(1400) mesons. By using interpolating currents of pure 𝐾1𝐴 and 𝐾1𝐵 states and benefiting from 

the orthogonality of the physical states, we calculated the analytical expression for tan(2𝜃𝐾1
). We carefully determined 

the working regions of QCD Sum Rules. We generated 106 Gaussian distributed data for continuum threshold 𝑠0, and 

Borel mass 𝑀2. We filtered out the data which do not belong to working regions and end up with 𝑛 = 362476 data 

points. For the remaining input parameters, we generated 𝑛 Gaussian distributed data, and calculated tan(2𝜃𝐾1
) for 𝑛 

times. We finally plotted tan(2𝜃𝐾1
) and 𝜃𝐾1

 in histograms and calculated the means and asymmetric errors by assuming 

that the distributions are dimidiated Gaussian. We found the following: 

 

tan(2𝜃𝐾1
) = 6.04−1.34

+1.49     and    𝜃𝐾1
= 39.91−1.42

+1.05 𝑜 .                                                                       (22) 

 

This is the first theoretical estimation of the mixing angle via QCDSR. Our findings are favoring positive values of the 

mixing angle, and they are in good agreement with the major findings in the literature. This result can be used in 

estimating the lepton universality ratio 𝑅𝐾1 for axial vector K1(1270) and K1(1400) mesons, and it can be tested at high 

energy colliders if 𝑅𝐾1 will be measured. Finally, our result can be improved by calculating higher order non-

perturbative contributions. 
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