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Abstract 
 
Exam seat allocation has become a complex problem, with an increasing number 

of students, subjects, exams, departments, and rooms in higher education 

institutions. The requirements and constraints of this problem demonstrate 

characteristics similar to extensively researched exam timetabling problems. They 

plan for a limited capacity effectively and efficiently. Additionally, exam seating 

requires a seating arrangement to reduce the number of cheating incidents. In the 

literature, several genetic algorithm-based methods have been recommended to 

prevent students, who are close friends, from sitting close during the exams while 

providing the best exam session arrangement. We improved the performance of 

the genetic algorithm using parameter optimization and a new elitism method to 

increase the saturation rate and accuracy. The algorithm was tested on a real-world 

dataset and demonstrated high potential for the realization of a high-quality seating 

arrangement compatible with the requirements of educational institutions. 
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1. Introduction 

Cheating during academic examinations is a form of plagiarism that decreases education quality, reduces student 

satisfaction, and subverts the course evaluation system [1]. However, recent research has revealed that cheating is 

prevalent and has increased dramatically over the last thirty years [2]. According to [3], 54 percent of US and 45 

percent of Canadian faculties report observing cheating during the exam, and 22 percent of US and 19 percent of 

Canadian students self-report serious test/exam cheating. Research in the US and Britain has repeatedly shown that 

more than half of university students cheat during their undergraduate years [4]. Preventing cheating in the first 

place is the best way to ensure fairness among students by measuring their academic achievements fairly [5]. 

Friendship was listed among the top five reasons as “My friend wants me to help” in the research on cheating in 

exams at universities [6]. In other research, the rate of copying from the closest seated colleague was higher than 

50 percent, and helping others to cheat was more than 70 percent [7]. The faculty reporting rate of using an 

electronic device for cheating (11 percent) was lower than copying from another student with their knowledge ( 33 

percent) and helping someone else cheat on a test ( 29 percent) [3]. Communication during the exam is significantly 

higher among neighbors who are also friends outside the examination room and unfamiliar neighbors will be less 

confident in interacting, which partially inhibits unwanted communication [8]. Additionally, detecting and 

punishing student whispering is often difficult and subjective. The easiest method to decrease cheating is to spread 

students out, leaving an empty seat between them in each row. Unfortunately, classroom size may not be sufficient 

to spread students effectively [9]. 

This study aims to provide the best session arrangement to prevent placing familiar students in a close location 

during an exam to minimize the possibility of cheating prevailing in central exams via GA. We investigated the 

best methods for passing elite individuals to the next population in the exam seating problem domain. In addition, 

we tuned the GA parameters, such as the mutation probability, crossover probability, and population size to 

determine reasonable settings. It reduces time consumption and manual human dependency and optimizes the usage 

of classroom spaces. We employed multiple parameters such as graduation from the same department or school, 

living with the same relative, or the same birthplace to identify friendship. 

The remainder of this paper is organized as follows. Section 2 presents the motivation for the study and problem 

definition and describes various research works that have been conducted on exam scheduling and seating problems 

using GA and other methods. Section 3 discusses the selection mechanism, crossover and mutation operators, and 

parameters of the existing and proposed methods. Section 4 presents results that demonstrate the effectiveness of 

the proposed method. Finally, concluding remarks and discussions are presented in Section 5.. 

2. Background and Related Works 

The steps of the exam scheduling process include examination timetabling, room assignment, and student seat 

placement. Examination timetabling begins by listing exams that cannot be scheduled in the same time slot, 

generating available examination time slots; and identifying available exam rooms and courses that need to be 

scheduled [10]. A large number of events to be scheduled and constraints imposed on timetabling make the search 

space for the problem extremely large. Indeed, a manual solution can require considerable effort or is nearly 

impossible [11]. Many constraints should be satisfied, as a course taught at many places must have the same exam 
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date and an invigilator can be assigned to any campus [12]. Timetabling problems have attracted the attention of 

the scientific community and interest in this field has increased [8]. However, the lack of room for information in 

currently used datasets means that the optimization function used to measure solutions does not incorporate all 

necessary issues [13].  

The problem of assigning exams to classrooms has been investigated in research using seating capacity in the 

classroom as a hard constraint [14]. Some researchers have focused on the invigilation schedule which aims to 

assign rooms or invigilators after the exam timetable has been approved; however, it has received less attention 

from the research community because of the lack of available datasets [15]. There is relatively little research on the 

assignment of exams to classrooms by targeting the minimization of the total used capacity [16]. 

Generally, student placement on the seat is not considered when generating examination timetables. Some studies 

have focused on minimizing student movement between rooms by assigning them to the same room when they are 

scheduled to sit consecutive examinations on the same day [10]. Students should not undergo two examinations 

simultaneously over a designated period within a finite area of space. A viable solution must satisfy this ‘hard’ 

constraint [17].  

When the focus shifts to the prevention of cheating, the successful distribution of seats in an exam is one of the 

primary concerns of a well-prepared exam hall, ensuring the maximum distance between students while making 

the best use of seats. The general aim is to replace friends separately during an exam and place non-befriended 

students next to each other as much as possible [8]. However, exam seats are usually allocated manually based on 

the basic rules [18]. Many institutes perform this task manually using Excel sheets causing excessive wastage of 

time and manpower [19]. 

Social network analysis has been used to detect student friendships and avoid cheating [8]. Friendships constructed 

by a friend’s friend create a complex network topology [20]. Because not every student has a public social media 

account, we determined the friendship level via the student’s department, program, and birthplace parameters using 

a real-world dataset. 

3. Methods 

This section explains the proposed method, its advantages, and the differences between the proposed and previous 

methods. 

3.1. Genetical Algorithm Basic Structure 

The solution to exam seating is constraint programming, which solves a given set of variables, a finite set of possible 

values that can be assigned to each variable, a list of constraints, and values of the variables that satisfy every 

constraint as the timetabling problem [21].  GA, which is a suitable optimization technique for solving hard and 

highly constrained problems, is a popular meta-heuristic method that addresses the university timetabling problem 

[22].  GA was chosen to solve the exam seating problem because of its robustness in many studies [23–26]. In 

addition, in some studies, the selection strategies of GA were incorporated into other algorithms, such as bee colony 

optimization, to increase the effectiveness of the solution to the examination timetabling problem [27]. 

GA which was first introduced by John Holland [28] allows the building of a solution inspired by nature. It aims 

to find the best solution for the survival of living organisms that adapt to the natural environment and the elimination 
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of living organisms that cannot adapt [29]. The population is composed of chromosomes, and the population size 

(PS) is the chromosome number. The initial population is generated from random values [30] and interchanges to 

produce new individuals (chromosomes). The population is assigned a suitability value by comparing each solution 

with other solutions using a fitness function for each generation number (GN) and the best individuals of the 

population are transferred to the next generation. This iteration continues to try solutions until the fitness value is 

zero or the maximum number of generations (GNmax) is reached. 

The natural selection process can be clogged somewhere and circulates the same solution. Crossing and mutation 

are two important genetic operators used to create new solutions [31]. In the crossover operation, the bits of the 

first chromosome and the other chromosome shift according to a predefined rule to produce chromosomes with 

different structures and increase chromosome richness, as shown in Figure 1a. 

Figure 1. Operators in GA. 

 

The mutation operator changes the homogeneous structure in the vicious circle formed when searching for the best 

solution. If all chromosomes are identical or similar, the optimum mean fit value may not be reached. Randomly 

selected genes in the chromosome are changed as shown in Figure 1b. 

3.2. Applying Genetical Algorithm to Exam Seating 

The exam seating problem has a variety of constraints similar to those of the timetabling problem. When searching 

for an optimal solution, 𝐸 events can be allocated to 𝑃 places in 𝑃𝐸 ways that create an NP-hard problem [32]. 

Heuristic algorithms are used to solve NP problems in polynomial time or approximate it. Therefore, GA was 

applied to exam seating in the literature [33]. The students were placed into classrooms with different capacities as 

a matrix layout as shown in Figure 2. 

 
Figure 2. The session layout in the classrooms. 

 

The initial population, chromosome encoding, and fitness function structures are arranged to solve the exam seating 

problem. The pseudo-code of the proposed GA method is shown in Figure 3. 
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begin 

Data: Create the initial population 

Result: 𝐹 

while do 

Calculate F while (𝐺𝑁𝑖   < 𝐺𝑁𝑚𝑎𝑥): The modified fitness function is applied on each chromosome; 

Cumulative Probability Calculation: Roulette wheel transfer to the intermediate population; 

CrossOver: Selection of chromosome pairs with an integrated repair algorithm; 

Mutation: Permutation coding; 

Elitism: Replace the worst members of the existing population with the best members of the intermediate 

population; 

end 

Figure 3.  The proposed GA for exam seating 

 

3.3. Chromosome Encoding and The Initial Population 

Each chromosome was constructed by using a random distribution of student information to create an initial 

population. The initialization procedure is an important issue in GA implementation because it supports the fact 

that individuals across the first generation spread across the entire search space with as much diversity as possible 

[34]. The index information can be given by: 

c ∈ 1, … , R  where R is the number of classrooms           (1) 

i ∈ {1, … , L}  where L is the number of students            (2) 

t ∈ {1, … , T}  where T  is the total number of seats           (3) 

si =  (a1,  a2 ,  . . ,  an) where si is a tuple containing the attribute (𝑎) of 𝑖th student           (4) 

The form and definition of the chromosome structure are very important to improve the performance of the 

algorithm. One student was placed in each row or a chromosome 𝑖𝑛𝑑𝑒𝑥 = 𝑖 represents 

(𝐶𝑙𝑎𝑠𝑠𝐼𝑑, 𝑅𝑜𝑤𝐼𝑑, 𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝑑) information [36]. The other information about the student such as undergraduate 

program, birthplace, and residence information has been stored in another list and referenced using student identity 

to reach a light and high-performance structure. Figure 4 shows an example distribution of a chromosome structure 

for 15 students and 2 classrooms. 

 

Figure 4. Chromosome structure  

 

 

{ 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  index (i)  

Chromosome S1 S2  S3  S4  S5 S6 S7  S8  S9 S10  S11 S12  S13 S14 S15  Student Id   

 

 
                

List for other 

information { 
S1 S2  S3  S4  S5 S6 S7  S8  S9 S10  S11 S12  S13 S14 S15  

C1 C1 C2 C1 C2 C1 C2 C2 C1 C1 C1 C1 C2 C2 C1  Classroom 

Id 
2 1 1 3 3 3 2 2 3 1 2 2 1 3 1  Row Id 

2 2 2 2 2 3 2 1 1 1 3 1 1 1 3  Column Id 
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3.4. The Fitness Function 

The system creates a penalty when two students are likely to recognize each other sitting back-to-back or next to 

each other in a chromosome. The fitness function F(𝑘), which represents the total penalty for 𝑘th generation, is 

given by Equation (5) as  

F(𝑘) = ∑ ∑ 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(si, sj)       L
j=i+1

L
i=1            (5) 

To detect proximity, the relationship immediately behind and to the right of each student's seat is examined. When 

proximity is detected, the chromosome receives a proximity(𝑠𝑖 , 𝑠𝑗) score representing the degree of proximity 

between the ith and jth students’ locations as 𝑠𝑖 and 𝑠𝑗 . In Equation (6), the first row indicates that the 𝑗𝑡ℎ student 

sits next to the seat of the 𝑖𝑡ℎ student and they have the same proximity attributes. The second row indicates the 

𝑗𝑡ℎ student sitting behind the 𝑖𝑡ℎ student. Only the seat behind the student is examined in the rightmost column of 

the classroom and only the seat next to the student is examined in the last row of the classroom. The proximity 

calculation for the fitness function is 

proximity(𝑡𝑖 , 𝑡𝑗) =  {
1 if 𝑖 = 𝑗 + 1 ∧ (𝑠1 = 𝑠2)   

  1 if 𝑖 = 𝑗 + 𝑁 ∧ (𝑠1 = 𝑠2)    
  0              otherwise              

           (6) 

The classroom contains a total of 𝑀 rows and 𝑁 columns. We accepted all friendship parameters to be the same 

and the similarity coefficients as 1. The fitness function is subject to the following additional constraint: more than 

one student cannot be assigned to one seat: 

∑ 𝑣𝑖𝑡  ≤ 1𝐿
𝑖=1  for each i ∈ 1, … , L            (7) 

𝑣𝑖𝑡 1 if student 𝑖 is assigned to seat 𝑡 and 0 otherwise.  

The target solution must minimize the fitness value to zero or near zero.  

3.5. The Crossover Operator 

After determining the initial population, the chromosomes are crossed according to their fitness values, and new 

offspring individuals are obtained at the end of each iteration to determine which individuals are the correct 

solution, as shown in Figure 5. s1, s3, s6 have a friendship; thus,  𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒2 has one close seat (𝑠1 , 𝑠3) and 

𝐹 = 1/3. 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒3 has two close seats ((𝑠1, 𝑠3), (𝑠1 , 𝑠3)) and 𝐹 = 2/3.  

 

 

Figure 5. The crossover of chromosomes 

Chromosome 2 (F=1/3) 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 

C1 C1 C2 C1 C2 C1 C2 C2 C1 C1 C1 C1 C2 C2 C1 

1 2 1 3 3 2 2 2 3 2 3 1 1 3 1 

2 2 2 3 2 1 1 2 2 3 1 1 1 1 3 
 

Chromosome 3 (F=2/3) 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 

C1 C1 C1 C1 C2 C2 C1 C2 C1 C1 C2 C2 C1 C2 C1 

3 3 2 3 3 2 1 3 2 2 2 1 1 1 1 

3 1 2 2 1 1 3 2 1 3 2 1 2 2 1 
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𝑖.th chromosome roulette selection probability function is given in Equation (8): 

𝑃(𝑖) =
F(𝑖)

∑ 𝐹(𝑗)𝐶𝑁
𝑗=0

             (8) 

Chromosome number (𝐶𝑁) defines the crossing point. Candidate chromosomes for selection are determined by 

generating a random number using a crossing point. For example, when random point 5 is determined, the first five 

genes of 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒2 and the last ten genes of 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒3 combine to form the 𝑁𝑒𝑤𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒.  

Chromosomes that will survive in the next population are determined by cumulative ratio values using a randomly 

generated number between 0 and 1 in the roulette wheel selection method. Crosspoint selection is implemented by 

generating random values for chromosomes that address the locations of the chromosome pairs to be crossed. For 

example, the first pair of chromosomes to be crossed is 7 and 2, when random numbers (7 − 2 − 5 − 8 − 1 − 4 −

3 − 6) are generated in a population. The genes after the crossing point of the first and second chromosomes are 

combined to obtain the second offspring. 

 

 

Figure 6. Crossover in SPCM 

The direct implementation of GA crossover causes genes to repeat in the chromosome, as shown in Figure 6 [32]. 

When a crossover is performed without considering the repeating genes in the chromosome structure, over 20 

percent of the chromosome structures are repeated causing the same student to be replaced in more than one place 

in the room or two different students to be replaced in the same seat [37]. In the example above, the students, 𝑠5 

and 𝑠8, were in the third seat of the second classroom. Therefore, this settlement plan cannot be applied in the real 

world. During the exchange process, the generic partially mapped crossover operator performs no feasibility check 

by default, and a repair mechanism is required to make each child chromosome feasible [34]. An improved 

crossover model was designed to eliminate an additional repair function as satisfying the constraints of the problem 

[37]. The crossover of 𝑖th gene in chromosomes X and Y is given by equation (9): 

𝑃𝑀𝑋 = {𝑋𝑌[𝑖] = 𝑋𝑖  𝑡ℎ𝑒𝑛 𝑋[𝑖] ↔ 𝑌[𝑖]}                (9) 

The process begins with selecting random crossover points on the parents. The gene on the first chromosome is 

copied on the same chromosome to the location of the corresponding gene on the second chromosome when 

transferring the segment from the first parent to the first offspring.  The same procedure is repeated for the second 

chromosome with the parents’ roles reversed. This prevents the replication of the same seating position on the same 

chromosome, as shown in Figure 7. 

 

 

S1 S2  S3  S4  S5 S6 S7  S8  S9 S10  S11 S12  S13 S14 S15 

C1 C1 C2 C1 C2 C2 C1 C2 C1 C1 C2 C2 C1 C2 C1 

1 2 1 3 3 2 1 3 2 2 2 1 1 1 1 

2 2 2 3 2 1 3 2 1 3 2 1 2 2 1 
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Figure 7. Partially matched crossover [37] 

 

The genes (7,8,4) in Cromodsome1 were crossed with the genes (9,2,1) in Cromodsome2. Gene 9 in 

Cromodsome2 was replaced 7 in Cromodsome1. Gene 9 in Cromodsome1 was placed at the location of gene 7 

in Cromodsome1. The same process was applied to others. 

3.6. Elitist Selection 

Elitist selection based on cloning the best single individual from one generation to the next is popular [36]. The 

average fitness of the population will increase by transferring the best chromosomes to the next generation. Thus, 

in a previous work [37], the best chromosome of the generation, which had the best fitness value, was selected as 

the elite and transferred to the next generation. Although an elitist procedure is sufficient for many GA applications, 

there may be some cases that benefit from selection schemes that provide different types of search capabilities [36].  

Our observations showed that the method of preventing repeated genes by identifying transfer location using gene 

values [37] caused the distribution of genes to different points during the transition and slowed down the saturation 

in the crossover operator. To improve system performance, this paper explores several elitist procedures for the 

design of GA-based exam seating. We attempted to replace a number of the worst chromosomes of the previous 

generation with the best chromosomes from the new generation. We evaluated the effects of varying the number 

of replaced chromosomes against generation number. 

The effects of the MR, CR, and PS values on the results of the previous algorithms were examined in detail and 

then applied to our elitist selection to compare the results. We determined the best values for the parameters step-

by-step and used them as the initial values for the next step. We evaluated the saturation process by observing the 

penalty score of each algorithm over generations until the saturation point was reached. Each test was repeated 10 

times, and the results of the analysis were averaged to reduce the error rate to less than 10 [38]. The proposed 

algorithm was implemented using Python. 

The data obtained from the distance education application and research center of a university were used in this 

study. The data contained 68 unique undergraduate programs, 157 birthplaces, and 138 residential addresses. 

 

4. Results and Discussion 

Although there is no common judgment on the most suitable parameter values, we used David Schaffer’s 

experimental study values as 0.75 − 0.95 for CR, 0.005 − 0.01 for MR, and 20 − 30 for PS [39]. In addition, it 

is recommended to take PS as an average of 10, in which PS affects the performance [40]. Thus, PS the value was 
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chosen as 12, as described in [37].  

The effect of the parameter values on the saturation process of the previous algorithm is shown in Figure 8a-c. 

When the number of generations increased, the production of defective genes in the chromosome increased 

respectively until the saturation point was reached. The maximum number of generations that supported reaching 

the maturation point was detected as in the range of 50 to 500.  

It was claimed that increasing MR has a positive contribution to the solution of the problem [41]. Thus, our 

investigation focused on MR parameter values having a range between 0.05 and 0.3 as in [37]. However, the results 

indicated that low MR values provided better saturation rates as shown in Figure 8a. We evaluated the effect of PS 

on the results using the best CR values determined as 0.01 as shown in Figure 8b. Thus, after testing different 

values, the parameter values providing the best session order were chosen inside the limits mentioned in the 

literature [39] as CR= 0.9, MR = 0.01, and PS=20. 

 
(a) MR effect analysis 

 
(b) PS effect analysis 

 
(c) CR effect analysis 

 

Figure 8. The effect analysis of the parameters 

 

Figure 9 shows the parametric analysis of the proposed elitism procedure. We have added the results of the previous 

algorithm for the determined parameter values above to allow a comparison of the results of different elitisms to 

the figure. 
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Figure 9. Demonstration of chromosomes in SPCM 

The penalty scores decreased to zero for the 30th generation compared to the 50th generation in the previous 

algorithm, as shown in Figure 9. The TN values yielded better results when approximately 50 percent of the genes 

were altered. 

Our comparative analysis results suggest that the proposed elitism method provides better saturation rates and lower 

penalty scores than the previous algorithms. The saturation rate decreases when the number of transferred 

chromones is low, and the elitism results correlate with those of the previous algorithm [37]. In addition, the model 

result did not contain any misplacement of students as appeared in the study [32].   

Despite the important improvements, there are still some potential threats to the validity of our study. We evaluated 

the effects of parameter values step by step and transferred the best values to the next evaluation stage to decrease 

the size of the test attempts. This could have caused some parameter combinations to be missed. Trying 

combinations of all possible parameter values can provide slightly improved results. Additionally, the dataset on 

which the model was tested was small, considering the number of students in the centralized exams. This limits the 

evaluation of the algorithm performance against large examination datasets. 

5. Conclusion 

The principal contribution of this study is the parametric optimization of GA-based exam seating by analyzing the 

effect of parameter values on the system performance and saturation rate.  The accuracy and performance of the 

algorithm were evaluated by using the student dataset from a university. The results indicated that the parametric 

optimization and improved elitism methods fulfilled two purposes simultaneously: increasing the robustness of the 

algorithm and preventing unrealistic seating plans.  

The proposed model has important theoretical and practical implications. From a theoretical perspective, 

researchers can use the method and dataset as inputs for new exam seating, timetabling, and GA research. From a 

practical perspective, our process model can increase the speed of preparing reliable plans with optimal session 

orders for centralized exams where thousands of people are held simultaneously.  

Some limitations of our study should be addressed to strengthen its applicability further. First, the effects of 

different parameters, such as school friendship and class friendship on exam seating accuracy and performance 



 
Agalday and Nizam J Inno Sci Eng 6(2):220-232 

230  

should be evaluated in detail. Second, the determination of the minimum and maximum classroom spaces should 

be addressed to determine the optimum space allocation for exams. Finally, the integration of exam timetabling 

and seating should be investigated to develop a comprehensive plan for seat placement. 
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